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1 Introduction

Modern data-driven applications in many domains deal with increasingly large and
heterogeneous data collections, as well as a variety of machine learning (ML) models for cost-
effective automation and improved analysis results. Examples include ML-assisted
manufacturing, biomedical engineering [A17], natural sciences, remote sensing, transportation,
health-care, and finance [Z+19], which often include data access via open formats, data pre-
processing and cleaning, ML model training and scoring, HPC libraries and custom codes, but
also ML-assisted simulations [A+19b, P+21], and data analysis of simulation outputs [BDS14].
These complex end-to-end analysis requirements create a trend towards integrated data
analysis (IDA) pipelines that jointly utilize techniques from data management (DM), high-
performance computing (HPC), and ML systems.

Deployment Challenges: Developing and deploying such IDA pipelines is, however, still a
painful process of integrating different systems and related developers, programming
paradigms, resource managers, and data representations. Common tools include local or
distributed analytical database systems [D+16, RM20]; flexible data-parallel computation
frameworks like Spark [Z+12], Flink [C+15], or Dask [R15]; distributed ML systems like
TensorFlow [A+16] or PyTorch [P+19]; domain-specific systems and libraries; and custom
application codes. Integrating DM+ML, HPC+ML, DM+HPC for improving productivity and/or
performance are old problems though. Examples go back to Jim Gray's work on the Sloan
Digital Sky Survey [S+00], decades of data mining and advanced analytics, in-DBMS ML
[KBY17], array databases like SciDB [S+11], and more recently, data management around ML
systems (e.g., TensorFlow TFX [B+17]), and HPC-inspired (e.g., topology-aware) data
management and query processing [BKS20]. However, an open system infrastructure for
seamlessly developing and running IDA pipelines is still missing, and at the same time, new
challenges related to hardware, productivity, and utilization emerge.

HW Challenges: Interestingly, data management, HPC, and ML systems share many
compilation and runtime techniques; and together stress every HW aspect of storage,
computation, and networking. Accordingly, these systems are strongly impacted by HW
challenges such as the end of Dennard scaling and the end of Moore's law, which ultimately
lead to dark silicon (not all parts of a chip can be powered simultaneously) [JP13] and increasing
specialization at device level (CPUs, GPUs, FPGAs, ASICs), storage level (computational
memory/storage, storage hierarchies), and workload level (data types and sparsity). Similar to
— and triggered by — the trend to IDA pipelines, the underlying HW environment of
DM/HPC/ML systems converges as well. This HW specialization in turn leads to increasing
heterogeneity and thus, even larger productivity and utilization challenges for pipelines across
DM, HPC, and ML systems. Although it might appear overly ambitious, we argue that it is time
for building a dedicated system infrastructure — albeit utilizing existing compilation frameworks
and runtime libraries — that can mitigate these challenges jointly.

Contributions: The DAPHNE project sets out to build an open and extensible system
infrastructure for integrated data analysis pipelines. For good integration and extensibility, we
base this infrastructure on MLIR [LA+21] as a multi-level, LLVM-based intermediate
representation backed by multiple organizations and communities. This approach allows a
seamless integration with existing applications and runtime libraries (e.g., BLAS/LAPACK,
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collective operations, task scheduling, DNN operations, compression, /O, and column-vector
primitives), while also enabling extensibility for specialized data types, hardware-specific
compilation chains, and custom scheduling algorithms. In this report, we share the motivation
and design of the overall DAPHNE system, including the following technical contributions:

e IDA Pipelines: We first make a case for IDA pipelines by example of real-world use
cases, and then summarize their main characteristics, challenges, and opportunities by
requirements on related system infrastructure in Section 2.

e System Architecture: Subsequently, we describe the overall MLIR-based architecture,
data representations, and major design decisions in Section 3.

e Vectorized Execution: We further introduce a vectorized (tiled) execution engine for
compiled operator pipelines of frames and matrices; heterogeneous HW devices, and
computational storage in Section 4.

o Extensibility: Moreover, we discuss the design for extensibility in the DAPHNE system
architecture in Section 5.

After that, we explicitly highlight the refinements compared to the initial system architecture
in Section 6. Finally, we conclude this report in Section 7.

2 Requirements Analysis

Integrated data analysis pipelines consist of complex, often multi-phase workflows of ETL
(extraction transformation loading) processes, ML training/scoring, numerical computation or
simulation, and query processing and data analysis. In order to raise awareness of this trend
towards IDA pipelines, we briefly describe a representative real-world use case, and summarize
common characteristics, challenges, and opportunities.

2.1  Example Use Case

We describe a selected example use case from the area of earth observation, but it is
representative for a much broader range of applications. Deliverable D8.1 [D8.1] describes the
DAPHNE use cases — from earth observation, semiconductor manufacturing, material
degradation, and vehicle development — as well as their initial IDA pipelines in more detail.

Earth Observation: Local climate zones (LCZs) classification categorizes patches of satellite
images for modeling climate-relevant surface properties (e.g., surface imperviousness and
structure) [SO12, Z+19b]. This use case leverages the Sentinel-1 synthetic aperture radar data
and Sentinel-2 optical images (obtained by the European Space Agency as part of the
Copernicus initiative), where one year of global data is already in the range of 4 PB. For training
LCZs classifiers, the DLR team materialized and published a labeled dataset, called So2Sat
LCZ42 [Z+19b, Z+20] that consists of 400,673 pairs of Sentinel-1/Sentinel-2 image patches
(32x32) and LCZ labels. The labels were hand-annotated by 15 experts in a month, and verified
by 10 experts casting votes for a subset of the dataset, yielding a high confidence of 85%.
Together, the train, test, and validation data account for ~55.1 GB in HDF5 format. The training
pipeline includes Sentinel-2 pre-processing steps as well as training a ResNet20 [H+16, H+16b]
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classifier. However, the main challenge is applying the scoring pipeline efficiently at peta-byte
scale: reading the data from complex storage hierarchies, applying pre-processing,
quantization into fixed-point representations, forward pass of ResNet20, materialization and
subsequent spatio-temporal data analysis (e.g., for research of global urbanization).

