

DAPHNE – 957407

1

D7.3 Prototype and

overview code generation

framework

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.2

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

DAPHNE – 957407

2

Document Description

Previous deliverables already shared the overall design of the integration of hardware (HW)

accelerators as well as an initial approach how to develop HW-accelerated kernels and how to

anchor these HW-accelerated kernels in the entire DAPHNE infrastructure. This document

presents our developed extended concepts for code generation of HW-accelerated kernels.

Moreover, this document shares a snapshot of the developed prototype and describes two

examples in more detail.

D7.3 Prototype and overview code generation framework

WP7 – Hardware Accelerators

Type of document D Version 1.2

Dissemination level PU

Lead partner TUD

Author(s)

Reviewer(s)

Dirk Habich (TUD), Mark Dokter (KNOW)

Matthias Boehm (TUB), Marcus Paradies (TUI)

Revision History

Version Revisions and Comments Author / Reviewer

V0.1 Initial structure Dirk Habich

V0.2 Write-up introduction Dirk Habich

V0.3 Initial codegen text Mark Dokter

V0.4 Initial text for SIMD/FPGA example Dirk Habich

V0.5 Enhanced description for SIMD/FPGA example Dirk Habich

DAPHNE – 957407

3

V0.6 Incorporated feedback by Matthias Boehm (TUB) and

Marcus Paradies (TUI)

Dirk Habich

V0.7 Minor corrections according to comments Mark Dokter

V1.0 Final corrections and additions Mark Dokter

V1.1 Incorporating more feedback Mark Dokter

V1.2 Fixing document template and PDF rendering issues Eva Paulusberger,

Mark Dokter

 Abbreviations

Abbreviation Definition

DM Data Management

DSL Domain Specific Language

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HPC High-Performance Computing

HW Hardware

IDA Integrated Data Analysis

ML Machine Learning

MLIR Multi-Level Intermediate Representation

SIMD Single Instruction Multiple Data

DAPHNE – 957407

4

1 Introduction

Modern data-driven applications have to deal with increasingly large and heterogeneous data

collections as well as a variety of machine learning (ML) models for cost-effective automation

and improved analysis results. This requirement creates a trend towards integrated data

analysis (IDA) pipelines that jointly utilize data management (DM), high-performance

computing (HPC), and ML systems. As described in [D+22], developing and deploying such

IDA pipelines is, however, still a painful process of integrating different systems and related

developers, programming paradigms, resource managers, and data representations.

Integrating DM+ML, HPC+ML, DM+HPC for improving productivity and/or performance is an

old problem. However, an open system infrastructure for seamlessly developing, deploying,

and running IDA pipelines is still missing, and at the same time, new challenges related to

hardware, productivity, and utilization emerge.

To overcome that, the DAPHNE project sets out to build an open and extensible system

infrastructure for integrated data analysis pipelines. To achieve that goal, our envisioned

infrastructure is based on MLIR as a multi-level, LLVM-based intermediate representation

backed by multiple organizations and communities. This approach allows a seamless

integration with existing applications and runtime libraries while also enabling extensibility for

specialized data types, hardware-accelerated kernels, hardware-specific compilation chains,

and custom scheduling algorithms. While the DAPHNE reports D2.1 - Initial System

Architecture [D2.1] and D2.2 - Refined System Architecture [D2.2] have described the overall

DAPHNE system architecture, report D7.1 - Design of integration hardware (HW) accelerators

[D7.1] has presented the overall design of the integration of HW accelerators as well as has

detailed on accelerated operations and primitives.

As introduced in DAPHNE report D7.1 [D7.1], the challenges for the integration of HW

accelerators are (i) developing as well as generating operators - hereafter also called

computation kernels or kernels for short - which can be efficiently executed on accelerators

such as CPUs, GPUs or FPGAs, (ii) integrating these accelerator-specific operators in the whole

DAPHNE compilation and runtime infrastructure in a seamless way, and (iii) selecting the best-

fitting accelerator for efficient execution depending on the specific IDA pipeline and hardware

environment [D7.1]. While challenge (i) is addressed by Task 7.1 - Accelerated Key Operations

and Data Access Primitives, Task 7.4 - Multi-Device Operation Kernels, and Task 7.5 - Code

Generation for HW Accelerators, challenge (ii) is considered in Task T7.2 - Compiler and Runtime

Support for HW Accelerators. Selecting the best-fitting accelerator for efficient execution -

challenge (iii) - is part of Task 7.2 - Compiler and Runtime Support for HW Accelerators as well

as Task 7.3 - Performance Models and Cost Estimation.

DAPHNE – 957407

5

In the follow-up DAPHNE report D7.2 [D7.2], we demonstrated an initial approach how to

develop hardware-accelerated kernels and how to anchor these hardware-accelerated kernels

in the entire DAPHNE infrastructure. Additionally, we gave an overview on the devised

performance models for a cost-based approach for hardware-accelerated kernels and data

placement decisions in a heterogeneous hardware environment. This specific DAPHNE

deliverable D7.3 builds on D7.2 and describes extended concepts for code generation of

hardware-accelerated kernels and the integration into the entire DAPHNE infrastructure. Thus,

this report summarizes the work and achieved results developed in Task T7.5.

The remainder of this deliverable is structured as follows:

• In Section 2, we detail the access to our prototype artifacts for this written deliverable

document.

• Then, we introduce our prototypes by describing the underlying demonstration

scenarios in Section 3.

• Afterwards, we explain the folder structure of our prototype artifacts in Section 4.

2 Artifact Access

The extended prototype is publicly accessible snapshot of the DAPHNE development

repository including scripts and binaries to run some of the examples described in this

document. It is available under the following link:

• Link: https://tinyurl.com/daphne-D73

This snapshot is a copy of the DAPHNE open-source repository at https://github.com/daphne-

eu/daphne (branch D7.3).

3 Demonstration scenario

In this deliverable, we present two different scenarios, each focusing on a different hardware

accelerator type:

• [SIMD/FPGA-Example]: The first scenario focuses on accelerating relational data

processing with the usage of Single-Instruction Multiple-Data (SIMD) extensions of

general-purpose CPUs as well as FPGAs.

