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1     Introduction 

 

Modern data-driven applications have to deal with increasingly large and heterogeneous data 

collections as well as a variety of machine learning (ML) models for cost-effective automation 

and improved analysis results. This requirement creates a trend towards integrated data 

analysis (IDA) pipelines that jointly utilize data management (DM), high-performance 

computing (HPC), and ML systems. As described in [D+22], developing and deploying such 

IDA pipelines is, however, still a painful process of integrating different systems and related 

developers, programming paradigms, resource managers, and data representations. 

Integrating DM+ML, HPC+ML, DM+HPC for improving productivity and/or performance is an 

old problem. However, an open system infrastructure for seamlessly developing, deploying, 

and running IDA pipelines is still missing, and at the same time, new challenges related to 

hardware, productivity, and utilization emerge. 

To overcome that, the DAPHNE project sets out to build an open and extensible system 

infrastructure for integrated data analysis pipelines. To achieve that goal, our envisioned 

infrastructure is based on MLIR as a multi-level, LLVM-based intermediate representation 

backed by multiple organizations and communities. This approach allows a seamless 

integration with existing applications and runtime libraries while also enabling extensibility for 

specialized data types, hardware-accelerated kernels, hardware-specific compilation chains, 

and custom scheduling algorithms. While the DAPHNE reports D2.1 - Initial System 

Architecture [D2.1] and D2.2 - Refined System Architecture [D2.2] have described the overall 

DAPHNE system architecture, report D7.1 - Design of integration hardware (HW) accelerators 

[D7.1] has presented the overall design of the integration of HW accelerators as well as has 

detailed on accelerated operations and primitives. 

As introduced in DAPHNE report D7.1 [D7.1], the challenges for the integration of HW 

accelerators are (i) developing as well as generating operators - hereafter also called 

computation kernels or kernels for short - which can be efficiently executed on accelerators 

such as CPUs, GPUs or FPGAs, (ii) integrating these accelerator-specific operators in the whole 

DAPHNE compilation and runtime infrastructure in a seamless way, and (iii) selecting the best-

fitting accelerator for efficient execution depending on the specific IDA pipeline and hardware 

environment [D7.1]. While challenge (i) is addressed by Task 7.1 - Accelerated Key Operations 

and Data Access Primitives, Task 7.4 - Multi-Device Operation Kernels, and Task 7.5 - Code 

Generation for HW Accelerators, challenge (ii) is considered in Task T7.2 - Compiler and Runtime 

Support for HW Accelerators. Selecting the best-fitting accelerator for efficient execution - 

challenge (iii) - is part of Task 7.2 - Compiler and Runtime Support for HW Accelerators as well 

as Task 7.3 - Performance Models and Cost Estimation.   
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In the follow-up DAPHNE report D7.2 [D7.2], we demonstrated an initial approach how to 

develop hardware-accelerated kernels and how to anchor these hardware-accelerated kernels 

in the entire DAPHNE infrastructure. Additionally, we gave an overview on the devised 

performance models for a cost-based approach for hardware-accelerated kernels and data 

placement decisions in a heterogeneous hardware environment. This specific DAPHNE 

deliverable D7.3 builds on D7.2 and describes extended concepts for code generation of 

hardware-accelerated kernels and the integration into the entire DAPHNE infrastructure. Thus, 

this report summarizes the work and achieved results developed in Task T7.5.  

The remainder of this deliverable is structured as follows: 

• In Section 2, we detail the access to our prototype artifacts for this written deliverable 

document. 

• Then, we introduce our prototypes by describing the underlying demonstration 

scenarios in Section 3.  

• Afterwards, we explain the folder structure of our prototype artifacts in Section 4.  

2 Artifact Access 

The extended prototype is publicly accessible snapshot of the DAPHNE development 

repository including scripts and binaries to run some of the examples described in this 

document. It is available under the following link: 

• Link: https://tinyurl.com/daphne-D73  

This snapshot is a copy of the DAPHNE open-source repository at https://github.com/daphne-

eu/daphne (branch D7.3). 

3 Demonstration scenario 

In this deliverable, we present two different scenarios, each focusing on a different hardware 

accelerator type: 

• [SIMD/FPGA-Example]: The first scenario focuses on accelerating relational data 

processing with the usage of Single-Instruction Multiple-Data (SIMD) extensions of 

general-purpose CPUs as well as FPGAs. 

• [GPU Example]: The second scenario summarizes how our efforts regarding code 

generation for sparsity exploitation on GPU are improving end to end performance in 

an example algorithm from our collection of supported algorithms available in the 

DAPHNE source repository. 

https://tinyurl.com/daphne-D73
https://github.com/daphne-eu/daphne
https://github.com/daphne-eu/daphne
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3.1 SIMD/FPGA-Example 

In this part, we give an introduction to our work on extending our domain-specific framework 

TVL/TSL (Template SIMD Library) to support Intel FPGAs. Generally, the Single Instruction 

