++ DAPHNE

D5.1 Scheduler Design for
Pipelines and Tasks

fQDAPHNE

Integrated Data Analysis Pipelines for Large-Scale
Data Management, HPC, and Machine Learning

Version 2.1
PUBLIC

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 957407.

D5.1 Scheduler design for pipelines and tasks o’ DAPHNE

Document Description

This report describes the scheduling context and decisions in the DAPHNE system. It
also offers a detailed description of the preliminary design of the DAPHNE scheduler
for pipelines and tasks. This design reflects the continuous discussion between all
DAPHNE partners, especially those from WP2 (System Architecture), WP3 (DSL
Abstractions and Compilation), WP4 (DSL Runtime and Integration), and WP5
(Scheduling and Resource Sharing). Extensibility is at the heart of the DAPHNE
scheduler and we have carefully chosen a set of scheduling strategies and techniques
in this initial design to support it. We designed the scheduler to also be extendable
with other new scheduling techniques, including user-defined strategies. To make this
report self-contained, we start by defining the relevant scheduling terminology, then
describe the scheduling-related components from the DAPHNE system architecture,
with focus on the Tiled execution engine. The last parts of this report present the initial
design of scheduling components and techniques considered by the DAPHNE compiler
and runtime system. As the DAPHNE project continues, this initial design will
incrementally evolve as needed. Updates to this initial design will be accordingly
reflected in a refined scheduler design in future deliverables D5.2, D5.3, and D5.4
(planned for M21, M36, and M48, respectively).

D5.1 Scheduler Design for Pipelines and Tasks

WP5 - Scheduling and Resource Sharing

Type of document R Version 2.1

Dissemination level PU

Lead partner UNIBAS

Author(s) Florina M. Ciorba (UNIBAS), Patrick Damme (KNOW), Ahmed Eleliemy
(UNIBAS), Vasileios Karakostas (ICCS), Gabrielle Poerwawinata (UNIBAS)

Reviewer(s) Marius Birkenbach, Wolfgang Lehner

Revision History

[zesaan [I {5 it e s

V1.0 Outline Initial write-up of the report outlines ' Florina Ciorba
Ahmed Eleliemy
Gabrielle Poerwawinata

V1.7 Updated content = Extended Section 4, and refined Florina Ciorba
Sections 1, 2, 3, and 4 Ahmed Eleliemy
Vasileios Karakostas
V1.1 Updated content = Refined Sections 1.3.2, 2, and 3, Patrick Damme
and added more | extended elaboration on compiler
content decisions about task-level parallelism

in Section 3, added references (in

Sections 3 and References),

addressed comments by co-authors

V2.1 revision Addressing comments of Wolfgang | Florina Ciorba
Lehner and Marius Birkenbach Ahmed Eleliemy

+"« DAPHNE

Table of Contents

1 Introduction 4
1.1 Scheduling TErMINOIOY ... ssans 7
1.2 SCNEAUIING ClASSES ...t sss s s st sss s ssssssssssssns 8
1.3 SCREAUIING LEVEIS ...ttt sss s sss s s ssssssssssssssssssssssans 9

2 Scheduling by the User 10

3 Scheduling in the Compiler 10
3.1 REOIAEING REWIITEScuverirririisisiiesiesississesssesssessssssss s sssssssesssssssesssessss s s ssssssssssssssssssssesses 11
3.2 Pipelines and OpPerator FUSION ... ssesssesssessesssesssesssssssssssssssesssssssesssssssssses 12
3.3 Decisions about Data-level Parallelism..........iissssisinen: 12
34 Decisions about Task-level Parallelism ... 13
3.5 (@aTo [1= g T=T =4[o 1O 13
3.6 PlACEIMENT ...ttt ss bbb bbb bbbt 13

4 Scheduling in the Runtime System 14
4.1 WOTK PArtitiONING ..ccuvcveiiieiiiiiiiiisiisssiesississsssssessses 14
4.2 WOTK ASSIGNMIENTuvieirricireiieeisessssssesesssessesssssessssssessessss s ssssssesssssssssessssssessssssssssssssssensssssesssssnes 18
4.3 WOTK OFAEING.cuuiiiiiiiiisiieiiesisississsisssississssssssssssssssssssssssssssssss st ssssssssssssssssssssssssssss 20
4.4 Local and Distributed SChedUIING ..o ssssssssssssssssssssssns 20

5 Summary and Outlook 23
RETEIENCES ...ttt bbbt bbb bbb bbb bbb bbbt 23

Table of Figures

Figure 1 Ecosystem for an integrated data analytics pipeline [IPE+21].....ccocvinvirnienennne. 5

Figure 2 From a DAPHNE program to parallel @XeCution ... 5

Figure 3 Data analysis workflow and the associated terminology at various levels........8

Figure 4 Strategies for controlling work granularity ... 15

Figure 5 The work partitioner and its iterative design.........cccocvencenecnscnniscieeis 15

Figure 6 Work partitioning during execution with DLS techniquesccccvevnecinerenne. 16

Figure 7 Work assignment using work sharing following the self-scheduling execution

PIINCIPIE ettt 19

Figure 8 Work assignment using work stealing following the self-scheduling

EXECULION PIINCIPIE couvierriecriiriisie sttt 19

w

D5.1 Scheduler design for pipelines and tasks o’ DAPHNE

List of Tables
Table 1 Scheduling decisions and implementation details in the.......ccoinnceiecennne. 7
Table 2 Notation used to describe the selected scheduling techniques..........cccooevuune.e. 16
List of Abbreviations

AF Adaptive Factoring

AWF Adaptive Weighted Factoring

DAG Direct Acyclic Graph

DG Directed Graph

DLS Dynamic Loop Self-Scheduling

DM Data Management

DSL Domain Specific Language

FAC Factoring Self-Scheduling

FSC Fixed-Size Chunking

GSS Guided Self-Scheduling

HPC High Performance Computing

IR Intermediate Representation

ML Machine Learning

NUMA Non-Uniform Memory Access policy

PLS Performance Loop-based Self-Scheduling

PSS Probabilistic Self-Scheduling

SIMD Single Instruction Multiple Data

STATIC Static Scheduling

SWR Static Workload Ratio

SPMD Single Program Multiple Data

1 Introduction

The DAPHNE system architecture (DaphneDSL, Compiler, and Runtime) is designed for
enabling the efficient execution of integrated data analytics pipelines and workflows,
including data management and query processing (DM), high-performance computing
(HPC), and machine learning (ML) training and scoring codes. These codes are
commonly executed on distributed-memory systems that include heterogeneous
resources (Figure 1). These distributed-memory systems range from traditional HPC
clusters with a shared-disk setup to shared-nothing systems. Scheduling is a
cornerstone to achieving various performance targets, the most common being
minimizing application execution time, increasing resource utilization, and increasing

D5.1 Scheduler design for pipelines and tasks e DAPHNE

computing throughput. The DAPHNE system is not an exception and scheduling
performs an essential role.