• [GPU Example]: The second scenario summarizes how our efforts regarding code

generation for sparsity exploitation on GPU are improving end to end performance in

an example algorithm from our collection of supported algorithms available in the

DAPHNE source repository.

https://tinyurl.com/daphne-D73
https://github.com/daphne-eu/daphne
https://github.com/daphne-eu/daphne

DAPHNE – 957407

6

3.1 SIMD/FPGA-Example

In this part, we give an introduction to our work on extending our domain-specific framework

TVL/TSL (Template SIMD Library) to support Intel FPGAs. Generally, the Single Instruction

Multiple Data (SIMD) paradigm has become a core technique to improve data processing on

modern general-purpose CPUs. SIMD is characterized by the fact the same operation is

simultaneously applied on multiple data elements within a single instruction. Modern CPUs

provide direct support of such SIMD capabilities using an increasing variety of SIMD instruction

set extensions such as AVX2, AVX512 on Intel or NEON, SVE on ARM systems. To make the

most out of SIMDified code, industry and research have invested considerable effort and time

into designing and developing SIMD abstraction libraries to address the challenges of SIMD

variety and portability of highly optimized SIMDified code. Without claim of completeness,

XSIMD, Google Highway, or our TVL/TSL are representative examples. Those libraries are

usually implemented in C/C++ for performance reasons allowing (i) to implement SIMD-

oblivious query operators and (ii) to enable compile-time deduction as well as code generation

for a specific, available SIMD extension with usually negligible runtime overhead. The resulting

separation into SIMD-oblivious operators or kernels and a SIMD abstraction library greatly

reduces programming and code management complexity with a clear separation of concern.

Besides SIMD, Field Programmable Gate Arrays (FPGAs) are becoming an increasingly viable

option to implement efficient data processing due to increasing compute capabilities as well

as high-bandwidth access between host and device memory. However, the complexity of the

required low-level programming was a limiting factor resulting in a second code base for FPGA

operators besides the ones for SIMD-oblivious operators. Meanwhile, FPGA manufacturers

also offer tools that allow programming for FPGAs in higher-level languages such as C/C++

or OpenCL. Most recently, Intel has released a new and powerful unified programming model

called oneAPI to facilitate the development among various hardware architectures, including

FPGAs. Intel 's oneAPI's cross-architecture language Data Parallel C++ (DPC++) is based on

the SYCL standard for heterogeneous programming in C++.

Generally, SIMD and FPGA have many architectural features in common. Therefore, our idea is

to unify SIMD and FPGA by considering FPGAs as SIMD processing units. With this way of

thinking, FPGAs can be included as another backend option in SIMD abstraction libraries such

as TVL/TSL [H+23]. This allows to execute single-source SIMD-oblivious code on both CPU

and FPGA without having to consider FPGAs in isolation.

3.1.1 Seamless Integration of Intel FPGAs

On the one hand, the existing SIMD abstraction libraries such as our TVL/TSL library generally

focus on supporting common SIMD instruction set extensions from Intel and ARM as

backends. On the other hand, Intel’s oneAPI is a software development kit providing a unified

DAPHNE – 957407

7

programming model for diverse architectures such as CPUs, GPUs, and FPGAs. It includes a set

of programming tools and libraries that allow developers to optimize performance, increase

productivity, and reduce development time. In addition, the toolkit supports a variety of

programming languages such as C++, Fortran, Python, and Data Parallel C++ (DPC++), an

extension of C++ designed for heterogeneous computing.

Intel oneAPI for FPGAs uses a Board Support Package (BSP), which describes all hardware

interfaces to the FPGA, like PCIe and DDR4 as well as provides a shell design for these for faster

kernel integration and synthesis to the FPGA. Furthermore, Universal Shared Memory (USM) is

available as BSP feature, which makes it possible to let the data transfers be managed by the

FPGA itself. This functionality frees up the CPU from the data transfer management; it is only

involved in creating input and output buffers on the CPU memory side and the FPGA firmware

gets the data as needed by the kernels from the given input and output host pointers. The

virtual-to-physical address translations for these data transfers are handled by the BSP part of

the FPGA design. Thus, our developed solution is relying heavily on this USM BSP feature which

is ideal for streaming applications.

Interesting key features of the DPC++ compiler for our solution idea include (i) its capability

to synthesize arbitrary C++ code into circuits and (ii) the possibility to annotate an array as a

register. Suppose a specific sequence of operations is executed on every element within such

an array. In this case, the auto-vectorization feature of DPC++ (with the help of annotations)

can detect data-parallel processing and will create circuits accordingly. Consequently, we can

realize an FPGA SIMD backend in a simple and programmable way. Like any other SIMD

extension, we require SIMD registers. Following the design decision of SIMD abstraction

libraries with template metaprogramming, we define a templated C++ struct called fpvec as

an FPGA SIMD register based on a regular array as shown in Figure 1. To support arbitrary

SIMD register sizes, the base data type BType and the SIMD register size RSize are template

parameters. Thus, the number of elements in an FPGA SIMD register depends on the size of

BType and the SIMD register size RSize. As with ARM SVE, this approach allows the FPGA SIMD

register size to be set dynamically at compile-time, providing a large variant space.

Figure 1: FPGA SIMD register template declaration.

In addition to SIMD registers, relevant SIMD primitives of the SIMD abstraction libraries must

be provided by the FPGA backend. Since SIMD primitives operate only on SIMD registers, they

can be implemented using a loop over the register type and execute the specific operation on

DAPHNE – 957407

8

every register element. Figure 2 shows the implementation for two SIMD primitives, namely

for the element-wise addition of two SIMD registers and the loading of data from main

memory into a SIMD register. Both differ only in the concrete operation within the loop. To

ensure that the DPC++ auto-vectorizer properly detects the SIMD opportunity, the loops are

annotated with the preprocessor directive pragma unroll. This scheme can be applied to many

SIMD primitives such as store, gather, scatter, and so on. Since we are building on the USM

BSP feature, we can access the data regularly as shown in the implementation of the load

SIMD-primitive.

Figure 2: Exemplary implementation of two representative SIMD primitives.

