D9.3 Initial Prototype of
Benchmarking Toolkit

4
\

+*s DAPHNE

Integrated Data Analysis Pipelines for Large-Scale
Data Management, HPC, and Machine Learning

Version 1.2

PUBLIC

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 957407.

D9.3 Initial Prototype of Benchmarking Toolkit +*« DAPHNE

Document Description

In D9.3, the DAPHNE consortium presents the initial prototype of the benchmarking toolkit
for the DAPHNE system.

D1.10 Refined Dissemination and Exploitation Plan
WP9 - Initial Prototype of Benchmarking Toolkit

Type of document Version 1.0
Dissemination level

Lead partner

Report
CO/PU
Hasso Plattner Institute

Author(s) llin Tolovski (HPI), Nils Strassenburg (HPI), Tilmann Rabl (HPI)
Reviewer(s) Pinar Tozun (ITU), Ales Zamuda (UM)
Contributors HPI

Revision History

Revisions and Comments Author / Reviewer

V1.0 [Initial draft] Ilin Tolovski (HPI)

V1.1 [Draft before review] llin Tolovski (HPI), Nils Strassenburg (HPI)
V1.2 [Draft after review] llin Tolovski (HPI), Nils Strassenburg (HPI)
Abbreviations

HPI Hasso Plattner Institute gGmbH
WP Work package

T Task

ucC Use case

BD Big data

HPC High performance computing
ML Machine Learning

UMLAUT Universal Machine Learning Analysis Utility
IDA Integrated Data Analysis

HDF Hierarchical Data Format

HDFS Hadoop Distributed File System

DAPHNE - 957407

Table of content

EXECULiVe SUMMIATY cousssssessessssnssscnsmusmsssmssanssamssarssemsessssnsmsss

1
2

S T3 Vel (11 T Y TR

5

Introduction

UMLAUT - System Prototype..........ueecneueeccccneeecccnenecens
2.1 Benchma
2.2 Benchma
221 Supervised Metrics
222 Valued Metrics
2.3
24
2.5
26 Comman
27
2.71 Visualizing measurements from single pipeline
2.7 2 Visualizing measurements from multiple pipelines
US@ CASES....cccuueeeeeeeeneeentetentnteesseeessseeessseessssesssssesssssnessssessssnes

3.1 Benchma

3.1.2 Back

3.2 Benchma

[0 =) =) § L TR

DAPHNE - 957407

Data Model & Toolkit Implementation
System Installation

System Integration

Visualization

n

+’¢ DAPHNE

TKING ASPECES ..ot
[RIKE IS ceccencern e s e

d Line Interface

rking Python Pipelines ...
3.1.1 Earth Observation (DAPHNE UC-1)
blaze Anomaly AnalSiS s

rking DAPHNE DSL SCrIPTS ..o

N

+’¢ DAPHNE

Evariitivia C A A A/
cxXecutive summary

P

This deliverable describes the implementation of the Universal Machine Learning Analysis
Utility (UMLAUT) prototype. We describe the implementation of our design decisions, the use
cases for the system, as well as its performance implications on Integrated Data Analysis (IDA)
pipelines. In this deliverable, we use terminology, definitions, and explanations from the
official UMLAUT documentation, and its GitHub repository [1][2].

1 Introduction

The DAPHNE project focuses on creating a system for processing Integrated Data Analysis
(IDA) pipelines. To evaluate the end-to-end performance of the system, we have conducted a
survey of the state of the art in high performance computing (HPC), big data (BD), and
machine learning (ML) benchmarks [3]. We find that the data analytics libraries and
applications have been incorporating aspects from multiple domains to optimize the runtime
performance and capabilities of the pipelines. However, there is a limited convergence across
the benchmarking toolkits in these domains.

To evaluate IDA pipelines, we need to create an end-to-end toolkit that will encompass the
different benchmarking aspects from the three domains. In Deliverable 9.2 - Initial
Benchmark Concept and Definition, we have outlined the definition and specification of such
a benchmarking toolkit [16].

Based on that concept, we created the Universal Machine Learning Analysis Utility (UMLAUT),
a prototype of an end-to-end benchmarking toolkit for IDA pipelines. It consists of a tracker
system for different sets of metrics, a database that persists the collected measurements, a
command line interface, and a visualization tool that generates plots for result analysis.