Computation Data processing Training

Application HPC code , Machine learning code
Training ML model

et . » Data preprocessing code
Scientific simulations prep s

Middleware 3
Parallel e".“/ll'OT.\me':lS Data processing frameworks ML frameworks
Mathematical libraries rk/Flink PyTorch/TensorFlow
MPL/OpenMP/BLAS/MKL TN s

Cluster g
Management
Hardware Compiit=inges
infrastructure ' Comput=uas
CPUs High speed Computational
interconnection Storage
network System

Local storage High speed network interface

Figure 1 Ecosystem for an integrated data analytics pipeline [IPE+21]

Scheduling refers to mapping units of work to computing resources over a specific
period of time [BW91] [UlI75]. Scheduling solutions fall into several classes (online,
offline, optimal, heuristics, etc.). Scheduling involves various decisions regarding work
partitioning, work assignment, and execution ordering [BW91]. Scheduling decisions
are taken at different levels of hardware parallelism in the HPC systems (core, node,
and system). Scheduling techniques range from static to dynamic depending when
those scheduling decisions are taken.

Table 1 shows the different scheduling decisions taken by a DAPHNE user, the DAPHNE
compiler and the runtime system. We distinguish scheduling by the local runtime
system from that in the distributed runtime system by highlighting specific
implementation details. We use Table 1 to guide our description of the techniques
employed by the compiler and the runtime system, their associated scheduling
decisions, and optimization goals.

Application
(User program)

Computation
(work)

Compiler

(Ord ering, Opera(gagg -)i- data
Partitioning)

Runtime

(Partitioning,
Assignment,

. Units of processing
Launching) (threads, processes)

Hardware Units of execution
(Execution) (cores, processors)

Figure 2 From a DAPHNE program to parallel execution

+"« DAPHNE

Although the terms in Table 1 are common to different scheduling contexts, one can
nevertheless use these terms quite differently. Therefore, we define these terms in the
context of DAPHNE scheduling as follows:

Work refers to operations applied to input data.

Work ordering refers to the order in which the operations must be executed, i. e, if
the execution of certain operators has data or control dependencies, work ordering
must maintain and respect the dependencies.

Work partitioning refers to partitioning of the work into units of work (or tasks) of a
certain granularity (fine or coarse) and of certain size (equal or variable). Work
partitioning may also exploit data and/or functional parallelism, i. e, work is
partitioned by dividing the input data and execution units apply the same operator to
each data partition. Work can also be partitioned by enabling each execution unit to
execute different operators on the input data.

Work assignment refers to mapping (or placement) of the units of work (or tasks) onto
individual software processing units (processes or threads). Work assignment also
applies beyond the software level, in the form of mapping specific software units of
processing (processes, threads) onto hardware units of execution (compute nodes,
CPUs, GPUs, FPGAs) and computational storage devices.

Work timing refers to the times at which the units of work are set to begin execution
on the assigned units of execution.

Work queue is an implementation detail that describes how the units of work are
managed by the runtime system. Work queues can be centralized or distributed.
Work transfer describes the party initiating the transfer of work, during execution, to
arrive at a balanced execution progress. Work transfer can be initiated by underloaded
parties (receivers) or overloaded parties (senders).

Optimization goals may refer to minimization of user-defined goals (for the user),
number and size of intermediate data items (by the compiler), execution time, and
scheduling overhead (by the runtime system). They may also refer to maximization of
other user-defined goals (by the user) or data locality (by the runtime system).

+"« DAPHNE

Table 1 Scheduling decisions and implementation details in the DAPHNE system
architecture

Scheduling Levels
DAPHNE User : : Tilar Runtime Syst'em'
DSL Configuration Local Distributed
Partitioning (v) () v v v
Scheduling Assignment (V) (v)) v v
Decisions Ordering () () v (v) (V)
Timing N/A N/A N/A v v
Work Centralized Centralized
Queue N/A N/A N/A Distributed Distributed
. : . Centralized
Imp.le.mentatlon Data N/A N/A Centralized Centralized Distributed
Decisions Placement — — -
Distributed Distributed Replicated
Work Receiver/sender- | Receiver/sender-
Transfer N/A N/A N/A initiated initiated
Execution time | Execution time
Optimization Minimize User-defined | User-defined Intermediates Scheduling Scheduling
Goals overhead overhead
Maximize Data locality Data locality Data locality
Work = Task = Operator + Data
Legend: v currently supported | () could be supported in the future | N/A not applicable
1.1 Scheduling Terminology

Scheduling is a vast topic [Leu04] and has been an important research focus in the DB,
HPC, and ML communities over several decades. As the DAPHNE project has a diverse
consortium and specific terms are used differently by the communities, defining a
common terminology is extremely important and useful. In the following subsections,
we define important terms related to scheduling that we use in DAPHNE.

1.1.1 Operators

The term operator refers to an indivisible operation that can be applied to input data.
Common examples are matrix operations, such as addition, subtraction, multiplication,
and transpose. Calls to user-defined functions or precompiled third-party libraries are
also considered operators. We also use the term kernel to refer to the actual C++
implementation of a specific operator, e. g., EwBinaryMat or a shallow wrapper around
a third-party implementation, e. g., cublasDgemm for Nvidia GPUs.

A vectorized operator refers to an operator that can be executed in vectorized form,
similar to Single Program Multiple Data (SPMD).

1.1.2 Pipelines

The term pipeline refers to an abstraction that combines one or more operators (i. e.,
fused operators). A vectorized pipeline consists of one or multiple vectorized
operators which can be applied to vectorized data.

+"« DAPHNE

1.1.3 Tasks

A task comprises a data item and an operator to be applied. Tasks are the smallest
units of work considered for scheduling by the DAPHNE runtime system.

A vectorized task consists of a data partition and a vectorized pipeline.

1.1.4 Workflows

The term workflow is commonly used in different communities (DM, HPC, and ML) to
refer to execution of work in a specific order. The most common approach of
representing workflows is to use graphs where each vertex represents a task (work step)
and an edge represents a data or a control dependency [VA20]. Workflows can be cyclic
(represented as Directed Graphs - DG) or acyclic (represented as Directed Acyclic
Graphs - DAG), hierarchical (a workflow within a workflow, represented by a
hierarchical D[A]G), and may form workflow ensembles (sets of interrelated workflows
also expressed as a D[A]G) [D+19]._Since the DAPHNE compiler is based on MLIR, we
represent workflows as DAGs.