Multiple Data (SIMD) paradigm has become a core technique to improve data processing on 

modern general-purpose CPUs. SIMD is characterized by the fact the same operation is 

simultaneously applied on multiple data elements within a single instruction. Modern CPUs 

provide direct support of such SIMD capabilities using an increasing variety of SIMD instruction 

set extensions such as AVX2, AVX512 on Intel or NEON, SVE on ARM systems. To make the 

most out of SIMDified code, industry and research have invested considerable effort and time 

into designing and developing SIMD abstraction libraries to address the challenges of SIMD 

variety and portability of highly optimized SIMDified code. Without claim of completeness, 

XSIMD, Google Highway, or our TVL/TSL are representative examples. Those libraries are 

usually implemented in C/C++ for performance reasons allowing (i) to implement SIMD-

oblivious query operators and (ii) to enable compile-time deduction as well as code generation 

for a specific, available SIMD extension with usually negligible runtime overhead. The resulting 

separation into SIMD-oblivious operators or kernels and a SIMD abstraction library greatly 

reduces programming and code management complexity with a clear separation of concern. 

 

Besides SIMD, Field Programmable Gate Arrays (FPGAs) are becoming an increasingly viable 

option to implement efficient data processing due to increasing compute capabilities as well 

as high-bandwidth access between host and device memory.  However, the complexity of the 

required low-level programming was a limiting factor resulting in a second code base for FPGA 

operators besides the ones for SIMD-oblivious operators. Meanwhile, FPGA manufacturers 

also offer tools that allow programming for FPGAs in higher-level languages such as C/C++ 

or OpenCL. Most recently, Intel has released a new and powerful unified programming model 

called oneAPI to facilitate the development among various hardware architectures, including 

FPGAs. Intel 's oneAPI's cross-architecture language Data Parallel C++ (DPC++) is based on 

the SYCL standard for heterogeneous programming in C++. 

 

Generally, SIMD and FPGA have many architectural features in common. Therefore, our idea is 

to unify SIMD and FPGA by considering FPGAs as SIMD processing units. With this way of 

thinking, FPGAs can be included as another backend option in SIMD abstraction libraries such 

as TVL/TSL [H+23].  This allows to execute single-source SIMD-oblivious code on both CPU 

and FPGA without having to consider FPGAs in isolation. 

3.1.1 Seamless Integration of Intel FPGAs 

On the one hand, the existing SIMD abstraction libraries such as our TVL/TSL library generally 

focus on supporting common SIMD instruction set extensions from Intel and ARM as 

backends. On the other hand, Intel’s oneAPI is a software development kit providing a unified 
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programming model for diverse architectures such as CPUs, GPUs, and FPGAs. It includes a set 

of programming tools and libraries that allow developers to optimize performance, increase 

productivity, and reduce development time. In addition, the toolkit supports a variety of 

programming languages such as C++, Fortran, Python, and Data Parallel C++ (DPC++), an 

extension of C++ designed for heterogeneous computing.  

 

Intel oneAPI for FPGAs uses a Board Support Package (BSP), which describes all hardware 

interfaces to the FPGA, like PCIe and DDR4 as well as provides a shell design for these for faster 

kernel integration and synthesis to the FPGA. Furthermore, Universal Shared Memory (USM) is 

available as BSP feature, which makes it possible to let the data transfers be managed by the 

FPGA itself. This functionality frees up the CPU from the data transfer management; it is only 

involved in creating input and output buffers on the CPU memory side and the FPGA firmware 

gets the data as needed by the kernels from the given input and output host pointers. The 

virtual-to-physical address translations for these data transfers are handled by the BSP part of 

the FPGA design. Thus, our developed solution is relying heavily on this USM BSP feature which 

is ideal for streaming applications. 

 

Interesting key features of the DPC++ compiler for our solution idea include (i) its capability 

to synthesize arbitrary C++ code into circuits and (ii) the possibility to annotate an array as a 

register. Suppose a specific sequence of operations is executed on every element within such 

an array. In this case, the auto-vectorization feature of DPC++ (with the help of annotations) 

can detect data-parallel processing and will create circuits accordingly. Consequently, we can 

realize an FPGA SIMD backend in a simple and programmable way.  Like any other SIMD 

extension, we require SIMD registers. Following the design decision of SIMD abstraction 

libraries with template metaprogramming, we define a templated C++ struct called fpvec as 

an FPGA SIMD register based on a regular array as shown in Figure 1. To support arbitrary 

SIMD register sizes, the base data type BType and the SIMD register size RSize are template 

parameters. Thus, the number of elements in an FPGA SIMD register depends on the size of 

BType and the SIMD register size RSize. As with ARM SVE, this approach allows the FPGA SIMD 

register size to be set dynamically at compile-time, providing a large variant space. 

 

 
Figure 1: FPGA SIMD register template declaration. 

In addition to SIMD registers, relevant SIMD primitives of the SIMD abstraction libraries must 

be provided by the FPGA backend. Since SIMD primitives operate only on SIMD registers, they 

can be implemented using a loop over the register type and execute the specific operation on 
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every register element. Figure 2 shows the implementation for two SIMD primitives, namely 

for the element-wise addition of two SIMD registers and the loading of data from main 

memory into a SIMD register. Both differ only in the concrete operation within the loop. To 

ensure that the DPC++ auto-vectorizer properly detects the SIMD opportunity, the loops are 

annotated with the preprocessor directive pragma unroll. This scheme can be applied to many 

SIMD primitives such as store, gather, scatter, and so on. Since we are building on the USM 

BSP feature, we can access the data regularly as shown in the implementation of the load 

SIMD-primitive. 