However, this scheme is only sufficient for element-wise SIMD primitives, which are

characterized by the fact that they do not introduce dependencies between the elements of

the same SIMD register. That means, the corresponding operation is independently applied to

every single element within a vector register. In contrast, horizontal SIMD primitives do not

treat the elements of a register independently and thus, this scheme must be extended. An

example is the horizontal reduction which sums up all elements within a vector register

returning a single value. This horizontal reduction is typically realized using an adder tree

where elements are added pairwise in a multi-stage process, and the results are again added

pairwise until a single value is produced. The depth of such an adder tree equals log2(N), where

N is the number of elements. Consequently, if N is known at implementation time, the

algorithm executes a fixed number of operations. However, since our FPGA SIMD backend has

a variable, but compile-time constant register size, we had to come up with a size and type

agnostic algorithm. Our algorithm (see Figure 3) consists of a nested loop, where the outer

loop determines the number of executions, that will be carried out in the inner loop, starting

with half of the element count and halving on each iteration. The inner loop adds adjacent

values within the array and consecutively stores the result in the same array. For example,

assuming a 16-element wide register, the outer loop would be executed four times. Eight

adjacent pairs are added in the first iteration, and the results are stored in the lower half of the

register. In the second iteration, the lower eight adjacent pairs are added and stored in the

lower quarter of the register, and so on. Thus, the compiler will generate the corresponding

adder tree as described previously.

DAPHNE – 957407

9

Figure 3: Type and register size agnostic implementation of a horizontal reduction primitive (hadd).

Overall, it can be stated that Intel’s oneAPI is a building block to realize a comprehensive FPGA

SIMD backend in C++ without any knowledge of complex, FPGA-specific programming. We

believe that even more complex SIMD primitives such as conflict detection - which was

introduced by Intel with the SIMD instruction set extension AVX512 - can be implemented in

a straightforward way. In our future work, we will examine this aspect even more closely.

3.1.2 Implementation and Execution

Accordingly, we extended our TVL/TSL library to support Intel FPGAs as described above. The

complete TVL/TSL library with support for Intel FPAGs is available open source on GitHub:

https://github.com/db-tu-dresden/TSL. For this deliverable, we prepared a comprehensive

example to showcase that the same SIMDified kernel can achieve the peak bandwidth of the

employed FPGA and switching between execution environments (CPU and FPGA) is simply

done by providing a different template parameter. In more detail, we prepared a basic

aggregation SIMD-kernel, e.g. scanning over the data and adding every element on the one

hand. On the other hand, we implemented a filter-count SIMD-kernel, which counts the

number of values in a given range. Figure 4 shows the SIMD-oblivious code for the filter-count

SIMD kernel.

https://github.com/db-tu-dresden/TSL

DAPHNE – 957407

10

Figure 4: Filter-Count SIMD-kernel

Both examples use various SIMD primitives of our TVL/TSL library such as the illustrated loadu,

add, or hadd. Each of the required primitives can be effectively implemented for Intel FPGAs

using our solution idea with a maximum of 13 LoC, without considering boilerplate code. Our

approach allows to not only specify an implementation for a custom FPGA register (cf. Figure

1), but it also enables us to vary the underlying SIMD extension (e.g., SSE, AVX2, AVX512,

"FPGA") or the employed FPGA register width on a per-invocation basis. Figure 5 showcases,

how we can call the same SIMD-kernel with different register widths, and hence achive more

concurrently processed elements, by varying only the third parameter of the tvl::simd struct.

Figure 5: Dispatching the same kernel to the FPGA with different SIMD registers widths in bits.

Executing the examples: The sample code can be executed using Intel’s DevCloud on real

FPGA hardware, which is unfortunately necessary. The sample code is also available via the

following GitHub project: https://github.com/db-tu-dresden/SiMoD23-SIMD-FPGA. In the

following, we describe the entire execution workflow.

Execution using Intel’s DevCloud: A free account on Intel’s DevCloud for oneAPI can be

created at the following website: https://devcloud.intel.com/oneapi/. Afterwards, the

following steps must be carried out:

(1) Set up an SSH connection to Intel’s DevCloud using

SiMoD ’23, June 23, 2023, Bellevue, WA, USA Dirk Habich et al.

(a) Aggregation SIMD-Kernel. (b) Fi l ter-Count SIMD-Kernel. (c) Multi -threaded AVX512-based Fi l ter-Count.

Figure 4: Evaluation Results.

usi ng Type = f l oat ;

. . .

t empl at e <t ypename MyVec>

si ze_t agg_wr apper (queue& q, Type* i n_host , l ong* out _host , si ze_t si ze) { . . . } ;

. . .

t i me[0] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 128>>(q, i n, out + 0, el emCnt) ;

t i me[1] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 256>>(q, i n, out + 1, el emCnt) ;

t i me[2] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 512>>(q, i n, out + 2, el emCnt) ;

t i me[3] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 1024>>(q, i n, out + 3, el emCnt) ;

t i me[4] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 2048>>(q, i n, out + 4, el emCnt) ;

Figure 5: Dispatching the same kernel to the FPGA with

di erent register widths in bits.

the register width, until the global bandwidth threshold is reached.

The f i l t er - count SIMD-kernel achieves a generally higher band-

width and reaches the limit earlier, at a register width of 512bit,

which matches thePCIe buswidth. Theaggr egat i on SIMD-kernel

faces a data dependency in the last stage of the adder tree, which is

created from our current implementation of the hadd (cf. Figure 3)

call. Here, the DPC++ compiler cannot properly pipeline the com-

plete addition and has to stall for at least a cycle. However, we can

invest more resources of the FPGA and leverage a larger register,

which is twice thesize of thePCIe bus. Thisallowsusto trade some

FPGA resources for more overall bandwidth and nally to reach

the available PCIe bus bandwidth.

Acceleration Evaluation. Our next experiment shows the

achieved bandwidth for concurrent calculations on both the host

CPU and theFPGA in Figure 4c. Wevary theamount of concurrent

threads on the host processor and additionally dispatch the same

SIMD-kernel to the FPGA. The host code is executed using 512bit

sized AVX512 registers and the FPGA kernel is also parameterized

to use 512bit for its register width. For thisexperiment, weallocate

4GiB of random data per thread as well as FPGA and a dedicated

compute thread is spawned for every core on the host as well as

the FPGA. We synchronize the beginning of the computation of

all threads, measure the wallclock time per thread and report the

average bandwidth for all host threadsand separately for the FPGA

thread. As expected, more concurrently working threads on the

host memory lead to a decreased per-thread bandwidth. However,

thealso simultaneously running FPGA isable to constantly achieve

its peak performance. Thus, we are safe to conclude that it is possi-

ble to treat the FPGA card asan additionally available core running

just the same host code.