2.2  Challenges and Opportunities

The main characteristic of many IDA pipelines is the composition of complex workflows
including data pre-processing, ML training and scoring (often with multiple models), numerical
computation and simulations, human intervention and large project teams, as well as query
processing of input data and intermediates. The following list identifies key requirements on
related system infrastructure:

e Seamless high-level APIs and DSLs (DM, HPC, ML; operations and primitives for com-
mon computation tasks such as data cleaning, feature transformations, SQL query pro-
cessing, ML algorithms, and model debugging; mini-batch and batch training)

o Extensible infrastructure (data types, kernels, metrics, scheduling; with externalized
multi-level compilation for early adoption by researchers, HW vendors, platform devel-
opers, and performance engineers)

e Interoperability between frame and matrix operations (seamless data conversion,
shared data structures and operations, common zero-copy slicing and data access)

e Integration with resource management, programming models, and specialized li-
braries (seamless integration of existing DM, HPC, ML libraries for reuse and interop-
erability; integration with resource management for improved resource sharing; timely
adoption of, and integration with, new deployment models and infrastructure)

e Local and Distributed Data Representations (local, distributed, and out-of-core da-
tasets; with dense, sparse, and irregularly ragged or nested data formats; and hetero-
geneous, multi-modal input formats)

e Heterogeneous Hardware (awareness and utilization of storage hierarchies, compu-
tational storage with sync and async I/O, and heterogeneous accelerators with a spec-
trum of interfaces from high-level kernel abstractions to increasing specialization)

¢ Fine-grained operator fusion and parallelism (operator fusion and code generation
for workload characteristics and heterogeneous HW, with data and plan partitioning
across devices and nodes for full utilization of available hardware resources)

With system infrastructure addressing these requirements, hew opportunities arise. Examples
include tightly integrated ML-assisted simulations; materialization decisions for late data
augmentation during ML training, and query processing of simulation outputs; as well as
improved scheduling and resource utilization in shared cluster environments.

3 DAPHNE Architecture

DAPHNE is an open and extensible system infrastructure for developing and executing
integrated data analysis pipelines [D+22]. In this section, we share the design of the overall
system architecture and its key components. DAPHNE is both, a stand-alone executable as well
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as a shared library, which can be integrated into other programs (e.g., for efficient data
transfer). Since March 2022 DAPHNE is available as open-source software under Apache 2.0
license on GitHub (https://github.com/daphne-eu/daphne), where is it continuously extended.

3.1  Architecture Overview

The DAPHNE system architecture is shown in Figure 1. DAPHNE is built from scratch in C++
(for seamless integration with HW specialization), but utilizes MLIR [LA+21] as a multi-level,
LLVM-based intermediate representation (IR) as well as existing runtime libraries such as BLAS,
LAPACK, and DNN kernels as well as collective operations. These libraries are augmented with
more specialized, custom kernel implementations. Users specify their IDA pipelines in the
DaphneDSL (a language similar to Julia, PyTorch, or R) or DaphnelLib (a high-level Python API
with lazy evaluation that internally compiles DaphneDSL scripts as well). These scripts are then
compiled - via a multi-level compilation chain — into executable runtime plans, which can be
executed in a local or various distributed environments. Furthermore, the system is equipped
with a suite of tools, e.g., for getting insights into the compiler and runtime.

DaphneLib (APT)
] ] Extensible
DaphneDSL (Domain-specific Language) Infrastructure
DaphnelR (MLIR Dialect
S MLR phuelR ( ) _
o Multi-level
Optimization Passes C lation/
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Figure 1: DAPHNE System Infrastructure.

User Frontend: The main entry point to the system is DaphneDSL, a domain-specific language
inspired by ML systems as well as languages and libraries for numerical computation like Julia
[BK+12], Python NumPy [HM+20], R [MH+12], and SystemDS DML [BA+20]. DaphneDSL is
based on three design principles:

e Frame and matrix operations: DaphneDSL offers hundreds of operations from
relational algebra and linear algebra as well as various aggregation and statistical
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functions. These high-level operations retain the semantics for optimizations in the
compiler and simplify parallelization and lowering to kernels for emerging HW.

e Data independence: Users only work with abstract frame, matrix, and scalar data types
instead of specifying data representations like dense, sparse, and compressed; or data
locations like local CPU, local GPU, or distributed. The compiler and runtime optimize
the IDA pipeline for the given data and deployment characteristics. Combining these
data types with value types such as SI8, SI32, SI64, UI8, UI32, Ul64, FP32, FP64 (i.e.,
various integer and floating-point types) as well as strings, provides a simple, powerful
and extensible type system.

e Extensibility: Given the expectation of increasing specialization across the software
and hardware stack, DAPHNE's design and language abstractions aim for good
extensibility to allow researchers to quickly experiment with new prototypes and
extensions of system infrastructure for new environments. More details on extensibility
at APl and DSL as well as compiler and runtime level are described in Section 5.