 

 
Figure 2: Exemplary implementation of two representative SIMD primitives. 

However, this scheme is only sufficient for element-wise SIMD primitives, which are 

characterized by the fact that they do not introduce dependencies between the elements of 

the same SIMD register. That means, the corresponding operation is independently applied to 

every single element within a vector register. In contrast, horizontal SIMD primitives do not 

treat the elements of a register independently and thus, this scheme must be extended. An 

example is the horizontal reduction which sums up all elements within a vector register 

returning a single value. This horizontal reduction is typically realized using an adder tree 

where elements are added pairwise in a multi-stage process, and the results are again added 

pairwise until a single value is produced. The depth of such an adder tree equals log2(N), where 

N is the number of elements. Consequently, if N is known at implementation time, the 

algorithm executes a fixed number of operations. However, since our FPGA SIMD backend has 

a variable, but compile-time constant register size, we had to come up with a size and type 

agnostic algorithm. Our algorithm (see Figure 3) consists of a nested loop, where the outer 

loop determines the number of executions, that will be carried out in the inner loop, starting 

with half of the element count and halving on each iteration. The inner loop adds adjacent 

values within the array and consecutively stores the result in the same array. For example, 

assuming a 16-element wide register, the outer loop would be executed four times. Eight 

adjacent pairs are added in the first iteration, and the results are stored in the lower half of the 

register. In the second iteration, the lower eight adjacent pairs are added and stored in the 

lower quarter of the register, and so on. Thus, the compiler will generate the corresponding 

adder tree as described previously. 
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Figure 3: Type and register size agnostic implementation of a horizontal reduction primitive (hadd). 

Overall, it can be stated that Intel’s oneAPI is a building block to realize a comprehensive FPGA 

SIMD backend in C++ without any knowledge of complex, FPGA-specific programming. We 

believe that even more complex SIMD primitives such as conflict detection - which was 

introduced by Intel with the SIMD instruction set extension AVX512 - can be implemented in 

a straightforward way. In our future work, we will examine this aspect even more closely.  

3.1.2 Implementation and Execution 

 

Accordingly, we extended our TVL/TSL library to support Intel FPGAs as described above. The 

complete TVL/TSL library with support for Intel FPAGs is available open source on GitHub: 

https://github.com/db-tu-dresden/TSL. For this deliverable, we prepared a comprehensive 

example to showcase that the same SIMDified kernel can achieve the peak bandwidth of the 

employed FPGA and switching between execution environments (CPU and FPGA) is simply 

done by providing a different template parameter. In more detail, we prepared a basic 

aggregation SIMD-kernel, e.g. scanning over the data and adding every element on the one 

hand. On the other hand, we implemented a filter-count SIMD-kernel, which counts the 

number of values in a given range. Figure 4 shows the SIMD-oblivious code for the filter-count 

SIMD kernel.  

 

https://github.com/db-tu-dresden/TSL
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Figure 4: Filter-Count SIMD-kernel 

Both examples use various SIMD primitives of our TVL/TSL library such as the illustrated loadu, 

add, or hadd. Each of the required primitives can be effectively implemented for Intel FPGAs 

using our solution idea with a maximum of 13 LoC, without considering boilerplate code. Our 

approach allows to not only specify an implementation for a custom FPGA register (cf. Figure 

1), but it also enables us to vary the underlying SIMD extension (e.g., SSE, AVX2, AVX512, 

"FPGA") or the employed FPGA register width on a per-invocation basis. Figure 5 showcases, 

how we can call the same SIMD-kernel with different register widths, and hence achive more 

concurrently processed elements, by varying only the third parameter of the tvl::simd struct. 

 

 
Figure 5: Dispatching the same kernel to the FPGA with different SIMD registers widths in bits. 

Executing the examples: The sample code can be executed using Intel’s DevCloud on real 

FPGA hardware, which is unfortunately necessary. The sample code is also available via the 

following GitHub project: https://github.com/db-tu-dresden/SiMoD23-SIMD-FPGA. In the 

following, we describe the entire execution workflow.  

  

 

Execution using Intel’s DevCloud: A free account on Intel’s DevCloud for oneAPI can be 

created at the following website:  https://devcloud.intel.com/oneapi/. Afterwards, the 

following steps must be carried out: 

(1) Set up an SSH connection to Intel’s DevCloud using 

SiMoD ’23, June 23, 2023, Bellevue, WA, USA Dirk Habich et al.

(a) Aggregation SIMD-Kernel. (b) Fi l ter-Count SIMD-Kernel. (c) Multi -threaded AVX512-based Fi l ter-Count.

Figure 4: Evaluation Results.

usi ng Type = f l oat ;

. . .

t empl at e <t ypename MyVec>

si ze_t agg_wr apper ( queue& q, Type* i n_host , l ong* out _host , si ze_t si ze) { . . . } ;

. . .

t i me[ 0] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 128>>( q, i n, out + 0, el emCnt ) ;

t i me[ 1] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 256>>( q, i n, out + 1, el emCnt ) ;

t i me[ 2] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 512>>( q, i n, out + 2, el emCnt ) ;

t i me[ 3] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 1024>>( q, i n, out + 3, el emCnt ) ;

t i me[ 4] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 2048>>( q, i n, out + 4, el emCnt ) ;

Figure 5: Dispatching the same kernel to the FPGA with

di erent register widths in bits.

the register width, until the global bandwidth threshold is reached.