Resource Uti l ization. Table 1 shows the cumulated amount

of required resources for all generated variants of the lter-count

and aggregate kernels, i.e., the code for 128 through 2048 bit sized

Table 1: Avai lable resourceson the Intel Agi lex®FPGA Device

and aggregated uti l ization by al l generated kernel variants.

Component ALM REG MLAB RAM DSP

Available 912800 3651200 13272 8528

Kernel System (Agg) 87897 211224 422 300 0

Kernel System (Filter) 89617 291260 431 300 144

registers. Each of the best performing kernel variants requires ap-

proximately 2%of theavailable AdaptiveLogic Modules(ALM) and

registers (REG). This implies that we could potentially integrate a

larger amount of di erent kernels into a single FPGA image, which

can then be used to accelerate any required and available operator.

5 CONCLUSION

While SIMD is a core technique for accelerating query operators,

e ciently leveraging and integrating FPGAs is a traditionally com-

plex task. However, the combination of SIMD abstraction libraries,

Intel® oneAPI and the availability of USM allowsus to seamlessly

port standard templated C++ SIMD host code to the FPGA without

the necessity of complex FPGA-speci c programming. Simplicity

done right for SIMDi ed query processing on CPU and FPGA.

ACKNOWLEDGMENTS

This work was partly funded by (1) the European Union’s Horizon

2020 research and innovation program under grant agreement No

957407 (DAPHNE) and (2) the German Research Foundation (DFG)

via a Reinhart Koselleck-Project (LE-1416/28-1).

REFERENCES
[1] Michael Bolotski et al. 1994. Unifying FPGAs and SIMD arrays. In 2nd Interna-

tional ACM/SIGDA Workshop on Field-Programmable GateArrays.
[2] Google. [n.d.]. Highway. https://github.com/google/highway.
[3] Christopher J. Hughes. 2015. Single-Instruction Multiple-Data Execution. Morgan

& Claypool Publishers.
[4] Topi Leppänen et al. 2021. Uni ed OpenCL Integration Methodology for FPGA

Designs. In NorCAS. 1–7.
[5] Muhsen Owaida et al. 2019. Lowering the Latency of Data Processing Pipelines

Through FPGA based Hardware Acceleration. PVLDB 13, 1 (2019), 71–85.
[6] Orestis Polychroniou et al. 2015. Rethinking SIMD Vectorization for In-Memory

Databases. In SIGMOD. 1493–1508.
[7] James Reinders et al. 2021. Mastering DPC++ for Programming of Heterogeneous

Systems using C++ and SYCL. In Data Parallel C++.
[8] Nigel Stephens et al. 2017. The ARM Scalable Vector Extension. IEEE Micro 37, 2

(2017), 26–39.
[9] Annett Ungethüm et al. 2020. Hardware-Oblivious SIMD Parallelism for In-

Memory Column-Stores. In CIDR.
[10] XTensor-Stack. [n.d.]. XSIMD. https://github.com/xtensor-stack/xsimd.

https://github.com/db-tu-dresden/SiMoD23-SIMD-FPGA
https://devcloud.intel.com/oneapi/

DAPHNE – 957407

11

1: ssh devcloud

(2) Connect to an FPGA node

2a: source /data/intel_fpga/devcloudLoginToolSetup.sh

2b: devcloud_login

The following question appears:

2c: Type in number 4 to use a Stratix 10 – OneAPI, OpenVINO node

Then, an interactive session is set up on a corresponding node.

(3) Download the sample code

3: git clone https://github.com/db-tu-dresden/SiMoD23-SIMD-FPGA

(4) Compile the sample code

4a: Change in the corresponding folder

cd SiMoD23-SIMD-FPGA

4b: Setting up essential environment variables

source /opt/intel/inteloneapi/setvars.sh – force

4c: Initialize FPGA board

aocl initialize acl0 pac_s10_usm

4d: Compile executable code (takes several hours)

make hw_agg (compile aggregation example)

make hw_filter (compile filter-count example)

(5) Execute the sample code

./build/eval_agg_kernel.fpga 1000000

In this case, the aggregation is performed on 1 million random integer values.

./build/eval_filter_kernel.fpga 1000000

In this case, the filter-count kernel is performed on 1 million random integer values.

5.1.3 Evaluation

Based on the examples described above, we present inital evaluation results to demonstrate

the applicability and efficiency of our developed solution.

Evaluation setup: For our evaluation, we used a dual-socket server with 3rd-generation Intel

Xeon Scalable processors (code-named "Ice Lake"). The system is equipped with two Intel Xeon

Platinum 8360Y processors, each having 36 cores with a base frequency of 2.2 GHz. The main

memory consists of 16x DDR4 memory DIMMs with 32 GB each, which results in 512 GB of

DAPHNE – 957407

12

memory per processor. As FPGA acceleration card a BittWare IA-840f card is used, which is

equipped with an Intel Agilex 7 AGF027 FPGA and 4x 16 GB DDR4. The FPGA card is supporting

PCIe gen4 with 16 lanes and can achieve a maximum bandwidth of approximately 16 GiBs in

our setup. We ran all our experiments on 4 GiB of synthetically generated data and placed

everything in the host memory being exposed as USM.

Figure 6: Evaluation Results.

FPGA Performance: Figures 6(a) and 6(b) show the achieved bandwidth for both kernels with

register sizes matching those available to Intel SIMD registers of 512-bit and beyond. For the

aggregation SIMD-kernel, we observe that the achieved bandwidth doubles for every doubling

of the register width, until the global bandwidth threshold is reached. The filter-count SIMD-

kernel achieves generally a higher bandwidth and reaches the limit earlier, at a register width

of 512-bit, which matches the PCIe bus width. The aggregation SIMD-kernel faces a data

dependency in the last stage of the adder tree, which is created from our current

implementation of the hadd (cf. Figure 3) call. Here, the DPC++ compiler cannot properly

pipeline the complete addition and stalls for at least a cycle. However, we can invest more

resources of the FPGA and leverage a larger register, which is twice the size of the PCIe bus.