In this deliverable, we present the first prototype of UMLAUT and its implementation.
Specifically, we cover the implementation of the benchmarking aspects, metrics, and
supported workloads. The benchmarking toolkit is implemented as a command line interface
tool, that enables users to execute benchmarking workloads, but also analyze the collected
measurements. Furthermore, the collected measurements can be visualized with the same
tool.

With UMLAUT, we enhance the DAPHNE system with detailed runtime tracing and analysis of
the system performance in multiple stages and with various metrics. By providing a detailed
performance analysis, we open new research opportunities for innovation in various stages of
the system stack, as well as implementation of different use cases.

UMLAUT is designed to analyze and benchmark Python IDA pipelines and scripts written in
the DAPHNE Domain Specific Language (DSL). Throughout this document, we present the
use cases covered in the prototype design phase, and showcase UMLAUTs capabilities to
present some initial results. The used Python pipelines are derived from the DAPHNE Use
Cases (UC 1) and various open-source pipelines. The DSL scripts cover various
implementations of relational and HPC operators, such as SELECT, GROUP, JOIN, and matrix
addition.

+’¢ DAPHNE

This deliverable is structured as follows. In Section 2, we present the UMLAUT system
prototype, its design, and implementation. These include the benchmarking aspects
considered, the metrics implementation, the data model, and the overall toolkit design. In
Section 3, we outline two use cases for the benchmarking toolkit, i.e., benchmarking Python
pipelines and benchmarking DAPHNE DSL Scripts. Finally, we conclude the deliverable report
with a summary of the system.

2 UMLAUT - System Prototype

In this section, we introduce the Universal Machine Learning Analysis Utility (UMLAUT), our
end-to-end benchmarking system prototype. In Section 2.1, we introduce the system
requirements for the benchmarking toolkit. In Section 2.2, we describe the benchmarking
aspects of UMLAUT introduced in Deliverable 9.2. Afterward, we describe the implementation
of the aspects into metrics in Section 2.3 before we present the implementation of the data
model introduced in Deliverable 9.2 and the overall toolkit design in Section 2.4. We explain
how to install UMLAUT in Section 2.5, how to integrate it in Section 2.6, how to use the
UMLAUT's command line interface in Section 2.7, and provide example visualization in
Section 2.8.

2.1 System Requirements

In Deliverable 9.2 [16], we described the key requirements of the benchmarking toolkit, with
respect to the coverage of IDA pipelines, benchmarking aspects, system under test and
workloads. In this section, we present a condensed summary of the requirements, providing
the necessary context for the implementation details of the benchmarking toolkit in the

following sections.

2.1.1 IDA Pipelines
Integrated Data Analysis Pipelines consist of three distinct stages: computation, data
processing, and training. For each stage, separate applications and frameworks can be
integrated into a single IDA pipeline. To evaluate the performance of each stage of the
pipeline, the toolkit needs to measure the performance of the individual applications, and the
integrated frameworks. UMLAUT toolkit is required to measure the IDA pipeline on the

application and middleware layers.

)

N

.1.2 Benchmarking Aspects - Specification

In D9.2, we specify that the benchmarking toolkit needs to cover several benchmarking
aspects of an IDA pipeline. To demonstrate the convergence of the application and
middleware systems that make an IDA pipeline, the benchmarking toolkit needs to capture
the end-to-end performance, and the performance of individual stages of the pipeline.

2.1.3 System under Test

We define the System under Test for our benchmarking toolkit in a modular fashion. As
stated in Section 2.1.2. the toolkit needs to evaluate system performance on different
granularities. To this end, we specify the system under test as one of the following: an
individual method call, individual system operators spanning multiple methods and pipeline
stages, and complete pipelines.

DAPHNE — 957407

+’¢ DAPHNE

Y 41 A NAT =T 1
/ 4 \VWorkloaas

In the prototype phase of the development, UMLAUT supports the following workloads, as
shown in Deliverable 9.2 [16]:

e Data cleaning and preparation workloads — part of the data preprocessing stage of an
IDA pipeline;

e Machine learning model training — part of the training stage of an IDA pipeline;

e Inference — part of the computation stage of an IDA pipeline.

5 D) | g o= N SRR (. ~ - nde oo ~ ‘ a2 o de o de 1 o m
)) Renchmarkino yecte - Imblementation
/ Benchmarking ects nplementation

As shown in Deliverable 9.1 and in our survey of Big Data, High Performance Computing, and
Machine Learning Systems benchmarks [3], current benchmarks are evaluating only individual
aspects of a data processing pipeline, and only marginally overlapping with any of the other
stages. Big Data, High Performance Computing, and Machine Learning Systems consist of
several stages, which can often overlap across domains. Evaluating any IDA pipeline for sev-
eral aspects would require using multiple benchmarking toolkits to capture the complete
performance footprint of the pipeline.