DaphneDSL further supports conditional control flow in the form of branching and loops with
arbitrary nesting levels, typed and untyped functions, as well as additional second-order
language abstractions (e.g., for SQL processing, parameter servers and mini-batch training, and
user-defined functions with different data bindings). To facilitate user productivity, DaphneDSL
offers a rich hierarchy of DSL-based primitives, e.g., for data cleaning, feature transformation,
ML algorithms, model debugging, and (mini-)batch training, which can be imported into a user
script. For a seamless integration into typical workflows and environments of data scientists,
ML and data researchers, as well as experts of specific application domains, DAPHNE offers
Daphnelib as a Python API. Python is currently undoubtedly the primary entry point to ML and
other data systems. DaphnelLib allows calling basic (i.e., primitive operations from linear and
relational algebra, such as transposition and selection) and higher-level (i.e., DSL-based
functions for typical ML and other algorithms, such as components(), and second-order
functions, such as map()) DaphneDSL built-in functions on DAPHNE matrices or frames. These
inputs can be created from pandas data-frames or NumPy arrays, whereby we strive for highly
efficient data transfer via shared memory or inter-process communication. Similar to PySpark
[ZC+12] and Dask [R15], DaphneDSL uses lazy evaluation, i.e., operations merely build up an
internal DAG representation of the data flow, while evaluation is triggered explicitly. On
evaluation, a DaphneDSL script is assembled and executed, thereby reusing the entire DAPHNE
compilation chain with all related optimization passes. More details on DAPHNE's user frontend
can be found in deliverable D3.1 [D3.1].

Compilation Chain: DaphneDSL scripts are converted by an ANTLR parser into MLIR,
specifically, DaphnelR as an MLIR dialect. MLIR [LA+21] is a customizable compiler
infrastructure for reuse and low-cost domain-specific compilers. DaphnelR defines matrix and
frame data types, logical and physical frame and matrix operations, and various traits (e.g., for
schema, type, and shape inference). Conditional control flow is supported by integrating with
the existing MLIR dialect SCF (structured control flow). After parsing, we apply various MLIR
compiler passes. These passes continuously lower the IR from high-level, abstract operations
and data types over multiple levels of operator specialization (e.g., local/distributed operations,
device placement on CPUs/GPUs/FPGAs, choice of physical kernels for specific environments
and devices), as well as data specialization (e.g., DenseMatrix/CSRMatrix representations) down
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to MLIR's LLVM dialect, which can directly be just-in-time compiled and executed. In contrast
to other MLIR dialects, we lower frame and matrix operations to C++ kernels and only use
LLVM for control flow and scalar operations. At the same time, this design still allows the
implementation of selected kernels in LLVM, or other MLIR dialects, if beneficial. Additionally,
there are optimization passes rewriting the IR to improve the program’s behavior in terms of
runtime, memory consumption, and others. In particular, we apply MLIR programming
language rewrites (e.g., common subexpression elimination, constant propagation, constant
folding, branch removal, code motion/loop hoisting, function inlining/unrolling), type and
property inference (e.g., data and value types, shape/dimensions, schema, sparsity/cardinality,
symmetry), inter-procedural analysis (analysis of function call graphs, propagation of types,
dimensions, properties), algebraic simplification rewrites from linear and relational algebra,
operator ordering (e.g., join ordering/enumeration, matrix multiplication chain optimization,
sum-product optimizations, data-flow-graph linearization), the generation of fused operator
pipelines, and memory management (update-in-place, reuse of allocations, garbage
collection). Passes for optimization and lowering can be interleaved and repeatedly executed.
The joint system infrastructure also enables cardinality [BH+07, MNS09] and sparsity [SB+19]
estimation in a holistic manner. More information on the initial compiler design can be found
in deliverable D3.1 [D3.1], and it will be extended in deliverable D3.4 by M36.

Runtime: At runtime, the kernels are executed sequentially and produce materialized
intermediates in memory with copy-on-write semantics and operator-level synchronization
barriers. Besides this basic execution model, DAPHNE will adopt hierarchical scheduling
mechanisms for ML pipelines; task-parallel loops and operations; data-parallelism across
nodes, devices, NUMA nodes, and cores; as well as vector-instruction-parallelism. Our
vectorized execution engine — as described in Section 4 - further provides means of operator
fusion, and a seamless integration of heterogeneous computing devices, computational
storage, and distributed operations.

Distribution Local / Distributed || Federated/ || Parameter || Custom || Ring/Tree
Strategies Embedded | | Collections Scattered Servers Libs Reduce

2‘:;:":::::" DAPHNE Embedded (e.g., Ray?/
P & Standalone DBMS, Workflows) Dask?
Frameworks
Resource Dedicated Resource Negotiators HPC Batch Schedulers
Management Cluster (e.g., YARN, Mesos, Kubernetes) (e.g., SLURM)

Figure 2: Deployment Environments and Integration.

Deployment Environments: As already alluded to in the overall system architecture (see
Figure 1), we aim to enable the deployment of the DAPHNE system in a variety of environments
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in terms of hardware resources, cluster resource managers, and distributed computing
frameworks. Figure 2 gives an overview of selected relevant dimensions. First, hardware
resources might be dedicated on-premise or cloud resources, where the latter include
Infrastructure as a Service (e.g., compute instances, object storage), Platform as a Service (e.g.,
provisioned Spark clusters), and Function as a Service (e.g., elastic, state-less task execution).
Second, relevant resource management strategies include statically provisioned clusters,
resource managers like YARN [V+13, C+19], Mesos [H+11], and Kubernetes [B+16], as well as
HPC schedulers like SLURM [Li12]. Similar to the integration with different resource managers,
we also aim to support different storage abstractions such as local file systems and raw devices;
distributed file systems like HDFS, Lustre (as used by DLR), and CephFS (as used by UM); as well
as object storage such as S3 and OpenStack Swift. Third, besides DAPHNE's standalone
distributed runtime, we foresee integrations of DAPHNE components in distributed computing
frameworks like Spark [Z+12], Ray [M+18], and Dask [R15], as well as database management
systems and workflow orchestration systems like AirFlow. There are use cases for running
DAPHNE embedded in UDFs of such frameworks, but also to use these frameworks for
distributed operations in DAPHNE. From an architecture perspective, we will devise appropriate
abstractions in terms of extension hooks to enable extensibility at these different levels as well
as to separate concerns of other DAPHNE components. Example abstractions are so-called
distribution primitives for managing distributed collections of tiles and federated data objects
(see data representations in Section 3.2), parameter servers for mini-batch training, and
reusable primitives for broadcasting, prefetching, and various aggregations. So far, our
implementation efforts centered around the DAPHNE standalone distributed runtime,
dedicated on-premise and HPC clusters and resource managers, as well as key distribution
primitives based on gRPC as a communication library. However, we are already actively
exploring the integration of MPI and NCCL collective operations (e.g., reduce-all) as well.