This allows us to trade some FPGA resources for more overall bandwidth and finally to reach

the available PCIe bus bandwidth.

Acceleration Evaluation: Our next experiment shows the achieved bandwidth for concurrent

calculations on both the host CPU and the FPGA in Figure 6(c). We vary the number of

concurrent threads on the host processor and additionally dispatch the same SIMD-kernel to

the FPGA. The host code is executed using 512-bit sized AVX512 registers and the FPGA kernel

is also parameterized to use 512-bit for its register width. For this experiment, we allocate 4

GiB of synthetically generated data per thread as well as FPGA and a dedicated compute thread

is spawned for every core on the host as well as the FPGA. We synchronize the beginning of

the computation of all threads, measure the wall clock time per thread and report the average

bandwidth for all host threads and separately for the FPGA thread. As expected, more

concurrently working threads on the host memory lead to a decreased per-thread bandwidth.

However, also the simultaneously running FPGA can constantly achieve its peak performance.

Thus, we are safe to conclude that it is possible to treat the FPGA card as an additionally

available core running just the same host code.

DAPHNE – 957407

13

Resource Utilization: Figure 7 shows the cumulated amount of required resources for all

generated variants of the filter-count and aggregate kernels, i.e., the code for 128 through

2048 bit sized registers. Each of the best-performing kernel variants requires approximately

2% of the available Adaptive Logic Modules (ALM) and registers (REG). This implies that we

could potentially integrate a larger number of different kernels into a single FPGA image, which

can then be used to accelerate any required and available operator.

Figure 7: Available resources on the Intel Agilex FPGA Device and aggregated utilization by all generated kernel

variants.

3.1.3 SIMD-oblivious Kernels

While SIMD is a core technique for accelerating data processing, efficiently leveraging and

integrating FPGAs is traditionally a complex task. However, the combination of SIMD

abstraction libraries such as our TVL/TSL, Intel’s oneAPI and the availability of USM allows us

to seamlessly port standard templated C++ SIMD host code to the FPGA without the necessity

of complex FPGA-specific programming. Based on our developed concept, we are able to

implement arbitrary SIMD-oblivious kernels and enable compile-time deduction as well as

code generation for a specific available SIMD extension as well as FPGA with usually negligible

overhead for the runtime.

3.1.4 Integration into DAPHNE

To demonstrate the usability of our SIMD-oblivious concept, we implemented different

relational query operators as kernels using our TVL/TSL library within the DAPHNE code base.

The kernel sources can be found in “src/runtime/local/kernels/SIMDOperatorsDAPHNE”.

Moreover, the TVL/TSL library is included as thirdparty library into DAPHNE. In addition, we

extended the compilation chain to map relational query operators to these SIMD-oblivious

kernels. To show the entire integration in terms of mapping and execution, we prepared a

simple example using query Q1.1 of the Star-Schema Bechmark (SSB). To execute the query

with the utilization of the SIMD-oblivious kernels, the following steps are necessary.

1. Build daphne

./build.sh --scalar (for compatibility reason, we restrict to a scalar execution which

corresponds to a SIMD register width of one element)

2. Switch to data_generation folder

3. Generate the SSB data for scale factor 1

./data.gen.sh -sf 1

4. Switch back to daphne folder and execute SSB query Q1.1

SiMoD ’23, June 23, 2023, Bellevue, WA, USA Dirk Habich et al.

(a) Aggregation SIMD-Kernel. (b) Fi l ter-Count SIMD-Kernel. (c) Multi -threaded AVX512-based Fi l ter-Count.

Figure 4: Evaluation Results.

usi ng Type = f l oat ;

. . .

t empl at e <t ypename MyVec>

si ze_t agg_wr apper (queue& q, Type* i n_host , l ong* out _host , si ze_t si ze) { . . . } ;
. . .

t i me[0] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 128>>(q, i n, out + 0, el emCnt) ;

t i me[1] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 256>>(q, i n, out + 1, el emCnt) ;

t i me[2] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 512>>(q, i n, out + 2, el emCnt) ;

t i me[3] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 1024>>(q, i n, out + 3, el emCnt) ;

t i me[4] = agg_wr apper <t vl : : si md<Type, t vl : : f pga, 2048>>(q, i n, out + 4, el emCnt) ;

Figure 5: Dispatching the same kernel to the FPGA with

di erent register widths in bits.

the register width, until the global bandwidth threshold is reached.

The f i l t er - count SIMD-kernel achieves a generally higher band-

width and reaches the limit earlier, at a register width of 512bit,

which matches thePCIebuswidth. Theaggr egat i on SIMD-kernel

faces a data dependency in the last stage of the adder tree, which is

created from our current implementation of the hadd (cf. Figure 3)

call. Here, the DPC++ compiler cannot properly pipeline the com-

plete addition and has to stall for at least a cycle. However, we can

invest more resourcesof the FPGA and leverage a larger register,

which is twice thesize of thePCIebus. Thisallowsusto tradesome

FPGA resources for more overall bandwidth and nally to reach

the available PCIe bus bandwidth.

Acceleration Evaluation. Our next experiment shows the

achieved bandwidth for concurrent calculations on both the host

CPU and theFPGA in Figure4c. Wevary theamount of concurrent

threads on the host processor and additionally dispatch the same

SIMD-kernel to the FPGA. The host code is executed using 512bit

sized AVX512 registers and the FPGA kernel is also parameterized

to use512bit for its register width. For this experiment, weallocate

4GiB of random data per thread as well asFPGA and a dedicated

compute thread is spawned for every core on the host as well as

the FPGA. We synchronize the beginning of the computation of

all threads, measure the wallclock time per thread and report the

average bandwidth for all host threadsand separately for theFPGA

thread. As expected, more concurrently working threads on the

host memory lead to a decreased per-thread bandwidth. However,

thealso simultaneously running FPGA isable to constantly achieve

its peak performance. Thus, we are safe to conclude that it is possi-

ble to treat theFPGA card asan additionally available core running

just the same host code.