Data analysis workflow (pipeline)
D8.1 top level pipeline = D5.1 workflow

Pre-processing R Simulation Post-processing Inference
Input DM B HPC DM ML Output

Parse input Domain SEEUEE D8 1 Sub-level pipeline = D5.1 subworkflow
decomposition Dense matrices ..

Legend E [¢ N

I Data item pN EvMuiop
. n— NonvectOp
@8 Nonvectorized operator -
HNF Code I!ﬁ! B
¥ = —

@ Vectorized operator
R
=8
v MatrixAddOp
readMatrix(X)
C

Figure 3 Data analysis workflow and the associated terminology at various

D5.1 pipeline

Vectorized operator pipeline I MatrixAddOp

OUW*D
[T TR~
o

oom oK
+ o+

levels

1.2 Scheduling Classes

Scheduling can be categorized into two main classes: static and dynamic scheduling.
The main difference is when decisions are taken. In static scheduling decisions are
taken before execution (at compilation time), while in dynamic scheduling decisions
are taken during the execution of an application. Between these two main classes,
hybrid scheduling exists. A hybrid scheduling technique is not fully-static nor fully
dynamic, i. e., certain decisions are taken before the execution, while others are taken
during the execution.

Static scheduling techniques incur minimal scheduling overhead and may be explicitly
designed to improve data locality [LTS+93]. Dynamic scheduling techniques are
explicitly designed to improve load imbalance [Luc92] but also to allow scheduling of
work under dynamically evolving conditions in the application, the system, or both.

+"« DAPHNE

Dynamic scheduling techniques can further be divided into nonadaptive and
adaptive. Nonadaptive dynamic scheduling techniques take scheduling decisions
(such as work partitioning, assignment, and timing) during execution but do not
change these decisions once taken. For instance, a nonadaptive scheduling technique
may require runtime information about the underlying system, e. g., processors’

speed. Such a piece of information can be obtained prior to the execution and used to
calculate the work amount each processor receives. In contrast, adaptive dynamic
scheduling techniques consider information obtained during execution to refine their
scheduling decisions, i. e., processors’ speed may change during the execution. The
adaptive dynamic scheduling techniques are explicitly optimized to minimize load
imbalance in highly irregular execution environments [Ban00]. Nonadaptive dynamic
scheduling incurs less overhead during execution than adaptive dynamic scheduling.

1.3 Scheduling Levels

A DAPHNE program is a workflow, i. e., a DAG of operators (which may originate in DM,
HPC, and/or ML codes), their associated data, and a specific data flow. Allocating
resources and executing such a DAG on those resources is subject to various
scheduling decisions, that are taken at different levels: user, compiler, and runtime
system.

1.3.1 Scheduling by the User

DAPHNE users can take certain scheduling decisions. For instance, using DaphneDSL,
a user may use ParFOR (described in Section 2) to express a certain loop as a loop
without data/control dependencies, or a DOALL loop [DP91]. The user may also take
decisions about the number of threads, the scheduling technique to be used, etc. By
providing certain configuration options to execute a DAPHNE program, the user can
generally influence all scheduling decisions at the application level.

3.2 Scheduling in the Compiler

The compiler decides how to partition the DAG of operators and their associated data
into a set of pipelines. Furthermore, the compiler decides whether these pipelines are
vectorizable as well as the best order to execute these pipelines on the target devices.

3.3 Scheduling in the Runtime System

When executing a vectorized pipeline, the runtime system takes scheduling decisions
similar to those of the compiler. It decides the partitioning of the input data. The data
partitions and their associated (vectorized) operators form tasks. The size of data
partition determines the granularity of the vectorized tasks. The runtime system also
takes decisions regarding mapping (assignment) of such tasks onto the available
hardware execution units.

+"« DAPHNE

The Tiled Execution Engine compiles operator pipelines of data frames and matrices
across hardware devices. The pipelining allows fine-grained operator fusion [PD22]. A
vectorized operator pipeline has multiple inputs, outputs, and intermediate
representation (IR) bodies similar to LLVM loops. An input matrix can be federated
across the memory of hardware devices, such as CPUs, GPUs, and FPGAs. The DAPHNE
vectorized execution engine works similarly to Morsel [KD19][VL14], by creating
vectorized tasks for aligned rows or columns of input matrix partitions and appending
them into a single or multiple task queues. Each of the vectorized tasks comprises of
its input data, an operator pipeline (DAG) with specific input data such as scalar, a
matrix row, or a matrix tile. Worker threads process the tasks in the queue and combine
the results. Vectorized execution is also integrated with computational storage, for
instance, on near-SSD CPUs or FPGAs, to support asynchronous I/O and subsequent
computation pipelines for the task queues [PD22].

2 Scheduling by the User

By default, all scheduling-related decisions will be made by the DAPHNE system
automatically (based on defaults provided by the DAPHNE administrator), as described
in Sections 3 and 4. However, expert users may optionally configure the scheduling
behavior of some DaphneDSL program manually. Available tuning knobs include, e. g.,
the number of local threads and distributed workers, the task partitioning technique
and its parameters, the placement of data and operations on certain (classes of)
devices, and generally the modification of compiler’s behavior (including the sequence
of compiler passes by turning certain passes on or off) through compiler flags.

These scheduling-related parameters can be provided at different levels of granularity.
Configuration files and command line arguments can be used to set the scheduling
parameters globally for all DaphneDSL files or one specific DaphneDSL file,
respectively. Furthermore, the extensibility mechanisms of DAPHNE can be used to
influence scheduling.

The DaphneDSL will provide means to set locally certain scheduling-related parameters
for parts of the DaphneDSL source code via dedicated built-in functions (for more
details, see Deliverable D3.1). For instance, take a parallel for loop construct, called
ParFOR, allowing the explicit expression of task-level parallelism. With a ParFOR loop,
the user may specify the degree of parallelism, the task partitioning and result merge
methods, and the task size. Furthermore, the user may assign individual operations and
data objects to certain devices, such as GPUs.

Sideways access into DaphnelR allows expert users to directly modify the internal
representation to influence compiler decisions in a fine-grained way.

3 Scheduling in the Compiler

The input to the DAPHNE system architecture is typically a DaphneDSL source code
(possibly generated from calls to DaphnelLib, the Python API for the DAPHNE system),
which is a declarative representation of a program and specifies its intended semantics.
A parser translates this into DaphnelR as the central representation for reasoning about

10

+"« DAPHNE

a program at compile-time. The initial DaphnelR representation of the user program
will usually not yield an efficient runtime behavior. Thus, the DAPHNE compiler exploits
the declarative nature of the user program to perform various rewrites on the
intermediate representation (IR) of the program, which preserve its semantics but allow
for a more efficient execution.