The f i l t er - count SIMD-kernel achieves a generally higher band-

width and reaches the limit earlier, at a register width of 512bit,

which matches thePCIe buswidth. Theaggr egat i on SIMD-kernel

faces a data dependency in the last stage of the adder tree, which is

created from our current implementation of the hadd (cf. Figure 3)

call. Here, the DPC++ compiler cannot properly pipeline the com-

plete addition and has to stall for at least a cycle. However, we can

invest more resources of the FPGA and leverage a larger register,

which is twice thesize of thePCIe bus. Thisallowsusto trade some

FPGA resources for more overall bandwidth and nally to reach

the available PCIe bus bandwidth.

Acceleration Evaluation. Our next experiment shows the

achieved bandwidth for concurrent calculations on both the host

CPU and theFPGA in Figure 4c. Wevary theamount of concurrent

threads on the host processor and additionally dispatch the same

SIMD-kernel to the FPGA. The host code is executed using 512bit

sized AVX512 registers and the FPGA kernel is also parameterized

to use 512bit for its register width. For thisexperiment, weallocate

4GiB of random data per thread as well as FPGA and a dedicated

compute thread is spawned for every core on the host as well as

the FPGA. We synchronize the beginning of the computation of

all threads, measure the wallclock time per thread and report the

average bandwidth for all host threadsand separately for the FPGA

thread. As expected, more concurrently working threads on the

host memory lead to a decreased per-thread bandwidth. However,

thealso simultaneously running FPGA isable to constantly achieve

its peak performance. Thus, we are safe to conclude that it is possi-

ble to treat the FPGA card asan additionally available core running

just the same host code.

Resource Uti l ization. Table 1 shows the cumulated amount

of required resources for all generated variants of the lter-count

and aggregate kernels, i.e., the code for 128 through 2048 bit sized

Table 1: Avai lable resourceson the Intel Agi lex®FPGA Device

and aggregated uti l ization by al l generated kernel variants.

Component ALM REG MLAB RAM DSP

Available 912800 3651200 13272 8528

Kernel System (Agg) 87897 211224 422 300 0

Kernel System (Filter) 89617 291260 431 300 144

registers. Each of the best performing kernel variants requires ap-

proximately 2%of theavailable AdaptiveLogic Modules(ALM) and

registers (REG). This implies that we could potentially integrate a

larger amount of di erent kernels into a single FPGA image, which

can then be used to accelerate any required and available operator.

5 CONCLUSION

While SIMD is a core technique for accelerating query operators,

e ciently leveraging and integrating FPGAs is a traditionally com-

plex task. However, the combination of SIMD abstraction libraries,

Intel® oneAPI and the availability of USM allowsus to seamlessly

port standard templated C++ SIMD host code to the FPGA without

the necessity of complex FPGA-speci c programming. Simplicity

done right for SIMDi ed query processing on CPU and FPGA.
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1: ssh devcloud 

(2) Connect to an FPGA node 

2a: source /data/intel_fpga/devcloudLoginToolSetup.sh 

2b: devcloud_login 

The following question appears: 

 
2c: Type in number 4 to use a Stratix 10 – OneAPI, OpenVINO node 

Then, an interactive session is set up on a corresponding node.  

(3) Download the sample code 

3: git clone https://github.com/db-tu-dresden/SiMoD23-SIMD-FPGA 

(4) Compile the sample code 

4a: Change in the corresponding folder  

cd SiMoD23-SIMD-FPGA 

4b: Setting up essential environment variables 

source /opt/intel/inteloneapi/setvars.sh – force 

4c: Initialize FPGA board 

aocl initialize acl0 pac_s10_usm 

4d: Compile executable code (takes several hours) 

make hw_agg (compile aggregation example) 

make hw_filter (compile filter-count example) 

(5) Execute the sample code 

./build/eval_agg_kernel.fpga 1000000 

In this case, the aggregation is performed on 1 million random integer values.  

./build/eval_filter_kernel.fpga 1000000 

In this case, the filter-count kernel is performed on 1 million random integer values.  

 

5.1.3 Evaluation  

Based on the examples described above, we present inital evaluation results to demonstrate 

the applicability and efficiency of our developed solution.  

 

Evaluation setup: For our evaluation, we used a dual-socket server with 3rd-generation Intel 

Xeon Scalable processors (code-named "Ice Lake"). The system is equipped with two Intel Xeon 

Platinum 8360Y processors, each having 36 cores with a base frequency of 2.2 GHz. The main 

memory consists of 16x DDR4 memory DIMMs with 32 GB each, which results in 512 GB of 
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memory per processor. As FPGA acceleration card a BittWare IA-840f card is used, which is 

equipped with an Intel Agilex 7 AGF027 FPGA and 4x 16 GB DDR4. The FPGA card is supporting 

PCIe gen4 with 16 lanes and can achieve a maximum bandwidth of approximately 16 GiBs in 

our setup. We ran all our experiments on 4 GiB of synthetically generated data and placed 

everything in the host memory being exposed as USM. 