UMLAUT includes all aspects of an IDA pipeline. To achieve this, we implement supervised
and valued metrics, the first of which provide an insight into end-to-end performance, such
as: overall runtime, memory and energy consumption, as well as an overview of the resource
utilization. On the other hand, we also collect domain specific, valued metrics, that collect
measurements during the runtime, and are dependent on a particular stage of the pipeline.
Such metrics include: hyperparameter sets, time-to-accuracy, per-epoch/stage loss, and simi-
lar.

The metrics are implemented in modular fashion, meaning that the user can decide which
measurements will be collected based on the stage of the pipeline. A supervised measure-
ment may be performed during a single method execution, during the execution of a group
of methods for stage measurement, or throughout the complete pipeline. This allows both,
coarse- and fine-grained performance analysis based on the evaluated methods in the pipe-
line.

The valued metrics, on the other hand, are tracked inside of a method, collecting measure-
ments based on parameters generated during the method runtime. We present the metrics
and their implementation in more detail in Section 2.3.

2.3 Benchmarking Metrics

In UMLAUT, we collect two types of benchmarking metrics, supervised and valued metrics.
Supervised metrics evaluate the end-to-end performance of the system, with respect to time
and resource consumption. Valued metrics are measured during the runtime and their values
depend on the particular stage of the pipeline. In this section, we present their

implementation in UMLAUT.

Supervised Metrics
With the supervised metrics, we capture the system performance, with regards to runtime,
throughput, latency, CPU, memory, and energy consumption. The measurements for all
supervised metrics are collected by decorator functions that annotate the methods that the

+’¢ DAPHNE

toolkit needs to evaluate. Tracking a single method, or a set of methods in a pipeline allows
us to perform both fine and coarse-grained performance analysis.

By benchmarking a single method, we can detect any bottlenecks caused by it, whereas when
benchmarking multiple stages or the whole pipeline, we can analyze the end-to-end
performance of the system. In Table 1, we provide a list of all supervised metrics and their
implementation.

Type Description

TimeMetric() Measures the time in seconds it takes to execute the decorated
code using time.perf_counter() [4].

MemoryMetric() Measures the memory usage of the decorated code in MB using
psutil memory_info().rss [5].

EnergyMetric() Measures the energy consumption in poule of the decorated
code using the pyRAPL library [6].

PowerMetric() Measures the power consumption of the decorated code in Watt
using the pyRAPL library [6].

LatencyMetric() Measures the latency of the decorated code in seconds/entries
using time.perf_counter() [4] to measure time.

ThroughputMetric() | Measures the throughput of the decorated code in entries/second
using time.perf_counter() [4] to measure time.

CPUMetric() Measures the CPU usage of the decorated code in percent using
psutil cpu_percent() [5].

Table 1 Supervised metrics collected in UMLAUT.

D B 9 wialsaAINMES: =
2.3.2 Valued Metrics

With the valued metrics, we capture intrinsic properties of the pipeline, that are generated
with the initialization, or the runtime of the pipeline. Currently, we have implemented four
trackers of valued metrics that are relevant for performance of the pipeline: confusion matrix,
hyperparameter, time-to-accuracy, and loss tracker.

Collecting these metrics allows us to combine results from different methods in a pipeline,
such as measuring the influence of the batch size on the accuracy or perform any comparison
between the stages of an IDA pipeline. In Table 2, we present all implemented value metrics
and their trackers.

Type Description

ConfusionMatrixTracker() Tracks the confusion matrix.

HyperparameterTracker() | Tracks sets of hyper parameters across multiple executions.

DAPHNE — 957407

+’¢ DAPHNE

TTATracker() Tracks a list of accuracy values.

LossTracker() Tracks a list of loss values.

Table 2 Valued metrics collected in UMLAUT.

2.3.3 Extensibility

The current implementation of UMLAUT allows limited extensibility of the set of metrics. To
integrate a customized metric the user would need to implement an adequate decorator
method for a supervised metric, or a tracker for a valued metric. To incorporate
measurements from other software or hardware monitoring tools, the tool needs to be
invoked inside an UMLAUT method. The users would need to define the method as a
decorator, or a tracker method depending on the collected metric. All measurements for
newly defined metrics are integrated under the corresponding metric type in the data model
defined in Section 2.4.