Tooling: While the components for the specification, optimization, and execution of IDA
pipelines are the core of the DAPHNE architecture, there is also a need for tooling around this
core. In the following, we describe two important tools for explanations and profiling.

e Plan Explanations: As a means to understand the complex decisions made by the
compiler in its various passes, DAPHNE ships with tools for investigating the IR at any
level. Similar to the well-known EXPLAIN statement from SQL, this tool can be used to
understand compiler decisions and estimated properties such as data characteristics
and costs. For instance, a user can invoke daphne with the - -explain flag, which takes
the names of one or multiple compiler passes as a parameter. Upon that, the system
prints the IR after the application of each specified pass. By default, the IR is displayed
in MLIR's standard IR notation, examples of which can be found in deliverable D3.1
[D3.1]. This notation reveals which operations are performed on which data in which
order, as well as the data and value types of inputs and outputs, where already known.
Additional information is attached to operations as MLIR attributes (e.g., estimated
cost) and to input/output types as properties (e.g., shape and sparsity). An early version
of this plan explanation tool has been shown in deliverable D3.2 [D3.2] on the compiler
prototype. This tool will be valuable for both the development of the compiler as well
as the deployment and configuration of IDA pipelines by users. In the future, we aim to
extend the tool by means of workload summarization and visualization.
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e Monitoring/Profiling: This suite of tools provides insights into the execution behavior
of the system at runtime. As a consequence of the hierarchical nature of DAPHNE,
approaches for monitoring can be applied at various levels. For instance, tailored scripts
applying external and widely used tools like perf to DAPHNE can be used to get access
to hardware performance counters and to find out where time is spent. Furthermore,
tools like Intel VTune can be used to instrument the DAPHNE source code, but target
only Intel hardware. A deeper and more pointed integration can be achieved by using
frameworks like PAPI, likwid, or OpenHPC directly. In addition to tool-based and library-
based profiling, time measurements will be done natively in the DAPHNE prototype.
While each of the former fits the local execution of DAPHNE, dedicated tools can be
applied for the distributed and multi-device settings. For instance, gRPC comes with
profiling support (e.g., Google cloud profile) and MODA can be used for profiling MPI.
GPU vendors like NVIDIA also offer HW-specific tools, such as the Nsight tool suite and
the DCGM monitoring tool. We see two major uses for monitoring/profiling: (1) it
enables developers or administrators to identify performance bottlenecks, and (2) it can
be used by the system itself to adapt its behavior, e.g., in terms of advanced, utilization-
aware scheduling algorithms. To this end, DAPHNE will provide summary statistics of
executed kernels and functions (frequency and total runtime) as well as compiler- and
runtime-specific metrics.

3.2 Data Representation

DAPHNE's basic data types are frames, matrices, and scalars, where a frame is a bag (unordered
multiset) of tuples with a schema, and a matrix is a two-dimensional array. Each matrix, scalar
or frame-column has a value type (e.g., FP32, BF16, UI8, STR). At a later point in time, we may
add tensors as multi-dimensional arrays of homogeneous value type. At DSL level, users deal
with these abstract data types, and the compiler systematically lowers operations to kernels
that produce local or distributed physical data structures.

Local Data Structures: DAPHNE's core data structures are dense or sparse matrix formats.
Both use row-major representations: a dense linearized one-dimensional array, and a
compressed sparse row (CSR) [S94] format of row offsets, column-index, and value arrays.
While matrices are homogeneous arrays of a particular value type, frames have a schema and
thus, require the handling of multiple value types. Given common analytic workload
characteristics, our frames rely on a column-oriented storage implemented via a dense matrix
per column or column group. This composition allows the reuse of matrix operations as frame
operations. Finally, for zero-copy indexing (e.g., slicing or vectorized execution), each matrix
can specify a view window on top of a potentially larger array.
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Figure 3: Examples of Distributed Data Structures.

Distributed Data Structures: The distributed matrix and frame representations are then
composed from the local data structures. We support the following two abstractions that give
a great balance of flexibility and control:

o Distributed Collections of Tiles: A matrix is divided into fixed-size blocks and stored
as a collection of block-indexes and blocks [KBY17]. By default, such a bag is unordered
but can be partitioned (hash, range) or sorted. Figure 3.a shows an example 4500-x-
3000 matrix, organized as a collection of squared 1K-x-1K blocks and hash-partitioned
into three partitions, which can then be stored and processed in a distributed manner.

e Federated Matrices/Frames: A federated matrix is a virtual matrix whose individual
parts (identified by index ranges, and address information for accessing remote data)
are stored as local or distributed data at a federated site [B+21] or device. Figure 3.b
shows again an example 4500-x-3000 matrix that is federated across host and device
memory, where the federated metadata comprises index ranges and pointers.

Both of these abstractions are amenable to data-parallel computation, but they have different
tradeoffs regarding distribution, load balancing, sparsity, and direct access.