 

 
Figure 6: Evaluation Results. 

FPGA Performance: Figures 6(a) and 6(b) show the achieved bandwidth for both kernels with 

register sizes matching those available to Intel SIMD registers of 512-bit and beyond. For the 

aggregation SIMD-kernel, we observe that the achieved bandwidth doubles for every doubling 

of the register width, until the global bandwidth threshold is reached. The filter-count SIMD-

kernel achieves generally a higher bandwidth and reaches the limit earlier, at a register width 

of 512-bit, which matches the PCIe bus width. The aggregation SIMD-kernel faces a data 

dependency in the last stage of the adder tree, which is created from our current 

implementation of the hadd (cf. Figure 3) call. Here, the DPC++ compiler cannot properly 

pipeline the complete addition and stalls for at least a cycle. However, we can invest more 

resources of the FPGA and leverage a larger register, which is twice the size of the PCIe bus. 

This allows us to trade some FPGA resources for more overall bandwidth and finally to reach 

the available PCIe bus bandwidth. 

 

Acceleration Evaluation: Our next experiment shows the achieved bandwidth for concurrent 

calculations on both the host CPU and the FPGA in Figure 6(c). We vary the number of 

concurrent threads on the host processor and additionally dispatch the same SIMD-kernel to 

the FPGA. The host code is executed using 512-bit sized AVX512 registers and the FPGA kernel 

is also parameterized to use 512-bit for its register width. For this experiment, we allocate 4 

GiB of synthetically generated data per thread as well as FPGA and a dedicated compute thread 

is spawned for every core on the host as well as the FPGA. We synchronize the beginning of 

the computation of all threads, measure the wall clock time per thread and report the average 

bandwidth for all host threads and separately for the FPGA thread. As expected, more 

concurrently working threads on the host memory lead to a decreased per-thread bandwidth. 

However, also the simultaneously running FPGA can constantly achieve its peak performance. 

Thus, we are safe to conclude that it is possible to treat the FPGA card as an additionally 

available core running just the same host code. 
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Resource Utilization: Figure 7 shows the cumulated amount of required resources for all 

generated variants of the filter-count and aggregate kernels, i.e., the code for 128 through 

2048 bit sized registers. Each of the best-performing kernel variants requires approximately 

2% of the available Adaptive Logic Modules (ALM) and registers (REG). This implies that we 

could potentially integrate a larger number of different kernels into a single FPGA image, which 

can then be used to accelerate any required and available operator. 

 

 
Figure 7: Available resources on the Intel Agilex FPGA Device and aggregated utilization by all generated kernel 

variants. 

3.1.3 SIMD-oblivious Kernels 

While SIMD is a core technique for accelerating data processing, efficiently leveraging and 

integrating FPGAs is traditionally a complex task. However, the combination of SIMD 

abstraction libraries such as our TVL/TSL, Intel’s oneAPI and the availability of USM allows us 

to seamlessly port standard templated C++ SIMD host code to the FPGA without the necessity 

of complex FPGA-specific programming. Based on our developed concept, we are able to 

implement arbitrary SIMD-oblivious kernels and enable compile-time deduction as well as 

code generation for a specific available SIMD extension as well as FPGA with usually negligible 

overhead for the runtime.  

3.1.4 Integration into DAPHNE 

To demonstrate the usability of our SIMD-oblivious concept, we implemented different 

relational query operators as kernels using our TVL/TSL library within the DAPHNE code base. 

The kernel sources can be found in “src/runtime/local/kernels/SIMDOperatorsDAPHNE”. 

Moreover, the TVL/TSL library is included as thirdparty library into DAPHNE. In addition, we 

extended the compilation chain to map relational query operators to these SIMD-oblivious 

kernels. To show the entire integration in terms of mapping and execution, we prepared a 

simple example using query Q1.1 of the Star-Schema Bechmark (SSB). To execute the query 

with the utilization of the SIMD-oblivious kernels, the following steps are necessary. 

1. Build daphne 

./build.sh --scalar (for compatibility reason, we restrict to a scalar execution which 

corresponds to a SIMD register width of one element) 

2. Switch to data_generation folder 

3. Generate the SSB data for scale factor 1 

./data.gen.sh -sf 1 

4. Switch back to daphne folder and execute SSB query Q1.1 

SiMoD ’23, June 23, 2023, Bellevue, WA, USA Dirk Habich et al.

(a) Aggregation SIMD-Kernel. (b) Fi l ter-Count SIMD-Kernel. (c) Multi -threaded AVX512-based Fi l ter-Count.

Figure 4: Evaluation Results.

usi ng Type = f l oat ;

. . .

t empl at e <t ypename MyVec>

si ze_t agg_wr apper ( queue& q, Type* i n_host , l ong* out _host , si ze_t si ze) { . . . } ;
. . .

t i me[ 0] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 128>>( q, i n, out + 0, el emCnt ) ;

t i me[ 1] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 256>>( q, i n, out + 1, el emCnt ) ;

t i me[ 2] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 512>>( q, i n, out + 2, el emCnt ) ;

t i me[ 3] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 1024>>( q, i n, out + 3, el emCnt ) ;

t i me[ 4] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 2048>>( q, i n, out + 4, el emCnt ) ;

Figure 5: Dispatching the same kernel to the FPGA with

di erent register widths in bits.

the register width, until the global bandwidth threshold is reached.