2.4 Data Model & Toolkit Implementation

UMLAUT is implemented in Python as a standalone command line tool with an interactive
interface. Using the CLI tool we can run benchmarking workloads and analyze completed
pipelines and their results. All measurements are stored in a local instance of an SQLite
database. Each database can contain a single or multiple set of measurements, based on the
pipelines that were executed.

The storage location and naming are defined using a Benchmark class, that is mapped to a
single database file and manages the measurements for one or several pipelines. For each
metric that is to be collected, the user defines a method and pipeline decorator
BenchmarkSupervisor. The decorator collects all specified metrics connected to it and
transfers them to the Benchmark class.

The data model of the database consists of two tables, one for the Measurements, and one
for the Pipeline Run. The PipelineRun table stores an ID, description, and a starting time of
the run. The Measurement table stores the PipelineRun ID as a foreign key, a measurement ID
as a primary key, a timestamp, description, datatype, binary data, and the measurement unit.

Multiple runs can be stored in a single database file, which allows access and comparison of
multiple pipelines at once. A visual representation of UMLAUT's data model is shown in
Figure 1.

DAPHNE - 957407

PipelineRun Measurement
1

PK | uuid String PK | id Integer
start_time DateTime . FK1| Run_uuid String
description String time DateTime
description String

type String

data Binary

unit String

Figure T UMLAUT's data model.

+*¢ DAPHNE

2.5 System Installation

The current prototype is developed in Python 3.9 and can be locally installed as a Python
package. The benchmarking toolkit is currently designed for internal use only and is not
available as a PyPi package. The installation process consists of two steps. First, the GitHub
repository is cloned with the following command:

git clone git@github.com:hpides/End-to-end-ML-System-Benchmark.git

Next, the UMLAUT package needs to be added as a local package to the requirements file
that manages the python dependencies for the project. A requirements file, showing
UMLAUT as in the dependency list is shown in Figure 2.

1-e ../..fumlaut
2 hspy

3 sklearn

4 numpy

5 tensorflow|

Figure 2 UMLAUT as a dependency in a requirements file.

Once installed, it can be imported in any local Python projects or pipelines. All decorators and
metrics are available upon import. In Figure 3., we show an example of using UMLAUT in an
existing Python pipeline.

1 import subprocess

2 from umlaut import Benchmark, TimeMetric, BenchmarkSupervisor, //
3 ThroughputMetric, LatencyMetric, MemoryMetric, PowerMetric, EnergyMetric, CPUMetric

Figure 3 Importing UMLAUT in a Python pipeline.

2.6 System Integration

UMLAUT can be imported in any Python pipeline, upon installation. We provide a short
description of installing and using the system in Section 2.5. The current version of UMLAUT
is developed in Python 3.9 and compatible with commonly used Python libraries, such as
scikit-learn [7], numpy [8], pandas [9], sqlalchemy [10], PyTorch [11], Tensorflow [12] and
others. UMLAUT can be imported into existing pipelines by initiating the Benchmark class
with a description and a database handle. Additionally, the user needs to specify the set of
metrics that need to be associated with the benchmark. An example of initiating UMLAUT is
shown in Figure 4.

5 bm = Benchmark('group.db', description="Experiments using the example daphne scripts")
6 metrics = {

T time": TimeMetric('sql group time'),

8 memory"”: MemoryMetric('sql group memory', interval=0.1),

9 power": PowerMetric('sql group power'),

10 energy”: EnergyMetric('sql group energy'),

11 “pu”: CPUMetric('sqgl group cpu', interval=08.1)

12 }

Figure 4 Initialization of UMLAUT in a pipeline

DAPHNE - 957407

+"« DAPHNE

2.7 Command Line Interface
UMLAUT is managed through a command line interface (CLI) toolkit. To access the collected
measurements, the user needs to provide the database handle for the workloads.