Resource Uti l ization. Table 1 shows the cumulated amount

of required resources for all generated variants of the lter-count

and aggregate kernels, i.e., the code for 128 through 2048 bit sized

Table1: Avai lable resourceson the Intel Agi lex®FPGA Device

and aggregated uti l ization by al l generated kernel variants.

Component ALM REG MLAB RAM DSP

Available 912800 3651200 13272 8528

Kernel System (Agg) 87897 211224 422 300 0

Kernel System (Filter) 89617 291260 431 300 144

registers. Each of the best performing kernel variants requires ap-

proximately 2%of theavailable AdaptiveLogic Modules(ALM) and

registers (REG). This implies that we could potentially integrate a

larger amount of di erent kernels into a single FPGA image, which

can then be used to accelerate any required and available operator.

5 CONCLUSION

While SIMD is a core technique for accelerating query operators,

e ciently leveraging and integrating FPGAs is a traditionally com-

plex task. However, the combination of SIMD abstraction libraries,

Intel® oneAPI and the availability of USM allowsus to seamlessly

port standard templated C++ SIMD host code to the FPGA without

the necessity of complex FPGA-speci c programming. Simplicity

done right for SIMDi ed query processing on CPU and FPGA.

ACKNOWLEDGMENTS

This work was partly funded by (1) the European Union’s Horizon

2020 research and innovation program under grant agreement No

957407 (DAPHNE) and (2) the German Research Foundation (DFG)

via a Reinhart Koselleck-Project (LE-1416/28-1).

REFERENCES
[1] Michael Bolotski et al. 1994. Unifying FPGAs and SIMD arrays. In 2nd Interna-

tional ACM/SIGDA Workshop on Field-Programmable GateArrays.
[2] Google. [n.d.]. Highway. https://github.com/google/highway.
[3] Christopher J. Hughes. 2015. Single-Instruction Multiple-Data Execution. Morgan

& Claypool Publishers.
[4] Topi Leppänen et al. 2021. Uni ed OpenCL Integration Methodology for FPGA

Designs. In NorCAS. 1–7.
[5] Muhsen Owaida et al. 2019. Lowering the Latency of Data Processing Pipelines

Through FPGA based Hardware Acceleration. PVLDB 13, 1 (2019), 71–85.
[6] Orestis Polychroniou et al. 2015. Rethinking SIMD Vectorization for In-Memory

Databases. In SIGMOD. 1493–1508.
[7] James Reinders et al. 2021. Mastering DPC++ for Programming of Heterogeneous

Systems using C++ and SYCL. In Data Parallel C++.
[8] Nigel Stephens et al. 2017. The ARM Scalable Vector Extension. IEEE Micro 37, 2

(2017), 26–39.
[9] Annett Ungethüm et al. 2020. Hardware-Oblivious SIMD Parallelism for In-

Memory Column-Stores. In CIDR.
[10] XTensor-Stack. [n.d.]. XSIMD. https://github.com/xtensor-stack/xsimd.

DAPHNE – 957407

14

bin/daphne --columnar --vector_extension=SCALAR ./scripts/evaluation/ssb-Q1-

1-SF1.daph

The option “vector_extension” can be used to define the SIMD extension to be used. For this,

DAPHNE must also be built with the corresponding option. In the current state, the mapping

to FPGA is not possible, as the memory management still needs to be extended in this respect.

3.2 GPU Example

In this part of the deliverable, we give a compact overview of how our efforts regarding code

generation for sparsity exploitation on GPU are improving end-to-end performance in an

example algorithm from our collection of supported algorithms available in the DAPHNE

source repository.

3.2.1 CUDA Code Generation

Generating and compiling source code is a technique commonly employed in modern data

management, machine learning and high-performance computing systems and frameworks.

While some of them focus on providing executables for new hardware platforms or leveraging

features of commonly supported systems (e.g., special SIMD instructions), most of them aim

to optimize execution in one way or another. This can go into the directions of operator fusion,

query compilation, loop fusion, tiling and sparsity exploitation. Of course, a mix of several of

these techniques are often combined [B+18, E+17], as is the case in our approach as well.

While existing implementations use Java and run on CPUs, we will bring operator fusion and

sparsity exploitation to CUDA based GPU platforms to improve the efficiency by leveraging

larger memory bandwidth on GPUs and keeping data locally on the GPU.

3.2.2 Code Templates

Operator fusion brings many advantages such as avoiding allocation of intermediates, reduced

memory bandwidth requirements, and specialization according to input operations provided

by our DaphneDSL. Combining this with the support for sparse data formats allows us to

exploit sparsity across chains of operations, which makes avoiding intermediates (often

becoming dense and therefore huge in size) even more effective.

Our entry point into the vast space of fusion opportunities when taking all their permutations

into account (e.g., if there are operators A,B and C, where A and B could be fused, B and C

could be fused but not all three at once) is the type of data access that operations require. Out

DAPHNE – 957407

15

of the four patterns from the CPU bound code generation described in [B+18], we have

implemented two for now, which we will show in more detail in this demonstrator.

Cell-based template: The cell-based code template refers to a class implemented in CUDA-

compatible C++ with a number of anchor points (textual placeholders that are replaced during

code generation) and CUDA-kernel definitions that instantiate this class appropriately. During

execution an “exec_dense()” or “exec_sparse()” method is called for every data item of the input

(usually a matrix) depending on the format being plain dense or compressed sparse row (CSR).

This computation for every cell of the input data can also be employed in an aggregation,

combining, for example, some computation for every item with a sum over all items to be

processed.

Row-wise template: This code template shares the same basic software architecture as the

cell-based one but is geared towards a row-by-row computation. Furthermore, his template

allows for operations that need to access the entire row (potentially combined with cellwise

operations and final aggregation). By having this distinction between cell and row-based

computation, threads can be launched in a more suitable way and more optimized primitives

can be invoked if the by-row relationship of the input can be expected.