The f i l t er - count SIMD-kernel achieves a generally higher band-

width and reaches the limit earlier, at a register width of 512bit,

which matches thePCIebuswidth. Theaggr egat i on SIMD-kernel

faces a data dependency in the last stage of the adder tree, which is

created from our current implementation of the hadd (cf. Figure 3)

call. Here, the DPC++ compiler cannot properly pipeline the com-

plete addition and has to stall for at least a cycle. However, we can

invest more resourcesof the FPGA and leverage a larger register,

which is twice thesize of thePCIebus. Thisallowsusto tradesome

FPGA resources for more overall bandwidth and nally to reach

the available PCIe bus bandwidth.

Acceleration Evaluation. Our next experiment shows the

achieved bandwidth for concurrent calculations on both the host

CPU and theFPGA in Figure4c. Wevary theamount of concurrent

threads on the host processor and additionally dispatch the same

SIMD-kernel to the FPGA. The host code is executed using 512bit

sized AVX512 registers and the FPGA kernel is also parameterized

to use512bit for its register width. For this experiment, weallocate

4GiB of random data per thread as well asFPGA and a dedicated

compute thread is spawned for every core on the host as well as

the FPGA. We synchronize the beginning of the computation of

all threads, measure the wallclock time per thread and report the

average bandwidth for all host threadsand separately for theFPGA

thread. As expected, more concurrently working threads on the

host memory lead to a decreased per-thread bandwidth. However,

thealso simultaneously running FPGA isable to constantly achieve

its peak performance. Thus, we are safe to conclude that it is possi-

ble to treat theFPGA card asan additionally available core running

just the same host code.

Resource Uti l ization. Table 1 shows the cumulated amount

of required resources for all generated variants of the lter-count

and aggregate kernels, i.e., the code for 128 through 2048 bit sized

Table1: Avai lable resourceson the Intel Agi lex®FPGA Device

and aggregated uti l ization by al l generated kernel variants.

Component ALM REG MLAB RAM DSP

Available 912800 3651200 13272 8528

Kernel System (Agg) 87897 211224 422 300 0

Kernel System (Filter) 89617 291260 431 300 144

registers. Each of the best performing kernel variants requires ap-

proximately 2%of theavailable AdaptiveLogic Modules(ALM) and

registers (REG). This implies that we could potentially integrate a

larger amount of di erent kernels into a single FPGA image, which

can then be used to accelerate any required and available operator.

5 CONCLUSION

While SIMD is a core technique for accelerating query operators,

e ciently leveraging and integrating FPGAs is a traditionally com-

plex task. However, the combination of SIMD abstraction libraries,

Intel® oneAPI and the availability of USM allowsus to seamlessly

port standard templated C++ SIMD host code to the FPGA without

the necessity of complex FPGA-speci c programming. Simplicity

done right for SIMDi ed query processing on CPU and FPGA.
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bin/daphne --columnar --vector_extension=SCALAR ./scripts/evaluation/ssb-Q1-

1-SF1.daph  

The option “vector_extension” can be used to define the SIMD extension to be used. For this, 

DAPHNE must also be built with the corresponding option. In the current state, the mapping 

to FPGA is not possible, as the memory management still needs to be extended in this respect. 

3.2 GPU Example 

 

In this part of the deliverable, we give a compact overview of how our efforts regarding code 

generation for sparsity exploitation on GPU are improving end-to-end performance in an 

example algorithm from our collection of supported algorithms available in the DAPHNE 

source repository. 

3.2.1 CUDA Code Generation 

 

Generating and compiling source code is a technique commonly employed in modern data 

management, machine learning and high-performance computing systems and frameworks. 

While some of them focus on providing executables for new hardware platforms or leveraging 

features of commonly supported systems (e.g., special SIMD instructions), most of them aim 

to optimize execution in one way or another. This can go into the directions of operator fusion, 

query compilation, loop fusion, tiling and sparsity exploitation. Of course, a mix of several of 

these techniques are often combined [B+18, E+17], as is the case in our approach as well. 

While existing implementations use Java and run on CPUs, we will bring operator fusion and 

sparsity exploitation to CUDA based GPU platforms to improve the efficiency by leveraging 

larger memory bandwidth on GPUs and keeping data locally on the GPU.  

 

3.2.2 Code Templates 

 

Operator fusion brings many advantages such as avoiding allocation of intermediates, reduced 

memory bandwidth requirements, and specialization according to input operations provided 

by our DaphneDSL. Combining this with the support for sparse data formats allows us to 

exploit sparsity across chains of operations, which makes avoiding intermediates (often 

becoming dense and therefore huge in size) even more effective.  

Our entry point into the vast space of fusion opportunities when taking all their permutations 

into account (e.g., if there are operators A,B and C, where A and B could be fused, B and C 

could be fused but not all three at once) is the type of data access that operations require. Out 
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of the four patterns from the CPU bound code generation described in [B+18], we have 

implemented two for now, which we will show in more detail in this demonstrator.  