(base) ilint@ilint-Precision-5550:~/HPI/DAPHNE/daphne-pipelines$ umlaut-cli daphe_pipelines.db

? Please select one or more uuids. (<up>, <down> to move, <space> to select, <a> to toggle, <i> to invert)
(O d335567e-51e0-4365-b205-ce32892ab2e1, 2023-05-04 11:42:36.114050, description: Experiments using the example daphne scripts
O 1e4d5062-22ed-46f4-8eb1-6c13136483de, 2023-05-04 13:02:35.303436, description: Experiments using the example daphne scripts
(O 41a5bc76-5e6d-4f72-ab10-e102d5f2493e, 2023-05-04 13:02:44.839537, description: Experiments using the example daphne scripts
O a62127b9-422c-4bb2-b7a8-e665df508ffa, 2023-05-04 13:11:33.793705, description: Experiments using the example daphne scripts
(0 d8534210-2c89-45a2-a415-f86bfccofddd, 2023-05-04 13:11:43.778990, description: Experiments using the example daphne scripts
O feb6b495-53ff-4c78-a7a1-65518fa949ed, 2023-05-04 13:11:53.056162, description: Experiments using the example daphne scripts

Figure 5 Overview of the pipeline set in the UMLAUT database.
Measurements can be selected individually for a single pipeline or compared against several

pipeline runs. Similarly, multiple measurements for a single pipeline can be queried in the CLI
interface. An example query is shown in Figures 5 and 6.

(base) ilint@ilint-Precision-5550:~/HPI/DAPHNE/daphne-pipelines$ umlaut-cli daphe_pipelines.db
Please select one or more uuids.

? Please select measurement types corresponding to uuids. (<up>, <down> to move, <space> to select, <a> to toggle, <i> to invert)
Available types for uuid a62127b9-422c-4bb2-b7a8-e665df508ffa
@ cpu
QOenergy
QO memory
O power
O time
Available types for uuid d8534210-2c89-4532-a415-f86bfcc9ofddd
@ cpu
QOenergy
Omemory
O power
Otime
Available types for uuid feb6b495-53ff-4c78-a7a1-65518fa949ed
@ cpu
Qenergy
QO memory
O power
O time

Figure 6 Comparing the CPU usage for 3 pipelines.

2.8 Visualization

The CLI toolkit also enables users to generate plots from the collected measurements.
Measurements can be shown individually, i.e., a single plot can present a single pipeline run,
or provide a comparison between multiple runs. Each plot collects the measurements for a
single metric. They are generated and shown through the standard Python Matplotlib Viewer,
where users can interact with the plot to hover on individual values or zoom in for more
detail. In the next two sections, we show examples of the types of plots that can be
generated through the CLI interface.

2.8.1 Visualizing measurements from single pipeline

We can query the UMLAUT database for the results of a single pipeline. This is done by
choosing one of the recorded pipelines, as shown in Section 2.6. For the selected pipeline, we
choose the metrics that we want to visualize. For each metric, a separate plot is generated. An

example of generating the CPU and Memory usage for one pipeline is shown in Figures 7 and
8.

DAPHNE - 957407

D9.3 Initial Prototype of Benchmarking Toolkit +*« DAPHNE

(base) ilint@ilint-Precision-5550:~/HPI/DAPHNE /daphne-pipelines$ umlaut-cli daphe_pipelines.db

? Please select one or more uuids. (<up>, <down> to move, <space> to select, <a> to toggle, <i> to invert)
@ d335567e-51e0-4365-b205-ce32892ab2el, 2023-05-04 11:42:36.114050, description: Experiments using the example daphne scripts
O194d5662—22ed—46f4—85b1—6(13136483de, 2023-05-04 13:02:35.303436, description: Experiments using the example daphne scripts
O 41a5bc76-5e6d-4f72-ab10-e102d5f2493e, 2023-05-04 13:02:44.839537, description: Experiments using the example daphne scripts
O a62127b9-422c-4bb2-b7a8-e665df508ffa, 2023-05-04 13:11:33.793705, description: Experiments using the example daphne scripts
(O d8534210-2c89-45a2-a415-f86bfccofddd, 2023-05-04 13:11:43.778990, description: Experiments using the example daphne scripts
O feb6b495-53ff-4c78-a7a1-65518fa949ed, 2023-05-04 13:11:53.056162, description: Experiments using the example daphne scripts

(base) ilint@ilint-Precision-5550:~/HPI/DAPHNE/daphne-pipelines$ umlaut-cli daphe_pipelines.db

? Please select one or more uuids.