3.2.3 Implementation Details

For the demonstration in this deliverable, we have ported functionality from the code base

where development for this method has initially been started. While the initial implementation

in [BA+20] contains sophisticated DAG analysis, enumeration, and cost-based selection of

fusion plans, we focused on a working example of the generation and execution parts of our

solution on GPU in DAPHNE. To this end, the DAPHNE compiler has been extended to detect

the patterns used in our example, replace them with an MLIR representation of our generated

operators and rewire the inputs and outputs accordingly. The code templates used are hard-

coded for now and compiled via CUDA’s nvrtc – the run-time compiler. This will produce

another intermediate representation, namely PTX, which is an IR used in Nvidia’s compiler

stack. When launching a generated operator, the final compilation step is performed by the

NVIDIA driver.

DAPHNE – 957407

16

3.2.4 Practical Example

We will use the Connected Components algorithm, which can be found in the DaphneDSL

script collection of the project’s source tree as well as in code listing 1 below, as an example

to demonstrate how our code generation method spawns fused operators to optimize the

execution in terms of memory requirements and run-time.

The algorithm takes an adjacency matrix as input, where each row and column represent nodes

in a graph and the non-zero values of the matrix represent edges. The row numbers serve as

node IDs. The output is a vector with number-of-nodes rows where each value represents the

highest ID the node is connected to. For example, if the output was [1, 3, 3, 4] we see two

nodes that have no connections (node 1 and 4) and one connection between node 2 and 3,

where the highest ID 3 is shown for node 2 and 3 in the output vector.

01: // Arguments:

02: // - f ... filename of the adjacency matrix (provide as `--args f=\"foo.csv\"`)

03:

04: t0 = now();

05:

06: // Read adjacency matrix.

07: G = readMatrix($f);

08:

09: // Initialization.

10: // Maximum number of iterations (to stop if diff never reaches zero)

11: maxi = 1000;

12: c = seq(1.0, as.f64(nrow(G)), 1.0); // init w/ vertex IDs

13: diff = inf;

14: iter = 1;

15:

16: t1 = now();

17: // Iterative computation of connected components (decisive part).

18: while(as.si64(diff > 0.0) && iter <= maxi) {

19: ti0 = now();

20:

21: u = max(aggMax(G * t(c), 0), c);

22: diff = sum(u != c);

23: c = u;

24:

25: ti1 = now();

26: print("iteration ", 0, 1);

27: print(iter, 0, 1);

28: print(" took [ns]: ", 0, 1);

29: print(ti1 - ti0);

30:

31: iter = iter + 1;

32: }

33:

34: t2 = now();

35: // Print elapsed times in nano seconds.

36: print(t1 - t0); // initialization

DAPHNE – 957407

17

37: print(t2 - t1); // core algorithm

38: // Note that, for distributed execution, (t2 - t1) includes reading the input

39: // files due to some reordering done by the compiler.

40:

41: // Result output.

42: print(c);

Code Listing 1: Connected Components in DaphneDSL

01: // … code omitted for brevity

02: %38 = "daphne.transpose"(%arg1) : (!daphne.Matrix<?x1xf64>) -> !daphne.Matrix<1x?xf64>

03: %39 = "daphne.ewMul"(%21, %38) : (!daphne.Matrix<17500x17500xf64>,

!daphne.Matrix<1x?xf64>) -> !daphne.Matrix<?x?xf64>

04: %40 = "daphne.maxRow"(%39) : (!daphne.Matrix<?x?xf64>) -> !daphne.Matrix<?x1xf64>

05: %41 = "daphne.ewMax"(%40, %arg1) : (!daphne.Matrix<?x1xf64>, !daphne.Matrix<?x1xf64>) -

> !daphne.Matrix<?x1xf64>

06: %42 = "daphne.ewNeq"(%41, %arg1) : (!daphne.Matrix<?x1xf64>, !daphne.Matrix<?x1xf64>) -

> !daphne.Matrix<?x1xf64>

07: %43 = "daphne.sumAll"(%42) : (!daphne.Matrix<?x1xf64>) -> f64

08: // … code omitted for brevity

Code Listing 2: Relevant DaphneIR before fusing operations

01: // … code omitted for brevity

02: %40 = "daphne.codegenRW"(%21, %arg1, %39) {operand_segment_sizes = array<i32: 3, 0>} :

(!daphne.Matrix<1000x1000xf64>, !daphne.Matrix<?x1xf64>, ui64) -> !daphne.Matrix<?x1xf64>
03: %41 = "daphne.constant"() {value = 1 : ui64} : () -> ui64
04: %42 = "daphne.codegenCW"(%40, %arg1, %41) {operand_segment_sizes = array<i32: 3, 0>} :

(!daphne.Matrix<?x1xf64>, !daphne.Matrix<?x1xf64>, ui64) -> f64
05: // … code omitted for brevity

Code Listing 3: Relevant DaphneIR after fusing operations

In Code Listings 2 and 3, we see the DaphneIR as it went through the code generation compiler

passes. The former shows the original instructions spawned by the DAPHNE compiler. The

latter shows where instructions have been replaced and operands/results have been rewired.

The diagram in Figure 8 shows the relevant operations of the first fused operator and sketches

of input and output data sizes (scalars, vectors and matrices). The blue boxes are data items

existing in the algorithm while the red boxes show intermediate states that emerge between

operations.

DAPHNE – 957407

18

Figure 8: First fusion opportunity showing unnecessary intermediates (from line 21 in Code Listing 1)

The four green hexagons resemble the four operations that will be fused into one row-wise

operator. The transpose t() is a no-op, which means it does not perform any computation or

data movement. As the memory representation for row or column vectors would be the same,

this operation merely swaps the row/column dimensions. The next operation is an element-

wise multiply of the transposed input c and the potentially sparse matrix G. The result is stored

in a temporary intermediate (tmp1) that has the same dimensions as G. Subsequently, the

rows of tmp1 are aggregated to find the maximum value of each row. These max values are

compared against the input vector c in the last max() operation to finally store the output in

u. The generated row-wise operator will process row-by-row to aggregate the max value of

the G*c multiplication. The result of this multiplication is compared to the value of input vector

c at the corresponding index. The larger value of this comparison (max()) is stored in the output

u. All of this happens in one go without storing the intermediate values to main memory in

between each step.