In particular, the DAPHNE compiler determines:

(a) which operations to execute,

(b) in which order to execute them (work ordering) as well as

(c) selective aspects of whether and how to parallelize the work (work partitioning) and
which classes of devices (e. g., CPU, GPU, FPGA) to assign tasks to (work assignment).
Details on the DAPHNE compiler will be provided in Deliverable D3.4 (due in M36)
which will include the compiler design and overview; here we only provide a brief
overview and highlight how compiler decisions relate to scheduling.

3.1 Reordering Rewrites

The DAPHNE compiler applies various static and dynamic simplification rewrites on
the IR, which include the removal, insertion, exchange, and reordering of operations
under different goals. This can lead to a reordering of the entire DAPHNE program.
Some rewrites aim at eliminating redundant operations, or reducing the number
of operations. These goals are addressed by generic compiler optimization
techniques. For instance, common subexpression elimination (CSE) eliminates
redundant calculations of the same expression (if there are no side-effects), and
constant propagation performs simple calculations that can be evaluated at compile-
time to gain more information on concrete inputs to operations. This may enable the
elimination of branches, thereby significantly changing the program structure.
Complementarily, domain-specific simplifications from linear algebra [BBE+14] and
relational algebra [EN16] are applied with goals such as minimizing the memory
footprint and the execution time. In that context, reducing the size of intermediate
results is a natural objective, and for many operations, smaller inputs incur a lower
effort. Examples from linear algebra include the optimization of chains of arithmetic
operations over scalars, vectors, and matrices as well as matrix multiplication chain
optimization [HS82]. The latter exploits the associativity of matrix multiplication to
freely choose the parenthesization to reduce the size of intermediates. This rewrite is
based on complex algorithms, but has the potential of speeding up the calculation by
orders of magnitude. Examples from relational algebra include selection push-down,
whereby predicates on a single relation can be evaluated before a join with another
relation to reduce the size of the join inputs. Furthermore, join ordering also exploits
associativity. Different join orders can result in intermediate size and runtime
differences by orders of magnitude, which justifies the employment of sophisticated
optimization techniques [HHH+21] [LGM+15] [LRG+17].
While most rewrites view a DaphnelR program as a DAG of operations connected
through their inputs and outputs, this DAG must be linearized (work ordering) to be
executable by each single worker out of multiple workers. Thus, another aim is to
reorder operations by defining an efficient linearization of the program. Any
11

+"« DAPHNE

topologically sorted order would be valid, but the DAPHNE compiler will aim at finding
a linearization that increases temporal and spatial locality of data accesses, e. g., by
ordering operations reading the same data close to each other. That way, the cache
behavior may be improved and evictions from the buffer pool to secondary storage
avoided.

Finally, the selection of physical operators has a strong impact on the execution time
and the working memory footprint of an operation. Furthermore, the choice of the
physical operator can have an impact on the applicability of data partitioning and
multi-threading execution techniques, which are the basis for scheduling during the
execution time.

3.2 Pipelines and Operator Fusion

In the simplest case, the reordered sequence of operations could be executed in an
operator-at-a-time fashion, i. e., operations are executed one by one and each operator
materializes its entire output data objects in the storage hierarchy. This approach is
adopted by machine learning frameworks such as TensorFlow [ABC+16] and database
systems such as MonetDB [IGN+12]. However, to avoid unnecessary materialization
overhead, the DAPHNE compiler tries to fuse adjacent operations together into
pipelines whenever possible. From outside, a fused pipeline looks like a single
operation with a number of inputs and outputs that depends on the operations within
the pipeline. During execution, a pipeline’s inputs are split into tiles (partitions). The
DAG of operations within the pipeline is executed for the set of corresponding tiles of
each input, i. e, as a vectorized execution [BZNO5]. This partitioning ensures a cache-
efficient behavior if the partition sizes are chosen to fit the intermediates within the
pipeline into the cache hierarchy. In combination with a multi-threaded execution, this
leads to an execution akin to morsels [VL14].

Note that the compiler already decides whether and how (along which dimension(s)
such as row/column/both) to partition the data. For instance, for the elementwise
addition of a matrix and a row vector, one option would be to partition the matrix
horizontally, while broadcasting the row vector. While the compiler decides the task
partitioning technique (see Section 4), the actual partitioning is performed at run-time.
In general, the fused operator pipelines created by the DAPHNE compiler define the
unit of work for the DAPHNE runtime scheduler.

3.3 Decisions about Data-level Parallelism

The DAPHNE compiler performs intra- and inter-procedural analyses [BBE+14] to
estimate the dimensions, sparsity, and other properties of intermediate results. Based
on these, appropriate physical data representations (such as dense or sparse matrices)
are selected and memory footprints estimated. Depending on the physical size of the
intermediates, the compiler decides if parallelization is required, whereby different
levels are supported. For very small data objects, the overhead of parallelization might
outweigh its benefits, e. g., due to thread setup or data transfer costs, rendering a
sequential processing most efficient. However, the DAPHNE system is specifically

12

+"« DAPHNE

designed for processing large amounts of data. Within a single computing node, multi-
threading is applied to process different tasks of a vectorized pipeline in parallel using
the local runtime. If the expected size of an intermediate exceeds the memory capacity
of a single computing node, the pipeline will be executed on several computing nodes
by the distributed runtime. That means, the compiler decides if and at which level to
parallelize a pipeline, thereby triggering either the local or the distributed runtime
scheduler.

3.4 Decisions about Task-level Parallelism

Apart from data-level parallelism, machine learning algorithms, as a core component
of integrated data analysis pipelines, often expose task-level parallelism in the form of
a for loop with independent loop iterations. This can be the case when training multiple
models (e. g., in ensemble learning) as well as when training a single composable model
(e. g, in stochastic gradient descent). The individual loop iterations could access
disjoint or overlapping parts of the data, or the entire data. Thus, when executing
subsets of the for loop’s index range in a task-parallel manner, different techniques like
data partitioning or memoization/sharing could be applied. Similar to SystemML
[BTR+14], the DAPHNE system will support ParFOR loops (described in Section 2) to
explicitly express opportunities for task-level parallelism. The DAPHNE compiler plays
a crucial role by ensuring that there are no dependencies between iterations and by
selecting an optimal task-parallel execution strategy for minimizing the overall runtime
under hard constraints on the memory consumption and the degree of parallelism. In
that sense, local, distributed (remote), and hybrid (local and distributed) execution is
possible, depending on the data size.

3.5 Code Generation

By default, the operations within a fused pipeline are executed by the same runtime
kernels used for a stand-alone operator outside a fused pipeline, whereby efficiency is
achieved through cache-awareness and multi-threading. In the literature, approaches
for the on-the-fly generation and JIT-compilation of tailored operators have been
investigated for ML systems, such as SystemML [BRH+18] and Julia [BEK+17] and
database systems, such as HyPer [N11]. The DAPHNE compiler adopts these
approaches to specialize operators for the actual data and value types, shapes, and
sparsity of the data, as well as for the hardware to use. However, since code generation
incurs a certain extra effort during execution time, it will be applied in a cost-beneficial
manner [BRH+18]. By creating tailored operators on-the-fly, the compiler further
defines the scope of the runtime scheduler.