Metadata and Placement: Both local and distributed data structures also store
metainformation, including the shape, sparsity, symmetry, sort order, and data placement.
Some of these might already be known at compile-time due to inference passes. However,
especially in presence of data-dependent operations and conditional control flow, this
information might only become available at runtime. Thus, storing the metadata in runtime
data structures provides a maximum degree of flexibility. Metainformation can be exploited by
kernels, e.g., to choose a more efficient algorithm for sorted data. The data placement is a
particularly important property for both the local and distributed runtime. In hybrid runtime
plans that utilize distributed workers and/or heterogeneous hardware within a single worker, a
data object might be partitioned or replicated across cluster nodes and/or devices. Specifically,
matrices and frames reference the host data (which can be a nullptr) and/or data on
distributed workers, HW accelerators, and computational storage devices. The nature of such
a reference depends on the respective backend, and could be comprised of, e.g., an IP address,
port, and node-local key for some distributed backend, or a CUDA device identifier and a
device-internal pointer for hardware accelerators integrated via CUDA. Furthermore, for
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federated data representations, the metadata at the coordinator also includes the detailed
information about data partitions (row/column ranges) and data location per partition.

3.3 Local and Distributed Runtime

Kernels: The compiler generates an execution plan with calls to C++ host kernels for local,
distributed, or accelerator operations. Our kernels make heavy use of C++ metaprogramming
for both value types and combinations of dense and sparse inputs. This approach allows us to
automatically generate template instantiations for the operations that require specialization.
By default, this is done while building the DAPHNE system. More precisely, the type
combinations to pre-compile per kernel are given by a configuration file. Since pre-compiling
all possible combinations of input and output data and value types for each kernel would result
in an unacceptable build time and binary footprint, we apply a number of mitigation strategies.
Most importantly, we pre-compile only selected, frequently used kernels. Initially, we will focus,
e.g., on kernels with homogeneous input data and value types and dedicate more
combinations, e.g., of dense and sparse inputs and outputs, to more costly operations like
matrix multiplication. The set of pre-compiled kernels will evolve over time as we gain insights
into the kernel usage in the DaphneDSL/DaphnelLib implementation of the use case IDA
pipelines from WP8. The compiler restricts itself to using these pre-compiled kernels and injects
casts to adapt the input and output types accordingly. Some of these casts, e.g., casting an
FP32 frame-column to an FP32 matrix) are no-ops. Furthermore, we plan to investigate the
compilation of the necessary kernel specializations on-the-fly during the compilation of a
DaphneDSL script. This could be done either by means of a C++ compiler generating a
complementary shared library of additional kernels from the C++ sources, or by means of
generating the kernel code in low-level MLIR operations, akin to other systems building on
MLIR, whereby both have their individual advantages and disadvantages.

Context Objects: Access to distributed runtimes and HW accelerators is encapsulated in a
context object that is passed to individual kernels. The initializers of specific contexts are local
kernels themselves that add state to the global context. This approach simplifies the integration
of new accelerators via shared libraries of kernels and optimization passes. Besides that, context
objects are also used to pass the user configuration to kernels. Finally, the context also provides
information on the current level within a nested structure of (parfor) loops, including
information on the kind and degree of parallelism available in that context.

Distributed Runtime: We aim for an integration with different distributed programming
models and resource managers (see Section 3.1). As a first step, we are building the DAPHNE
standalone distributed runtime with dedicated worker processes, simple communication, and
a basic integration with SLURM as a common HPC resource manager. For the communication
part, we focus on two distributed backends. On the one hand, we already have a running RPC-
based prototype, which utilizes gRPC send and receive primitives for individual data transfers
between coordinator and worker nodes. On the other hand, we are currently developing an
MPI-based prototype, which utilizes OpenMPI collective operations, such as broadcast, scatter,
and all-reduce. Subsequently, we will focus on improving performance by devising advanced
MPI distribution primitives. Both backends have integration points in the compiler and runtime
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as well as the vectorized execution engine. Most importantly, the operator fusion performed
by the compiler determines the code to be executed by each node. This code is sent to the
workers in the form of an MLIR snippet, which can be compiled in an architecture-aware
manner at the individual workers. The distribution of the data and spawning of distributed jobs
is done at the beginning of a fused pipeline. While DAPHNE will support multiple distributed
communication frameworks (e.g., RPC and MPI), only one of them can be used per invocation
of the DAPHNE system. In the future, we aim to further integrate with external distributed
backends (e.g., Spark and Dask), device-specific collective operations (e.g.,, NVIDIA NCCL), and
embedded deployments in different HPC, cloud, and database environments. Accordingly, we
keep the initial design generic enough to allow such extensions.

Memory Management and Garbage Collection: DAPHNE automatically manages the
memory required for the data objects in a DaphneDSL script. The system ensures that there
are no memory leaks or double frees. Moreover, we aim at reusing allocated buffers and
existing data as much as possible to avoid unnecessary allocation and copying. For instance,
when creating a view into a segment of a larger matrix using right indexing in DaphneDSL,
both the view and the original matrix share the same underlying data with copy-on-write
semantics. Moreover, the same data object could be referenced by different variables in a
DaphneDSL script, potentially even depending on conditions evaluated at runtime. Thus, the
system manages memory at two levels: At the level of (shallow) data objects like Frame or
DenseMatrix, reference counters are employed to track active uses. The compiler inserts
operations to increase and decrease the counters on certain SSA (static single assignment)
values, while the runtime takes care of freeing a data object once its counter becomes zero.
However, the object’'s underlying data might still be shared with other objects. Thus, the
runtime also employs reference counting at the level of individual (large) data buffers. Sharing
a data buffer between two data objects increases the reference counter of a buffer, while the
destruction of an object decreases the counter of the underlying data buffers. A data buffer is
released once its counter becomes zero, but instead of giving it back to the operating system
immediately, we could still keep it in a buffer pool to serve upcoming memory requests. We
expect this optimization to be especially useful in the context of the vectorized execution
engine, elementwise (and other shape-preserving) operations, and iterative algorithms with
constant size of intermediates.