 

Cell-based template: The cell-based code template refers to a class implemented in CUDA-

compatible C++ with a number of anchor points (textual placeholders that are replaced during 

code generation) and CUDA-kernel definitions that instantiate this class appropriately. During 

execution an “exec_dense()” or “exec_sparse()” method is called for every data item of the input 

(usually a matrix) depending on the format being plain dense or compressed sparse row (CSR). 

This computation for every cell of the input data can also be employed in an aggregation, 

combining, for example, some computation for every item with a sum over all items to be 

processed. 

 

Row-wise template: This code template shares the same basic software architecture as the 

cell-based one but is geared towards a row-by-row computation. Furthermore, his template 

allows for operations that need to access the entire row (potentially combined with cellwise 

operations and final aggregation). By having this distinction between cell and row-based 

computation, threads can be launched in a more suitable way and more optimized primitives 

can be invoked if the by-row relationship of the input can be expected. 

 

3.2.3 Implementation Details 

 

For the demonstration in this deliverable, we have ported functionality from the code base 

where development for this method has initially been started. While the initial implementation 

in [BA+20] contains sophisticated DAG analysis, enumeration, and cost-based selection of 

fusion plans, we focused on a working example of the generation and execution parts of our 

solution on GPU in DAPHNE. To this end, the DAPHNE compiler has been extended to detect 

the patterns used in our example, replace them with an MLIR representation of our generated 

operators and rewire the inputs and outputs accordingly. The code templates used are hard-

coded for now and compiled via CUDA’s nvrtc – the run-time compiler. This will produce 

another intermediate representation, namely PTX, which is an IR used in Nvidia’s compiler 

stack. When launching a generated operator, the final compilation step is performed by the 

NVIDIA driver. 
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3.2.4 Practical Example 

 

We will use the Connected Components algorithm, which can be found in the DaphneDSL 

script collection of the project’s source tree as well as in code listing 1 below, as an example 

to demonstrate how our code generation method spawns fused operators to optimize the 

execution in terms of memory requirements and run-time. 

The algorithm takes an adjacency matrix as input, where each row and column represent nodes 

in a graph and the non-zero values of the matrix represent edges. The row numbers serve as 

node IDs. The output is a vector with number-of-nodes rows where each value represents the 

highest ID the node is connected to. For example, if the output was [1, 3, 3, 4] we see two 

nodes that have no connections (node 1 and 4) and one connection between node 2 and 3, 

where the highest ID 3 is shown for node 2 and 3 in the output vector. 

 

01: // Arguments: 

02: // - f ... filename of the adjacency matrix (provide as `--args f=\"foo.csv\"`) 

03: 

04: t0 = now(); 

05: 

06: // Read adjacency matrix. 

07: G = readMatrix($f); 

08: 

09: // Initialization. 

10: // Maximum number of iterations (to stop if diff never reaches zero) 

11: maxi = 1000; 

12: c = seq(1.0, as.f64(nrow(G)), 1.0); // init w/ vertex IDs 

13: diff = inf; 

14: iter = 1; 

15: 

16: t1 = now(); 

17: // Iterative computation of connected components (decisive part). 

18: while(as.si64(diff > 0.0) && iter <= maxi) { 

19:     ti0 = now(); 

20:  

21:     u = max(aggMax(G * t(c), 0), c); 

22:     diff = sum(u != c); 

23:     c = u; 

24:  

25:     ti1 = now(); 

26:     print("iteration ", 0, 1); 

27:     print(iter, 0, 1); 

28:     print(" took [ns]: ", 0, 1); 

29:     print(ti1 - ti0); 

30:  

31:     iter = iter + 1; 

32: } 

33:  

34: t2 = now(); 

35: // Print elapsed times in nano seconds. 

36: print(t1 - t0); // initialization 
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37: print(t2 - t1); // core algorithm 

38: // Note that, for distributed execution, (t2 - t1) includes reading the input 

39: // files due to some reordering done by the compiler. 

40:  

41: // Result output. 

42: print(c); 

Code Listing 1: Connected Components in DaphneDSL 

 

01: // … code omitted for brevity  

02: %38 = "daphne.transpose"(%arg1) : (!daphne.Matrix<?x1xf64>) -> !daphne.Matrix<1x?xf64> 

03: %39 = "daphne.ewMul"(%21, %38) : (!daphne.Matrix<17500x17500xf64>, 

!daphne.Matrix<1x?xf64>) -> !daphne.Matrix<?x?xf64> 

04: %40 = "daphne.maxRow"(%39) : (!daphne.Matrix<?x?xf64>) -> !daphne.Matrix<?x1xf64> 

05: %41 = "daphne.ewMax"(%40, %arg1) : (!daphne.Matrix<?x1xf64>, !daphne.Matrix<?x1xf64>) -

> !daphne.Matrix<?x1xf64> 

06: %42 = "daphne.ewNeq"(%41, %arg1) : (!daphne.Matrix<?x1xf64>, !daphne.Matrix<?x1xf64>) -

> !daphne.Matrix<?x1xf64> 

07: %43 = "daphne.sumAll"(%42) : (!daphne.Matrix<?x1xf64>) -> f64 

08: // … code omitted for brevity 

Code Listing 2: Relevant DaphneIR before fusing operations 

 