3.6 Placement

By means of configuration (for more details, see Deliverable D3.1), the DAPHNE
compiler is aware of the (heterogeneous) accelerator devices available to the system.
It may automatically determine on which class of devices an entire operation should
be placed. Moreover, the DAPHNE system will support the execution of vectorized

13

+"« DAPHNE

pipelines by heterogeneous worker nodes; while the fine-grained assignment of tasks
to threads and of threads to workers are subject to the runtime scheduler, the compiler
makes important preparations by optimizing and JIT-compiling separate copies of the
pipeline’s body for each hardware device it might be assigned to during the execution
time.

4 Scheduling in the Runtime System

he tiled execution engine is one of the earliest design decisions that we considered in
the initial DAPHNE system architecture. The tiled execution engine simplifies
scheduling complexity during execution, i. e., all software units of processing (threads,
processes) and hardware units of execution (CPUs, GPUs, FPGAs), execute the same
operators on multiple data chunks (SPMD). This strategy brings certain simplifications
to the runtime system, i. e, no data dependencies among vectorized tasks similar to
DOALL loops.

Dynamic loop self-scheduling (DLS) techniques have been devised to schedule loop
iterations that have no data dependencies (or for which dependencies have been
resolved through various loop transformation techniques during compilation) and
each loop iteration is considered to be a task. DLS techniques divide the tasks that
describe the DAPHNE program into chunks and self-schedule these chunks to the
available software units of processing (processes, threads) following the self-
scheduling principle [WS81].

The DAPHNE runtime system then decides the assignment of those software units of
processing to the hardware units of execution (CPUs, GPUs, FPGAs). As shown in Table
1, two scheduling decisions are taken by a DLS technique: work partitioning and work
assignment.

4.1 Work Partitioning

As mentioned in Section 1, work partitioning refers to the partitioning of the work
into units of work (or tasks) according to a certain granularity (fine or coarse, equal or
variable). Tasks can be vectorized tasks that means work partition is about data
partitioning, while when tasks are not vectorized work partition is about functional
parallelism. In any case, deciding the granularity of work to be assigned to individual
execution units to balance the execution progress among them.

The work granularity can be controlled by the two strategies illustrated in Figure 4.
For instance, Figure 4 shows matrices A and B with n rows (ro..r.-1). The work in this
case is adding the two matrices. The work can be partitioned into either t, or tm tasks
(m<n), which are then mapped to ¢, or ¢ chunks, and later assigned in a sender- or
receiver-initiated fashion to the available threads for execution.

For design simplicity, we will use in DAPHNE the second granularity control strategy to
avoid creating additional level of abstraction, i. e, tasks of variable size are considered
chunks.

14

D5.1 Scheduler design for pipelines and tasks o'e DAPHNE

Tasks of fixed size Chunks of variable size
1 Chunk = 1 task

I D - D

n-1
Matrix A Matrix B

o[——— | i
1] Icm11]

Tasks of variable size Chunks of fixed size

1 Chunk = 1 task

Figure 4 Strategies for controlling work granularity

4.1.1 Design of the Work Partitioner

The DAPHNE runtime system contains a component that partitions the tasks. This
component is illustrated in Figure 5, and denoted as work (or task) partitioner. It has
three interface points, each implemented as functions. The first initializes the load
partitioner (initialize), the second gets the count of remaining tasks
(getNumRemainingTasks), and the third gets a task for execution (getTask).

| #workers
-
Initialize «——| Scheduling technique
b #tasks
getNum N
RemainingTasks remaining
#tasks
runtime
info | |

getTask
new task /

Other runtime
components

Figure 5 The work partitioner and its iterative design

The work partitioner is designed to be used in an iterative fashion. Since task
partitioning is separate from task assignment, one may consider the iterative aspect in
the design as a potentially unrequired level of complexity. However, as discussed earlier
in Section 1.2, the adaptive scheduling techniques require a live feedback mechanism
to refine scheduling decision based on information only available during execution.
Therefore, the iterative work partitioning design is required to support adaptive DLS
techniques.

We have identified a number of DLS techniques to be supported in the DAPHNE
system, classified in Figure 5 and described below. The notation used to describe the
chosen scheduling techniques is summarized in Table 2.

15

Table 2 Notation for describing scheduling techniques

+"« DAPHNE

Symbol | Description

Total number of tasks

Total number of hardware execution units

Index of current scheduling round, 0 <i < S -1

Remaining loop iterations after i-th scheduling step

N
P
S Total number of scheduling rounds
i
R;
L

A DLS technique

K¢ Size of the initial chunk of a scheduling technique L
K&, Size of the last chunk of a scheduling technique L
K- Chunk size calculated at scheduling step i of a scheduling technique L
1 Mean of the loop iterations’ execution times
o Standard deviation of the task execution times

®(P) Probability of having P workers available

Without

Profiling- Decreasing
profiling

based chunk size

Adaptive
chunk size

Fixed chunk
size

Variable Fixed chunk Variable

chunk size size chunk size QUEBIGIE

AF

SS, mFSC Increasing Decreasing Random FSC Decreasing

i)
Hll,

_-H']

GSS, FAC2, FAC, TAP,
FISS, VISS TSS, TFSS, RND BOLD, PLS,
WF2 PSS

Figure 6 Work partitioning during execution with DLS techniques

4.1.1.1 Set of Implemented DLS Techniques (Nonadaptive without Profiling)

N
P’

Block static (STATIC) [LTS+93], it is a straightforward technique that divides tasks
into P chunks of equal size as follows K7€ =

Dynamic self-scheduling (SS) [PK87] technique where the chunk size is always one
task as follows K = 1.
Fixed size self-scheduling (FSC) [KW85] assumes an optimal chunk size that achieves
a balanced execution of loop iterations with the smallest overhead. FSC considers
the variability in iterations' execution time and the scheduling overhead of
assigning task to be known before applications' execution. To calculate such an
optimal chunk size, FSC considers the variability in tasks’ execution time and the

16

4.1

+"« DAPHNE

scheduling overhead of assigning tasks to be known before applications' execution.

A practical implementation of FSC is called mFSC and does not require such
V2 'N'h

information as follows K/5¢ = :
o-P-/logP
Guided self-scheduling (GSS) [PK87] assigns decreasing chunk sizes to balance loop

. . . R
executions among all execution units as follows K** = -

Trapezoid self-scheduling (TSS) [TN93] assigns decreasing chunk sizes similar to

GSS. However, TSS uses a linear function to decrement chunk sizes as follows

TSS TSS

KTSS = KTSS — lw] where S = |Ll, and K[= [%] JKISS = 1.