3.4  Accelerators and Storage

In this section, we summarize how hardware accelerators and storage are integrated into the
overall system. More detailed designs of managed storage tiers, and near-data processing, as
well as the integration and full utilization of HW accelerators can be found in the dedicated
deliverables D6.1 [D6.1] and D7.1 [D7.1].

Data Transfer: Most HW accelerators like GPUs, FPGAs, and near-SSD compute devices have
a cache hierarchy and high-bandwidth memory. As discussed in Section 3.2, each DAPHNE
frame and matrix has associated metadata including information on the placement of ranges
of rows and/or columns on accelerator devices. This allows us to keep track of how a data
object is partitioned or replicated over host memory and the memories of multiple devices in
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hybrid runtime plans that utilize heterogeneous hardware. For example, a compiled GPU
operation is called through its host kernel, which first invokes primitives to make the inputs
available in GPU memory. If the data is already on the GPU, there is no additional transfer, and
otherwise the primitive utilizes implicit (stream and discard) or explicit (copy and retain) means
of data transfer. Additionally, we allow the compiler to inject prefetch and broadcast
directives to overlay anticipated transfers with other operations. These distribution primitives
nicely generalize to HW accelerators, the distributed runtime, and computational storage
[BD21, LB21]. For example, for the DLR inference workload from Section 2.1, we might
broadcast the quantization boundaries (and/or parts of the trained model) to the near-SSD
CPU or FPGA, stream FP32 data from the SSD's flash chips, quantize the data in batches to
UINTS, and thus, reduce the PCle data transfer by 4x.

Device Kernels: We decided to implement device kernels in C/C++ (as opposed to lowering
them to low-level MLIR/LLVM operations), in order to retain full control and because latest
generation HW accelerators can usually be programmed that way, while we would have to wait
for the respective MLIR/LLVM extensions for the lowering approach. One challenge connected
to the implementation of device kernels is supporting a wide range of devices without having
to reimplement kernels for every single device. Thus, we mainly focus on generic kernel
implementations by adopting one of the following two approaches: First, general-purpose
programming frameworks (e.g., OpenMP [DM98], OpenCL [M+11], CUDA [SK10], SYCL [RL16],
and oneAPI [R+21]) are widely applicable since they are not specialized for a single domain or
class of applications. However, they fail to capture the domain-specific, high-level semantics of
HW accelerators by operating on a comparably low level of abstraction, e.g., reasoning about
individual loops. Second, domain-specific programming frameworks (e.g., TVL [U+20], Weld
[P+18], Voodoo [P+16], and Sierra [Le+14]) can be used to overcome these limitations, since
they provide programming language abstractions for operations specific to a single domain.
Furthermore, they can be mapped to the available hardware and the desired performance
independently of the actual source code. To sum up, we will focus on using CUDA [SK10] for
NVIDIA GPUs, oneAPI [R+21] and T2S [S+19] for FPGAs, as well as plain C++ kernels (with auto-
vectorization) and TVL [U+20] for SIMD extensions on CPUs. Nevertheless, the DAPHNE system
architecture is general enough to embrace other programming frameworks for hardware
accelerators. Supporting all these approaches in one system also enables us to compare them
with each other in terms of development time and kernel performance.

4  Vectorized Execution Engine

Basic runtime plans of kernels with materialized intermediates offer good performance and
simplify debugging. Although this model is commonly used in most ML systems and many
column stores, it suffers from several limitations. Materializing intermediates has large
temporary memory and memory-bandwidth requirements, multi-threaded kernels create too
fine-grained synchronization barriers per operator, and device placement of operators is too
coarse-grained. In order to address these limitations, we introduce a vectorized execution
engine for compiled operator pipelines of frames and matrices, which allows fine-grained
operator fusion and parallelism across HW devices. This vectorized execution engine is also the



+"« DAPHNE

central means for parallelism in both the local (e.g., multi-threading and multi-device) and
distributed (e.g., multiple worker nodes) runtime.
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Figure 4: Vectorized Execution of Compiled Operator Pipelines
(with multi-device data and task placement).

Vectorized Task Execution: Figure 4 shows the basic integration of vectorized operator
pipelines into execution plans. Similar to LLVM loops, such a vectorized pipeline has multiple
inputs, multiple outputs, and an IR body. Additionally, we specify split (e.g., row slicing) and
combine (e.g., row-bind concatenation or aggregate) functions. In this example, we perform
matrix standardization ((X-colMeans(X))/colSds(X)), append a column of ones for
intercept computation, and compute X'™X and X'y as part of a close-form linear regression
algorithm. The input matrix X is federated across CPU, GPU, and FPGA memory, and vectorized
execution creates tasks for aligned row partitions (similar to morsels [L+14]) and appends them
to one or multiple (device-specific) task queues.

Vectorized Task: A task comprises its input data, an operator pipeline (graph) with a specific
input data binding (scalar, row, or tile), outputs, and a combiner. The inputs and outputs can
be zero-copy views (index ranges) or specific buffers, where the task size refers to the length
of the range (e.g., number of rows). If the task size is greater than the data binding, the pipeline
is invoked sequentially for each data item in the task.

Worker threads then read from the queue, execute the tasks, and combine the results (with
worker-local aggregation if needed). Any HW accelerator worker is implemented as a CPU
thread that launches the actual accelerator kernels. In the future, we will also explore the
concept of standing accelerator kernels that consume tasks directly.

Fused Operator Pipelines: By controlling the task size, we can ensure bounded memory
requirements and fit intermediates into the device caches. That way, the entire operator
pipeline behaves like a dedicated, hand-crafted kernel. A task is the unit of scheduling with
potential worker contention on shared task queues and outputs, and random access to the
start of the task data. The more tasks (or the smaller the task size), the higher the overhead but
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the better for load balancing. Separating task size from data binding provides additional
flexibility. For example, the pipeline in Figure 4 can be invoked at row granularity (for which we
could specialize the matrix multiplications dsyrk and dgemv to an outer product dger and
daxpy), minimizing the size of intermediates. However, with sufficiently many features (e.g.,
>1000) every row's outer product and accumulation would flush the last-level cache. Instead,
a tiling with multiple rows allows more efficient, cache-conscious operations.