Figure 9 shows the schematic of the next two operations in line 22 of the input script. Here we

can avoid saving the output of the c != u operation in main memory just to load it again right

away to sum it all up to form the output “diff”. This fused operation works from a cell-based

aggregation code template to do the inequality (!=) and sums up the results up in one go. This

behavior could also be achieved in row-wise processing. The reason why the cell-based

solution has been taken in favor of the row-wise approach has to do with how threads are

spawned to do the processing, which is more efficient when done cell-based.

This practical example can be tested with the provided downloadable artifact (see section 2).

Please refer to the read-me file within the Zip archive for instructions how to setup and run

the demonstrator.

G c c

u

tm
p
2

t()

*

tmp1

rowAgg

Max()

max()

DAPHNE – 957407

19

Figure 9: Second fusion opportunity (from line 22 in Code Listing 1)

3.2.5 MLIR Based Code Generation

Besides the code generation technique described above, we also pursue a different approach

in DAPHNE. Since our compiler is based on MLIR, it quite naturally asks for trying to directly

compile down from the DAPHNE dialect to LLVM without the use of precompiled kernels,

which is our default solution. This effort is in its initial stages and focuses on CPU execution

for now but might also lend itself to experimenting with other compilation targets supported

by the MLIR/LLVM compiler stack. While this work is not featured in this deliverable, a first pull

request of considerable size has been merged into the main branch of DAPHNE [DGHI+633]

providing a first working preview.

4 Prototype structure

This project structure shows most of the important directories of the prototype.

 bin/ (compiled system and parser; generated via build.sh)

 containers/ (Docker container specific files)

 data/ (data files for experimenting)

 doc/ (basic setup and developer documentation)

 D7.3/ (scripts for running the GPU example)

 lib/ (generated kernel libraries)

 scripts/ (DaphneDSL scripts as examples)

o evaluation/ (Deliverable specific examples)

 src/ (main source code repository)

o api/ (cli including daphne which orchestrates the remaining

components)

o compiler/ (execution, explain, inference, lowering)

▪ codegen/ (code generation source)

▪ lowering/ (compiler passes)

o ir/ (DaphneIR including the DAPHNE MLIR dialect)

o parser/ (DaphneDSL, SQL)

▪ sql/ (SQL Parser)

u c

!=

tm
p
3

!=

diff

DAPHNE – 957407

20

o runtime/ (distributed, local including data, I/O, kernels, and

vectorization)

▪ local/kernels/ (kernels)

• CUDA/ (CUDA device kernels)

• FPGA/ (FPGA device kernels)

• SIMDOperatorsDAPHNE/ (kernels using SIMD

operators)

o util/ (helper functions etc.)

 test/ (test suite of component and integration tests, organized by

components)

 thirdparty/ (dependencies such as llvm, including their build directories)

 build.sh (build script to build the DAPHNE compiler)

 test.sh (Daphne test suite)

DAPHNE – 957407

21

References

[B+18]

Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V.

Evfimievski, Niketan Pansare: “On Optimizing Operator Fusion Plans for Large-

Scale Machine Learning in SystemML”, PVLDB 2018.

[BA+20] M. Boehm et al.: SystemDS: A Declarative Machine Learning System for the End-

to-End Data Science Lifecycle. CIDR 2020.

[D2.1] DAPHNE: D2.1 Initial System Architecture https://daphne-eu.eu/wp-

content/uploads/2021/11/Deliverable-2.1-fin.pdf

[D2.2] DAPHNE: D2.2 Refined System Architecture https://daphne-eu.eu/wp-

content/uploads/2022/08/D2.2-Refined-System-Architecture.pdf

[D3.1] DAPHNE: D3.1 Language Design Specification

[D5.1]

DAPHNE: D5.1 Scheduler Design for Pipelines and Tasks https://daphne-

eu.eu/wp-content/uploads/2021/11/Deliverable-5.1-fin.pdf

[D7.1] DAPHNE: D7.1 Design of integration HW accelerators https://daphne-eu.eu/wp-

content/uploads/2022/05/DAPHNE_Deliverable_7.1.pdf

[D7.2] DAPHNE: D7.2 Prototype and overview HW accelerator support and performance

models https://daphne-eu.eu/wp-content/uploads/2022/12/D7.2-Prototype-

and-Overview-HW-Accelerator-Support-and-Performance-Models.pdf

[D+22] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm,

Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy,

Christian Faerber, Georgios Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer,

Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaž Kosar,

Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier,

Marcus Paradies, Bernhard Peischl, Gabrielle Poerwawinata, Stratos Psomadakis,

Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin, Andreas Starzacher,

Benjamin Steinwender, Ilin Tolovski, Pınar Tözün, Wojciech Ulatowski, Yuanyuan

Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, and Xiao Xiang Zhu. “DAPHNE: An

Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines”,

In 12th Annual Conference on Innovative Data Systems Research (CIDR 2022).

[DGHI

+633]

DAPHNE GitHub Issue #633 - https://github.com/daphne-eu/daphne/pull/633

https://daphne-eu.eu/wp-content/uploads/2021/11/Deliverable-2.1-fin.pdf
https://daphne-eu.eu/wp-content/uploads/2021/11/Deliverable-2.1-fin.pdf
https://daphne-eu.eu/wp-content/uploads/2022/08/D2.2-Refined-System-Architecture.pdf
https://daphne-eu.eu/wp-content/uploads/2022/08/D2.2-Refined-System-Architecture.pdf
https://daphne-eu.eu/wp-content/uploads/2022/05/DAPHNE_Deliverable_7.1.pdf
https://daphne-eu.eu/wp-content/uploads/2022/05/DAPHNE_Deliverable_7.1.pdf
https://github.com/daphne-eu/daphne/pull/633

DAPHNE – 957407

22

[E+17] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Evfimievski, Shirish

Tatikonda, Berthold Reinwald, Prithviraj Sen: “SPOOF: Sum-Product Optimization

and Operator Fusion for Large-Scale Machine Learning”, CIDR, 2017

[H+23] Dirk Habich, Alexander Krause, Johannes Pietrzyk, Christian Faerber, Wolfgang

Lehner: Simplicity done right for SIMDified query processing on CPU and FPGA.

SiMoD@SIGMOD 2023: 3:1-3:5