5-1 KIS+ 53

Factoring (FAC) [FHSF92] schedules the loop iterations in batches of equally-sized
chunks. FAC evolved from comprehensive probabilistic analyses, and it assumes
prior knowledge about p and o. Another practical implementation of FAC denoted,
FAC2, assigns half of the remaining loop iterations for every batch as follows

KFac? — [ZR_LP] ,ifimod P =0,
K42, otherwise.
Trapezoid factoring self-scheduling (TFSS) [CAB+01] combines characteristics of
TSS and FAC. It schedules loop iterations in batches of equally-sized chunks. Similar
to FAC, TFSS schedules loop iterations in batches of equally-sized chunks. Every

batch in TFSS decrease linearly, similar to chunk sizes in TSS

i+P-1 [TSS
TF = ifimodP =0
K~ SS — P)]
L
K"5S, otherwise.

1.2 Other Techniques (Nonadaptive with Profiling and Adaptive)

PLS divides the loop into two parts. The first part is scheduled statically, while the
second part is scheduled dynamically using GSS. The static workload ratio (SWR) is
used to determine the amount of the iterations to be statically scheduled. PLS uses
a performance function to statically assign parts of the workload to each processing
element (PE) based on the PE's speed and its current CPU load [SYTO7]. In this work,
all PEs are assumed to have the same load during the execution [SYT07].

N-SWR
KPS = —5—ifR >N — (N SWR)

GSS
Ki

,Where
, otherwise.

minimum iteration execution time

SWR = . . . —.
maximum iteration execution time

PSS schedules the number of iterations allocated to an idle processor based on the
number of remaining iterations and the number of processors expected to be
available in the future [MGO06]:

17

+"« DAPHNE

15 ii(P)]

KPSS = [

e AWF executes variably-sized chunks of a given batch according to its relative
weight. The weight for each of the processing elements will be updated during
execution at the end of each time step based on the performance of the processor
[FHSU+96]. AWF variants such as AWF-B and AWF-C relaxed the constraint of
updating the processor weights from at the end of each time-step to at every batch
and chunk [CB08]. Other variants such as AWF-E and AWF-D works similarly to the
AWEF-B and AWF-C with scheduling overhead consideration in measuring the
relative weights.

e AF is an adaptive DLS technique based on FAC. In comparison to FAC, AF learns
the p and o for each computing resource during application execution [BANOO].
The continuous updates of loop iteration execution p and their standard deviation
o adapt the chunk size during execution.

-1
D+2-E-Ri—/D?+4D-ER; ap, 1
KAT = ‘ ‘,whereD=Z§i—u”‘,E= (b) :
Pi

L Z“Pl‘ pi=1 u

L

4.2 Work Assignment

Work assignment refers to mapping (or placing) the units of work _(or tasks) onto
individual units of execution (processes or threads) (see Section 1). All formulas
mentioned in Section 4.1 are concerned with determining the best granularity of the
tasks (chunk size) to maximize application performance. Work assignment is
independent of task granularity, i. e., the task granularity can be identified before the
actual assignment and execution of the task. For work assignment, we consider the
self-scheduling principle [WS81] which means once an execution unit is free and
available it obtains a collection (or chunk) of tasks to execute [EC19]..In general, there
are two approaches for work assignment: work sharing and work stealing [CG17].
Both approaches follow the self-scheduling principle and are implemented with
centralized and/or distributed work queues. A work queue refers to a standard thread
safe data structure (a double ended queue or dequeue for short) that applies the first-
in first-out access policy.

4.2.1 Work Sharing across Homogeneous Workers (Centralized Work Queue)

In work sharing, all tasks are created and stored in one centralized work queue as
shown in Figure 7. Once a worker thread becomes free and available it obtains a new
task to execute from this centralized work queue. Work sharing has the following
advantages: 1) simple design and implementation and 2) a centralized work queue

18

+"« DAPHNE

maintains a global overview of the remaining work, and thus, enables load balancing
across all workers. Work sharing has the following disadvantages: 1) when the number
of workers increases, access to the centralized work queue becomes a synchronization
bottleneck that may negatively impact performance and 2) is not data locality-aware.

Centralized work and data queue

/
/
/
/
/
/

Figure 7 Work assignment using work sharing following the self-scheduling

execution principle

4.2.2 Work Stealing across Homogeneous Workers (Multiple Work Queues)

In work stealing, each worker has a local work queue as shown in Figure 7. Worker
threads obtain tasks from the individual work queues, and only when the local work
queue is out of tasks, a worker steals from another worker’s work queue. Work stealing
has the following advantages: 1) relieves the contention associated with concurrent
access to a centralized work queue and 2) is data locality-aware. Work stealing has the
following disadvantages: 1) the workers lack global knowledge of the remaining work
to execute, and thus, only enables local load balancing among specific thief-and-victim
workers and 2) requires a more complex design and implementation than work sharing.

Multiple work and data queues

Worker, Worker, Worker,

Figure 8 Work assignment using work stealing following the self-scheduling
execution principle

4.2.3 Work Sharing and Work Stealing across Heterogeneous Workers (Code
Generation)

19

+"« DAPHNE

The DAPHNE system is designed to support heterogeneous workers, i. e., workers are
software units of execution (processor or threads) which abstract existing hardware
units of execution, including, but not limited to, CPUs, GPUs, FPGAs, and computational
storage devices. For work partitioning, the DLS techniques that follow the
self-scheduling principle, i. e, weighted factoring (WF) [FHSU+96], adaptive factoring
(AF) [BANOO], and adaptive weighted factoring (AWF) [CBO08], were devised for
scheduling on heterogeneous workers. For work assignment, DAPHNE compiles a
device-specific kernel for different workers. The compiler generates codes that handles
fine-grained specialization and exploitation of heterogeneous devices. Therefore, we
initially support work sharing at the device level, i. e., workers of the same type share
a centralized work queue. Work stealing is also supported among workers of the same

type.

4.3 Work Ordering

Scheduling in the DAPHNE runtime system is currently not concerned with the order
in which the tasks are executed. Since we rely on the tiled execution engine in the
initial design, tasks within a vectorized pipeline have no dependencies and thus can be
executed in any order. Furthermore, pipelines are currently launched one-by-one.
Therefore, the execution order of vectorized tasks only depends on the task order in
the queue (FIFO). In the future, we plan to relax this constraint and consider the parallel
and out-of-order execution of operations based on the DAG information that the
DAPHNE compiler provides.