? Please select measurement types corresponding to uuids. (<up>, <down> to move, <space> to select, <a> to toggle, <i> to invert)
Available types for uuid d335567e-51e0-4365-b205-ce32892ab2el

@®cpu
@ memory
Otime
Figure 7 Interaction with the CLI to generate plots for a single pipeline.
083 Metric: CPU usage iiii55 Metric: Memory usage
108.77 100.909
106.69 100.697
104.62 100.484
€ 10255 100.272
¢ 100.48 100.059
& 98.41 99.847
2 96.34 99.634
© 9427 99.422
92.20 99.209
90.13 98.997

88. 98.784
%?\ 0m 0.00s OhOm 1.51s 0Oh Om 3.01s Oh Om 4.52s 0h Om 6.13s 0h Om 0.00s 0hOm 1.51s 0hOm 3.01s Oh Om 4.51s 0Oh Om 6.12s
Time elapsed since start of pipeline run Seconds elapsed since start of pipeline run

Figure 8 Visualizing CPU and Memory usage for a single pipeline.

2.8.2 Visualizing measurements from multiple pipelines

In UMLAUT we can also visualize the measurements for multiple pipelines in a single plot for
better perfomance analysis and comparison across multiple pipeline runs. To do so, we select
the pipelines of interest from the measurement database. For each pipeline, the same metric
needs to be selected so they can be plotted on the same figure. In Figures 9 and 10, we show
an example of generating the plots for CPU and Power usage for three pipelines through
UMLAUT's CLI.

(base) ilint@ilint-Precision-5550:~/HPI/DAPHNE/daphne-pipelines$ umlaut-cli daphe_pipelines.db

Please select one or more uuids. (<up>, <down> to move, <space> to select, <a> to toggle, <i> to invert)
(d335567e-51e0-4365-b205-ce32892ab2e1, 2023-05-04 11:42:36.114050, description: Experiments using the example daphne scripts
(O 1e4d5062-22ed-46f4-8eb1-6c13136483de, 2023-05-04 13:02:35.303436, description: Experiments using the example daphne scripts
O41a5bc76-5e6d-4f72-ab10-e102d5f2493e, 2023-05-04 13:02:44.839537, description: Experiments using the example daphne scripts
@ a62127b9-422c-4bb2-b7a8-e665df508ffa, 2023-05-04 13:11:33.793705, description: Experiments using the example daphne scripts
@ d8534210-2c89-45a2-a415-f86bfcco9fddd, 2023-05-04 13:11:43.778990, description: Experiments using the example daphne scripts
@ feb6b495-53ff-4c78-a7a1-65518fa949ed, 2023-05-04 13:11:53.056162, description: Experiments using the example daphne scripts

~

(base) ilint@ilint-Precision-5550:~/HPI/DAPHNE/daphne-pipelines$ umlaut-cli daphe_pipelines.db

? Please select one or more uuids.

? Please select measurement types corresponding to uuids. (<up>, <down> to move, <space> to select, <a> to toggle, <i> to invert)
Available types for uuid a62127b9-422c-4bb2-b7a8-e665df508ffa
®cpu
Oenergy
Omemory
@ power
O time
Available types for uuid d8534210-2c89-45a2-a415-f86bfcc9ofddd
®cpu
Qenergy
Omemory
@ power
O time
Available types for uuid feb6b495-53ff-4c78-a7a1-65518fa949ed
®cpu
Oenergy
Omemory
@ power
Otime

Figure 9 Interaction with the CLI to generate plots for multiple metrics and pipelines.

DAPHNE - 957407

10

CPU usage in %

3

111.41
108.19
104.97
101.75
98.53
95.31
92.09
88.87
85.65
82.43
79.21

g

Metric: CPU usage

I il |

|
| | 1\ |

T |
H M‘ilﬂ_m

Om 0.00s Oh Om 1.51s Oh Om 3.11s Oh Om 4.62s 0Oh Om 6.22s
Time elansed since start of pipeline run

36.29
34.94
33.59
32.23
30.88

+ 2952

2 28.17
26.82
25.46
24.11
22.76

21%%

+’¢ DAPHNE

Metric: Power

0h Om 3.00k 0m 4.00s
Time elapsed since start of pipeline run

0m 0.006 Om 1.00s

Figure 10 Visualizing CPU and Power usage for multiple pipelines.

Use Cases

0h Om 6.01s

UMLAUT can benchmark Python pipelines and DAPHNE DSL scripts. In this section, we
present two use cases: (1) benchmarking the Python pipelines for DAPHNE Use Case 1 - Earth
Observation and other open-source data analytics pipelines, and (2) benchmarking DAPHNE
DSL example scripts for GROUP, SELECT, JOIN, and matrix addition workloads. Current
implementations of the Python pipelines were executed on a single node, with UMLAUT
running on the same node. We would consider distributed benchmarking as future work.