Multi-device Scheduling: As shown in Figure 4, the vectorized execution allows a seamless
integration of HW accelerators and scheduling. For CPU kernels, we leverage single-operator
pipelines as the default multi-threading, which applies to many element-wise and aggregation
operations. In this framework, we are further exploring different task partitioning and
scheduling strategies, single and multiple task queues (e.g., device-specific with task stealing),
and data-locality-aware scheduling, and runtime adaptation. Finally, vectorized execution also
nicely integrates with computational storage where operator pipelines can be executed, for
instance, on near-SSD CPUs or FPGAs; and the task queues can also connect asynchronous 1/0
and subsequent computation pipelines.

Code Generation: Vectorized execution also simplifies code generation. Instead of
interpreting vector kernels sequentially, we can compile device-specific kernels for different
workers, but reuse the split and combine infrastructure. Code generation allows fine-grained
specialization, sparsity exploitation, and exploitation of reconfigurable devices like FPGAs. For
CPU pipelines, we use MLIR which leverages LLVM for scalar data bindings, and vectorized
kernels or libraries like BLAS and TVL [U+20] for matrices and frames; for hardware accelerators,
we use the hand-crafted device kernels described in Section 3.4. Similarly, but largely
unexplored, for computational storage, we aim to compile eBPF byte-code programs [LB21].

5  Extensibility

The overall design principle of an open and extensible system architecture is of utmost
importance to enable low effort exploratory experimentation and custom extensions for new
data types, operations, and hardware. We aim to support extensibility in terms of
configurations of internal behavior, but also in terms of extensions for custom operations (at
script level and kernels), custom data formats (e.g., vendor-specific binary formats), new data
types (e.g., compressed types), and various extensions of the compiler and runtime system
(e.g., additional IR dialects, new optimization passes, custom kernels and data types, and
scheduling algorithms).

On the one hand, each aspect of the system architecture can be extended directly in the
DAPHNE source code. On the other hand, we anticipate that certain aspects (e.g., device kernels
and physical data types) will be extended especially often, since they are at the heart of
specialization. Therefore, we try to make their extensibility as simple as possible. In particular,
we will allow users to implement their extensions outside the DAPHNE code base, register them
with the system at runtime, and employ them manually at script level or automatically by the
compiler, where possible.
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Finding a good balance between the expressiveness and increase in code complexity as well
as a possible negative impact on performance implied by any abstractions required for
extensibility, are challenges we will have to face. Nevertheless, we expect these to be
outweighed by the advantages of enabling more use cases and improving performance by
means of tailored algorithms or data representations.

5.1 APl and DSL Extensibility

Extension Catalog: The central component for extensibility is an extension catalog that will
allow the registration of dedicated artifacts (such as kernels or data types) in the form of shared
libraries. For kernels, the extension catalog stores information like the DaphnelR operation it
represents (if applicable), the name of the kernel function to call from a compiled IDA pipeline,
the input/output data/value type combinations it supports (e.g., dense/sparse), interesting data
properties it targets (e.g., sorted, symmetric), and optionally cost models for use by the
compiler (e.g., runtime, memory consumption). For physical data types, the extension catalog
records the logical data type they represent (frame/matrix), their integration into the vectorized
engine (e.g., preferred slicing axis), potential constraints for their usage (e.g., requiring a
symmetric matrix), and optionally cost models for use by the compiler (e.g., physical size).
Based on this metadata, these extensions are represented in DaphnelR and thus included in
various optimization passes such as shape inference, operator selection, and physical
representation selection. The concrete use of extensions can be further influenced both at
script level (mostly by users or during experimentation) or via configuration files that influence
the entire deployment and thus, potentially many users.

Extensibility at Script Level: DaphneDSL offers dedicated built-in functions for data
representations, data placement, and operator placement. For instance, after registering a new
compressed matrix representation ComprMatrixXYZ, a user could enforce this format to be
used by invoking Y = as.ComprMatrixXYZ(X). Here, we reuse DaphneDSL’s cast syntax to
express the representation. Furthermore, a user could ensure that Y is placed on a specific
device by Y = device(X, “/GPU:0”). Finally, the placement of operations (such as a matrix
multiply @) on devices can be dictated by X = Y @_gpu Z. Besides that, users can also specify
concrete last-level kernels to use, e.g., s = 8§my_sum_fpga_int16(X). All these script-level
decisions loose data independence but are user choices and will be treated as constraints. The
optimizing compiler then handles remaining operations around these fixed operators, and
helps lowering everything to execution plans as needed (multi-level specification).

5.2 Compiler and Runtime Extensibility

DaphnelR: A developer-centric direction for extensibility is the extension of our DaphnelR
dialect. Common use cases are adding new operations of an existing category (e.g., a new
unary elementwise operation), adding a new category of operations (e.g., a specific quaternary
operator), and adding new traits (e.g., as help for new optimization passes). Additionally,
developers may add existing or new MLIR dialects and integrate them with the rest of the
system by changing DAPHNE internally. That way, we will be able to benefit from the rich
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ecosystem of dialects provided by the community. While some of these extensions can reuse
most of the existing runtime operations, other require additional runtime kernels.

Compilation Chain: MLIR’s approach of applying a sequence of optimization passes is already
very modular and can reuse existing LLVM and MLIR passes. Adding new optimization passes
or recomposing existing optimization passes into custom compilation chains is a natural
direction for compiler extensibility. For example, having registered a new data type or kernel,
an additional optimization pass may apply and choose these data types or kernels a given IR
program under certain conditions.