4.4 Local and Distributed Scheduling

The DAPHNE runtime system is designed to execute on both local and distributed
systems. Thus, it includes two different schedulers, a local scheduler that is responsible
for scheduling tasks on the resources of a compute node that may consist of CPUs,
GPUs, FPGAs, and computational storage devices, and a distributed scheduler that is
responsible for scheduling tasks on a cluster of compute nodes. Both types of
schedulers take decisions regarding work partitioning and assignment. For instance,
the local scheduler concurrently maps multiple tasks onto the individual resources of a
compute node-taking into consideration the NUMA topology and the performance
interference that may arise due to resource sharing.

Both schedulers (local and distributed) may rely on DLS techniques for work
partitioning, and both can use work queues and the self-scheduling principle for work
assignments. However, each scheduler considers different parameters regarding the
behavior of the application tasks, the computational capabilities of the hardware
resources, the memory hierarchy and data locality, and the topology of the hardware
resources and the compute nodes. Consequently, these schedulers may employ
different scheduling techniques at the same time and exploit various scheduling
structures.

For instance, for CPU workers that reside on the same compute node, shared-memory
node, accessing a local centralized work queue introduces less overhead than accessing

20

+"« DAPHNE

globally distributed work queues that may be hosted by different compute nodes. The
latter access will have to go over network and use data distribution primitives (for more
details, see Deliverable 4.1) to bring the new tasks. In addition, a local scheduler may
use fine-grained tasks to minimize load imbalance, while a distributed scheduler may
use coarse-grained tasks to minimize communication associated with work assignment
and avoid frequent access to distributed work queues.

4.4.1 Device-level Scheduling (Local Scheduling)

The DAPHNE local scheduler is also responsible for selecting the target device, e. g.,
CPU, GPU, FPGA, or computational storage, to execute individual tasks. Selecting such
devices offers the potential for improving different metrics, such as reduced latency,
increased throughput, increased resource utilization, and increased energy efficiency.
Multiple works have attempted to solve this problem in various contexts [GBH12,
MV15, LSM15]. The DAPHNE approach to exploiting the available heterogeneous
resources at runtime, apart from selecting specific devices to execute entire operations,
relies on the tiled execution engine that allows data parallelism within and across
devices, taking into consideration the data locality, NUMA effects, and data transfer
costs.

4.4.2 Node-level Scheduling (Local Scheduling)

NUMA-aware scheduling: one of the critical aspects that the DAPHNE local
scheduler needs to consider is being aware of and minimizing the impact of the NUMA
topology and NUMA aspects on application performance. A compute node is typically
organized in a NUMA topology by assembling multiple (at least two) sockets in a single
shared-memory system. The NUMA organization implies that the performance of a
task, as defined in Section 1.1.3, may depend on 1) the architecture of compute node
and 2) the task’s code and its data locality characteristics. For instance, a task that
operates on an input set that fits in the cache hierarchy is not expected to be affected
by different NUMA placement choices, i. e., remote memory accesses occur very rarely.
The NUMA effect may more severely affect a task that frequently experiences cache
misses. Furthermore, NUMA topologies increase memory bandwidth, as they allow the
cores of each NUMA socket to have direct access to separate local memory modules
through separate memory controllers, whereas in uniform memory topologies all the
cores of the system have direct access to the same memory modules through the same
memory controllers. Hence, specific placement options for application tasks may
improve their performance thanks to the increased memory bandwidth, even though
specific memory references will take longer to serve, because they require fetching data
from remote sockets.

The implications of NUMA topologies on scheduling are well known and many
mechanisms have been proposed_to alleviate them [DFF13, PSM15, KKM17, GNK20].
Current operating systems (e. g., Linux) and libraries (e. g.,, numactl) provide the
opportunity to user-space programs to control the placement of tasks on NUMA
resources by assigning them to specific cores/sockets and memory modules. The

21

+"« DAPHNE

DAPHNE local scheduler will leverage these mechanisms during execution and use
them by incorporating sophisticated decision-making logic based on the
characteristics of the tasks (i. e., code characteristics, execution behavior on the system
based on performance counters, etc.). We will also consider cases where extending the
underlying OS and library mechanisms would further enable the DAPHNE local
scheduler to optimize performance, as well as other metrics such as throughput and
resource utilization.

Resource sharing: the DAPHNE local scheduler also needs to be aware of and
minimize the impact of resource interference in application performance. The
processing cores of a compute node typically share some resources depending on the
architecture of each chip, e. g., compute cores may share the L2, the Last-level Cache
(LLC), or the memory controller for accessing a (local or remote) memory module.
Hence, tasks executed on these cores experience resource interference. For instance,
when the scheduler concurrently executes two different tasks on two cores that share
the same LLC, this co-execution introduces interference if both tasks heavily use LLC.
This interference may significantly decrease the application performance. Resource
interference is also a well-known problem, and multiple prior works have proposed
solutions to solve it [MTH11, TMS11, DK13, LCG16, NPG18]. Resource interference does
not only arise on CPUs. Depending on the work sharing and co-execution capabilities
of the underlying devices, it may manifest on GPUs, FPGAs, and computational storage
setups. Hence, to fully leverage the computational capabilities of such systems that
allow the co-execution of different tasks, the scheduling logic needs to be aware of the
various sources of interference, avoid it, and mitigate it.

The DAPHNE local scheduler will consider the potential of co-executing tasks for
suffering from and for introducing resource interference. We plan to enable the
DAPHNE local scheduler to predict resource interference based on modeling
components and mitigate it via certain performance monitoring components. We will
also leverage code-level information as extracted by the various compilation steps and
runtime characteristics based on the running behavior of the application tasks.

4.4.3 Cluster-level Scheduling (Distributed Scheduling)

The DAPHNE distributed scheduler is responsible for selecting the cluster's compute
nodes that will be involved in computation and assigning them tasks. A significant
amount of prior research has focused on scheduling distributed applications on
clusters, with some works taking into consideration the application DAG [GCA16,
GKR16] and even the heterogeneity within nodes [KK17], while others being agnostic
of application DAGs [IPC09, GSG16, TZP16]. The DAPHNE approach is to leverage both
the application DAG and the tiled execution engine to distribute work among nodes of
a cluster. The DAPHNE distributed scheduler will consider locality, holding metadata
information about prior executed tasks and the involved datasets and working sets to
minimize the cost of data transfers, maximize parallelism, and improve performance.

22

+"« DAPHNE

5 Summary and Outlook

This deliverable describes the initial design of the DAPHNE scheduler for pipeline and
tasks and the scheduling context, namely scheduling levels, decisions, and optimization
goals. We explored the possible scheduling principles, strategies, and techniques that
each component of the DAPHNE system (e. g., compiler and runtime) may consider.
The DAPHNE local and distributed schedulers have been discussed with certain
highlights on their different optimization goals.