3.1 Benchmarking Python Pipelines

In this section, we outline two examples of Python pipelines that were used to develop
UMLAUT. We focused on DAPHNE Use Case pipelines, such as the ones included in Use Case
1 — Earth Observation. We also included open-source analytics pipelines. In this deliverable,
we present an Anomaly Analysis use case published by Backblaze [14]. Including open-source
pipelines is an important part of the development of UMLAUT also according to the DAPHNE
project timeline since the benchmarking toolkit will be available after the project completion.

3.1.1 Earth Observation (DAPHNE UC-1)

The Earth Observation Use Case classifies climate zones based on information collected from
satellite images and other sensor data. The images provide data on the surface structure of
the area as well as other anthropogenic attributes. The image data is collected from the Sen-
tinel-1 and Sentinel-2 corpora. They consist of satellite imagery in various resolutions and
auxiliary datasets [13].

The labeled datasets are available for research and analysis purposes. They can be queried
with different resolutions, and image sizes, resulting in a wide range of datasets that differ in
size and number of samples. Considering the ranging size of the datasets, we can evaluate
the different stages of the pipelines at different scales.

The complete use case workload consists of three pipelines: training, testing, and benchmark-
ing pipeline. The training pipeline consists of three stages: data loading, model compilation,
and model training. It is important to note that the data preparation stage is minimal in this
use case since the provided Sentinel datasets are already curated and labeled. Hence, the
data preparation phase is considered an integral part of both the training and testing stages.

The testing pipeline consists of the same data preparation phase, and an inference phase.
Similarly, to the training pipeline, the data preparation per testing sample is integrated in the
testing phase.

DAPHNE - 957407

11

+’¢ DAPHNE

We used UMLAUT to measure the time, and resource utilization by the training and testing
phases.

) ci;
D Bl iy 4 DA(CKDId/ ANa | D

3.1.2 Backblaze Anomaly An
The Backblaze Anomaly Analy5|s Use Case is based on open-source data published by the
cloud storage company Backblaze. The published data contains information on the
operability of hard drives in their data centers collected over several years. Data on different
hard drive models of different capacities is provided, mainly considering their failure

frequency, and SMART statistics monitoring the health of the drives.

The Backblaze Anomaly Analysis workload consists of three pipelines: data preparation, train
and test pipeline, and benchmarking pipeline. The available datasets for this use are raw
hardware measurements, that need to be prepared before further analysis can be performed.
These measurements represent use cases where raw data is collected and need to be
prepared before any statistical or machine learning analysis can be performed. With this use
case, we perform analysis on four stages of an IDA pipeline: data loading, data preprocessing,
training, and testing stage.

The data loading consists of reading HDF files from HDFS file systems and parsing them to a
tabular format, so feature engineering can be performed. In the next stage, these files are
analyzed, and features are extracted. To prepare the data for the training stage, we apply
data preprocessing techniques, such as missing value imputation, normalization and
categorization, and under/over-sampling to balance the class representation.

The training and testing phases are similarly designed as in the Earth Observation use case,
the main difference being the training algorithm used. Instead of deep neural networks, in
this use case, we use a Random Forest Classifier.

UMLAUT was used to measure the system’s performance on a single node with respect to
time and resource consumption during all stages, as well as to, track and collect metrics
specific to the training process, such as tracking the confusion matrix, collecting the
classifier's hyperparameters.

1

\»g :"w;‘u J]‘\(HXH[H'[\‘\,:

DSL Scripts

For our reference DAPHNE DSL plpellnes we used the implementations of the SQL GROUP,
JOIN, and SELECT operators that are prototyped in the DAPHNE system repository [15]. The
DAPHNE DSL scripts are called from a Python pipeline that executes the DAPHNE binary
through a system call. Such scripts and execution pipelines have been included in various
demonstrations of DAPHNE's system performance shown by other Work Packages and
Consortia Partners [18]. The DSL scripts consist of relational operator implementations, as
well as an efficient matrix addition workload. These workloads cover three stages of an IDA

pipeline: data generation, efficient data processing, and data storage.

The data generation stage invokes DAPHNE’s random data generator that creates matrix-like
data in a designated shape. The matrices are then processed by invoking DAPHNE operators,
such as SELECT, GROUP, JOIN, and a matrix addition in each of the pipelines. The resulting
matrix is then stored locally.