Sideways Entry in Multi-Level Compilation: Normally, the invocation of daphne (by a user
or through the Python API) takes a DaphneDSL script and then compiles and executes this
script. In order to allow for debugging and understanding, the plan explanation tools described
in Section 3.1 allow to print the DaphnelR at different states of compilation. We will extend
daphne to accept valid DaphnelR instead of DaphneDSL as program specification. This
flexibility allows researchers to obtain the generated execution plan, modify the plan slightly
(e.g., to force certain sequences of local or distributed operations), and execute this plan
through daphne, which performs the remaining lowering and runs the final executable plan.
This route allows much more fine-grained modifications than the means for extensibility at
script level described above, but should only be used if cases where the latter to not suffice.

Custom Kernels and Data Types: Users can implement new kernels for existing DaphnelR
operations (e.g., to target a new hardware accelerator) by following a clearly defined C interface
which is directly derived from the definition of the DaphnelR operation. Within such a kernel
function, users have a high degree of freedom regarding implementation details, and only need
to follow simple rules such as respecting the system’s memory management. Likewise, new
data types can be created by subclassing DAPHNE's existing frame and matrix types. Such new
data types could immediately be used by existing kernels tailored for the super-classes, which
are based on a generic get/set interface for individual elements. Alternatively, users may add
custom kernels to process their new data type more efficiently. In general, we try to give users
as much flexibility as possible, while providing useful library-style tools to simplify common
performance engineering cases (e.g., lookup tables for converted values).

Advanced Scheduling Techniques: DAPHNE will also offer extension hooks for custom
scheduling algorithms. Applying these in the local or distributed runtime will be possible by
means of configuration at DSL level or via global configuration files.

6  Refinements to the Initial System Architecture

In Sections 3-5, we have focused on describing the refined system architecture as a whole. In
this section, we explicitly highlight the development since the initial system architecture, which
was presented in deliverable D2.1 [D2.1]. The initial system architecture already provided an
overview of the architecture and described the most important components, including the
MLIR-based compiler, local and distributed runtime, local and distributed data structures,
selected aspects of HW accelerator and storage integration, as well as the vectorized execution
engine and its relation to multi-device scheduling and code generation. During the
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implementation of the DAPHNE prototype and the more detailed design of individual
components of the architecture as presented in deliverables D3.1 [D3.1], D4.1 [D4.1], D5.1
[D5.1], and D7.1 [D7.1], the design decisions of the initial system architecture have turned out
to work very well. Thus, we largely retain the initial system architecture, but refine and update
it a several points. In the following, we describe the most important refinements we applied,
and motivate them with lessons learned during our work with the initial system architecture.

More comprehensive overview of the system architecture. The architecture overview in
Section 3.1 now captures the entire stack from the user frontend (which is mainly a summary
of parts of deliverable D3.1 [D3.1]), over the compiler and runtime, to the deployment
environment. For the first time, we also comment on tooling around this core of the system.
The two examples we included are directly derived from early lessons learned while dealing
with the architecture and prototype. Plan explanations are important while debugging and for
sideways entry into the compilation chain, while monitoring and profiling are a requirement
for more advanced adaptive scheduling techniques as well as for conducting micro
benchmarks.

Vectorized engine as the central means for parallelism. Initially, we intended to use the
vectorized engine only for the local runtime (multi-thread and multi-device). However, during
the design and implementation of the distributed runtime, we realized that it can be seamlessly
integrated into the framework of the vectorized engine: fused pipelines define the tasks for
distributed workers and distribution primitives like broadcast, scatter, and all-reduce have
conceptual counterparts in the split/combine steps of the local vectorized execution. Thus,
defining the vectorized engine as the central means for parallelism allows us to share compiler
and, partly, runtime infrastructure for the local and distributed parallel execution. In that
context, the representation of interesting data properties, most importantly the data
placement, plays a central role now, since it is required for the local vectorized as well as the
distributed execution. Consequently, metadata and placement are now centrally discussed in
Section 3.2 on the data representation, while they were previously only discussed in the context
of HW accelerators.

Prioritization of extensibility. Extensibility is a major goal of DAPHNE. To underline this, we
dedicate an entire section (Section 5) to this cross-cutting aspect of the architecture. We
summarize the most important points on extensibility that have previously been presented in
deliverable D3.1 [D3.1], but also extend upon that, e.g., by commenting on how to add new
kernels and data types.

More details on various components. Furthermore, we updated the description of the local
and distributed runtime (Section 3.3) with early lessons learned regarding the pre-compilation
of kernels, deeper insights into the co-existence of different distributed backends, and the
design of a component for memory management and garbage collection. Moreover, in the
context of accelerators and storage (Section 3.4), we clarified and further justified the way we
implement and integrate device kernels. Due to its outstanding importance for the architecture,
we decided to include a summary of the design presented in deliverable D7.1 [D7.1].
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7 Conclusions

We described the refined overall architecture and key design decisions of the DAPHNE system
infrastructure as an open and extensible system for integrated data analysis pipelines,
comprising query processing, ML, and HPC. Major aspects are a domain-specific language for
linear and relational algebra, an MLIR-based compilation chain, frame and matrix
representations, HW accelerators and computational storage, multi-level scheduling, and a
vectorized execution engine that allows for fine-grained fusion and parallelism across these
heterogeneous components.

Preliminary experiments with selected ML pipelines on CPUs, GPUs, and FPGAs show promising
results. In the next few years, we will continue building out this infrastructure and tackling
research challenges across the different levels from resource management, device kernels, I/O
and buffer management, and vectorized execution, over compilation, operator and pipeline
scheduling, to seamless extensibility and customization for IDA pipelines.
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