01: // … code omitted for brevity 

02: %40 = "daphne.codegenRW"(%21, %arg1, %39) {operand_segment_sizes = array<i32: 3, 0>} : 

(!daphne.Matrix<1000x1000xf64>, !daphne.Matrix<?x1xf64>, ui64) -> !daphne.Matrix<?x1xf64>  
03: %41 = "daphne.constant"() {value = 1 : ui64} : () -> ui64  
04: %42 = "daphne.codegenCW"(%40, %arg1, %41) {operand_segment_sizes = array<i32: 3, 0>} : 

(!daphne.Matrix<?x1xf64>, !daphne.Matrix<?x1xf64>, ui64) -> f64 
05: // … code omitted for brevity 

Code Listing 3: Relevant DaphneIR after fusing operations 

In Code Listings 2 and 3, we see the DaphneIR as it went through the code generation compiler 

passes. The former shows the original instructions spawned by the DAPHNE compiler. The 

latter shows where instructions have been replaced and operands/results have been rewired. 

 

The diagram in Figure 8 shows the relevant operations of the first fused operator and sketches 

of input and output data sizes (scalars, vectors and matrices). The blue boxes are data items 

existing in the algorithm while the red boxes show intermediate states that emerge between 

operations.  
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Figure 8: First fusion opportunity showing unnecessary intermediates (from line 21 in Code Listing 1) 

 

 

The four green hexagons resemble the four operations that will be fused into one row-wise 

operator. The transpose t() is a no-op, which means it does not perform any computation or 

data movement. As the memory representation for row or column vectors would be the same, 

this operation merely swaps the row/column dimensions. The next operation is an element-

wise multiply of the transposed input c and the potentially sparse matrix G. The result is stored 

in a temporary intermediate (tmp1) that has the same dimensions as G. Subsequently, the 

rows of tmp1 are aggregated to find the maximum value of each row. These max values are 

compared against the input vector c in the last max() operation to finally store the output in 

u. The generated row-wise operator will process row-by-row to aggregate the max value of 

the G*c multiplication. The result of this multiplication is compared to the value of input vector 

c at the corresponding index. The larger value of this comparison (max()) is stored in the output 

u. All of this happens in one go without storing the intermediate values to main memory in 

between each step.  

 

Figure 9 shows the schematic of the next two operations in line 22 of the input script. Here we 

can avoid saving the output of the c != u operation in main memory just to load it again right 

away to sum it all up to form the output “diff”. This fused operation works from a cell-based 

aggregation code template to do the inequality (!=) and sums up the results up in one go. This 

behavior could also be achieved in row-wise processing. The reason why the cell-based 

solution has been taken in favor of the row-wise approach has to do with how threads are 

spawned to do the processing, which is more efficient when done cell-based. 

 

This practical example can be tested with the provided downloadable artifact (see section 2). 

Please refer to the read-me file within the Zip archive for instructions how to setup and run 

the demonstrator. 
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Figure 9: Second fusion opportunity (from line 22 in Code Listing 1) 

3.2.5 MLIR Based Code Generation 

 

Besides the code generation technique described above, we also pursue a different approach 

in DAPHNE. Since our compiler is based on MLIR, it quite naturally asks for trying to directly 

compile down from the DAPHNE dialect to LLVM without the use of precompiled kernels, 

which is our default solution. This effort is in its initial stages and focuses on CPU execution 

for now but might also lend itself to experimenting with other compilation targets supported 

by the MLIR/LLVM compiler stack. While this work is not featured in this deliverable, a first pull 

request of considerable size has been merged into the main branch of DAPHNE [DGHI+633] 

providing a first working preview. 

4 Prototype structure 

This project structure shows most of the important directories of the prototype. 

 bin/ (compiled system and parser; generated via build.sh) 

 containers/ (Docker container specific files) 

 data/ (data files for experimenting) 

 doc/ (basic setup and developer documentation) 

 D7.3/ (scripts for running the GPU example) 

 lib/ (generated kernel libraries) 

 scripts/ (DaphneDSL scripts as examples) 

o evaluation/ (Deliverable specific examples) 

 src/ (main source code repository) 

o api/ (cli including daphne which orchestrates the remaining 

components) 

o compiler/ (execution, explain, inference, lowering) 

▪ codegen/ (code generation source) 

▪ lowering/ (compiler passes) 

o ir/ (DaphneIR including the DAPHNE MLIR dialect) 

o parser/ (DaphneDSL, SQL) 

▪ sql/ (SQL Parser) 

u c 

!= 

tm
p
3

 

!=  

diff 
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o runtime/ (distributed, local including data, I/O, kernels, and 

vectorization) 

▪ local/kernels/ (kernels) 

• CUDA/ (CUDA device kernels) 

• FPGA/ (FPGA device kernels) 

• SIMDOperatorsDAPHNE/ (kernels using SIMD 

operators) 

o util/ (helper functions etc.) 

 test/ (test suite of component and integration tests, organized by 

components) 

 thirdparty/ (dependencies such as llvm, including their build directories) 

 build.sh (build script to build the DAPHNE compiler) 

 test.sh (Daphne test suite) 
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