+’¢ DAPHNE

In contrast to the Python pipelines presented in Section 3.1, the DSL scripts are self-
contained, providing all stages of the workload in a single pipeline. In this use case, we use
UMLAUT to measure the end-to-end performance of the DSL scripts. To microbenchmark the
individual stages of the DSL scripts, an adequate interface to UMLAUT's database needs to be
added to the DAPHNE system and further implemented in UMLAUT.

1

4 Extensions of UMLAUT
During the development of the UMLAUT prototype, we have noted a set of improvement
points that can be addressed in the production version of the system. In this section, we

present them as a list of planned extensions for the final version.

One aspect that can benefit UMLAUT to obtain more detailed insights into the performance
of DAPHNE pipelines is the microbenchmarking of DAPHNE DSL scripts. On that level, the
user can benefit from the performance analysis of individual DAPHNE DSL operators and
their impact on the DSL scripts. To achieve this, we plan a collaboration with the Consortia
Partners from Work Packages 4 and 5, to connect DAPHNE's runtime engine together with
the UMLAUT interface.

Additionally, we plan to extend UMLAUT to evaluate the performance of distributed IDA
pipelines. In this scenario, we plan to evaluate a distributed version of the Use Case Pipelines
described in Section 3.1.

5 Conclusion

In this deliverable, we present the initial prototype of the UMLAUT benchmarking toolkit.
Based on the concepts and specification outlined in Deliverable 9.2 [16], we present their
implementation in a working prototype. We present the implementation of different
benchmarking aspects. Also, we describe the implementation of the supervised metrics
available in UMLAUT that measure the system performance of the workloads, and the
implementation of valued metrics that are used to track stage-specific parameters of the
pipeline.

UMLAUT is implemented as a command line interface tool with visualization capabilities. We
present instructions for the system’s installation and integration in working pipelines, as well
as an example of querying the database of the measurements. Finally, we also present two
use cases that were used in the development stage of UMLAUT. We outline the stages, and
individual pipelines of each of the use cases, as well as the aspects that can be evaluated by
UMLAUT. In the next deliverable, we plan to further test and expand the UMLAUT features
into a final prototype that supports end-to-end benchmarking of IDA pipelines in the
DAPHNE system.

[1] UMLAUT Documentation. https://hpides.github.io/End-to-end-ML-System-
Benchmark/index.html, accessed 03.05.2023.

+’¢ DAPHNE

[2] UMLAUT GitHub Repository. https://github.com/hpides/End-to-end-ML-System-
Benchmark, accessed 03.05.2023.

[3] Ihde, Nina, et al. "A Survey of Big Data, High Performance Computing, and Machine
Learning Benchmarks." Technology Conference on Performance Evaluation and
Benchmarking. Springer, Cham, 2021.

[4] Python Standard Library Documentation — time:
https://docs.python.org/3/library/time.html#time.perf counter, accessed 03.05.2023

[5] psutil Documentation: https://psutil.readthedocs.io/en/latest/, accessed 03.05.2023

[6] pyRAPL Documentation: https://pyrapl.readthedocs.io/en/latest/quickstart.html, accessed
03.05.2023

[7] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

[8] Harris, C.R., Millman, KJ., van der Walt, S.J. et al. Array programming with NumPy. Nature
585, 357-362 (2020). DOI: 10.1038/s41586-020-2649-2.

[9] McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the
9th Python in Science Conference (pp. 56-61) (2010). doi:10.25080/Majora-92bf1922-00a.

[10] Bayer, M. (2012). SQLAIchemy. In Brown, A. & Wilson, G. (Eds.), The Architecture of Open
Source Applications Volume II: Structure, Scale, and a Few More Fearless Hacks.

[11] Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
arXiv preprint arXiv:1912.01703.

[12] Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[13] Corpernicus Open Access Hub. https://scihub.copernicus.eu/, accessed 05.05.2023.

[14] Backblaze Hard Drive Data and Stats. https://www.backblaze.com/b2/hard-drive-test-
data.html, accessed 05.05.2023.

[15] DAPHNE System Repository. https://github.com/daphne-eu/daphne, accessed
16.05.2023.

[16] DAPHNE Deliverable 9.2: Initial Benchmark Concept and Definition.
[17] DAPHNE Deliverable 9.1: A survey of Benchmarks from DM, HPC, and ML Systems.

[18] DAPHNE DSL HPC Experiments. https://github.com/daphne-eu/daphne/tree/deploy-
Vega/deploy/experiments-CIDR-2022-Vega-microbenchmarks, accessed 23.05.2023.