In the next project period, we will extend the scheduler design for pipelines and tasks
with hierarchical considerations. A hierarchical approach to scheduling of pipelines
and tasks will require the exchange of scheduling information between the local
schedulers (at the intra-node level) and the global scheduler (at the inter-node level).
Hierarchical scheduling will aid in refining the scheduling decisions at a given level
based on the available information about the current scheduling workload at other
levels [EC21] [EC19]. Forinstance, monitoring the individual execution progress of each
local scheduler and sharing such information with the global scheduler enables load
balancing decisions across local schedulers [WZY+14]. Instantaneous reports about
idle execution units allows a global scheduler to reuse them and to increase system
utilization [EC21].

References

[ABC+16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Dauvis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, Xiaogiang Zheng: TensorFlow: A System for Large-Scale Machine
Learning. OSDI 2016: 265-283

[Ban00] Banicescu, loana and Liu, Zhijun. Adaptive Factoring: A Dynamic Scheduling Method Tuned to
the Rate of Weight Changes. In Proceedings of the High performance computing Symposium, 2000,
pages 122-129.

[BBE+14] Matthias Bohm, Douglas R. Burdick, Alexandre V. Evfimievski, Berthold Reinwald, Frederick R.
Reiss, Prithviraj Sen, Shirish Tatikonda, Yuanyuan Tian: SystemML's Optimizer: Plan Generation for Large-
Scale Machine Learning Programs. IEEE Data Eng. Bull. 37(3): 52-62 (2014)

[BEK+17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral B. Shah: Julia: A Fresh Approach to
Numerical Computing. SIAM Rev. 59(1): 65-98 (2017)

[BRH+18] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski,
Niketan Pansare: On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML.
Proc. VLDB Endow. 11(12): 1755-1768 (2018)

[BTR+14] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian, Douglas
Burdick, Shivakumar Vaithyanathan: Hybrid Parallelization Strategies for Large-Scale Machine Learning
in SystemML. Proc. VLDB Endow. 7(7): 553-564 (2014)

[BW91] Katherine M. Baumgartner and Benjamin W. Wah. Computer scheduling algorithms: past, present
and future. Journal of Information Sciences, 57:319-345, 1991.

[BZNO5] Peter A. Boncz, Marcin Zukowski, Niels Nes: MonetDB/X100: Hyper-Pipelining Query Execution.
CIDR 2005: 225-237

[CAB+01] Anthony T. Chronopoulos, Razvan Andonie, Manuel Benche, and Daniel Grosu. A Class of Loop
Self-scheduling for Heterogeneous Clusters. In Proceedings of International Conference on Cluster
Computing,2001, pages 282-291.

+"« DAPHNE

[CBO8] Ricolindo L. Carifio and loana Banicescu. Dynamic Load Balancing with Adaptive Factoring
Methods in Scientific Applications. Journal of Supercomputing, 44(1):41-63, 2008.

[CG17] Chen, Quan, and Minyi Guo. Task scheduling for multi-core and parallel architectures. Singapore:
Springer Nature, 2017.

[DFF13] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize, Baptiste
Lepers, Vivien Quema, and Mark Roth. 2013. Traffic management: a holistic approach to memory
placement on NUMA systems. In Proceedings of the eighteenth international conference on
Architectural support for programming languages and operating systems (ASPLOS '13). Association for
Computing Machinery, New York, NY, USA, 381-394. DOI: https://doi.org/10.1145/2451116.2451157.
[DK13] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for
heterogeneous datacenters. In Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems (ASPLOS '13). Association for Computing
Machinery, New York, NY, USA, 77-88. DOI: https://doi.org/10.1145/2451116.2451125.

[DP91] Chen, Ding-Kai, and Pen-Chung Yew. An empirical study on DOACROSS loops. University of
lllinois at Urbana-Champaign, Center for Supercomputing Research and Development, 1991.

[D+19] Deelman, Ewa, Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira da Silva, George
Papadimitriou, and Miron Livny. "The evolution of the Pegasus workflow management software."
Computing in Science & Engineering, 2019.

[EN16] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, Seventh Edition, Chapter 19.
Pearson, 2016.

[GCA16] Robert Grand|, Mosharaf Chowdhury, Aditya Akella, and Ganesh Ananthanarayanan. 2016.
Altruistic scheduling in multi-resource clusters. In Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation (OSDI'16). USENIX Association, USA, 65-80.

[GKR16] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan Kulkarni. 2016.
Graphene: packing and dependency-aware scheduling for data-parallel clusters. In Proceedings of the
12th USENIX conference on Operating Systems Design and Implementation (OSDI'16). USENIX
Association, USA, 81-97.

[GNH+11] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, Yannis Sismanis: Large-scale matrix factorization
with distributed stochastic gradient descent. KDD 2011: 69-77.

[EC19] Ahmed Eleliemy and Florina M. Ciorba. Hierarchical Dynamic Loop Self-Scheduling on
Distributed-Memory Systems Using an MPI+MPI Approach. In Proceedings of the International Parallel
and Distributed Processing Symposium Workshops, 2019, pages 689-697.

[EC20] Eleliemy, Ahmed, and Florina M. Ciorba. "A distributed chunk calculation approach for self-
scheduling of parallel applications on distributed-memory systems." Journal of Computational Science
51 (2021): 101284.

[EC21] A. Eleliemy and F. M. Ciorba. A Resourceful coordination Approach for Multilevel Scheduling. In
Proceedings of the International Conference on High Performance Computing & Simulation (HPCS
2021), virtual event.

[FHSF92] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A Method for
Scheduling Parallel Loops. Journal of Communications of the ACM, 35(8):90-101, 1992.

[FHSU+96] Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. Load-sharing in
Heterogeneous Systems via Weighted Factoring. In Proceedings of the 8th annual ACM symposium on
Parallel algorithms and architectures, 1996, pages 318-328.

[GBH12] Gregg, Chris & Boyer, Michael & Hazelwood, Kim & Skadron, Kevin. 2012. Dynamic
Heterogeneous Scheduling Decisions Using Historical Runtime Data.

[GNK20] David Gureya, Jodo Neto, Reza Karimi, Jodo Barreto, Pramod Bhatotia, Vivien Quema, Rodrigo
Rodrigues, Paolo Romano, Vladimir Vlassov, "Bandwidth-Aware Page Placement in NUMA," in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 2020 pp.
546-556.

[GSG16] lonel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven Hand. 2016.
Firmament: fast, centralized cluster scheduling at scale. In Proceedings of the 12th USENIX conference
on Operating Systems Design and Implementation (OSDI'16). USENIX Association, USA, 99-115.

24

+"« DAPHNE

[HHH+21] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, Wolfgang Lehner: Simplicity Done Right
for Join Ordering. CIDR 2021.

[HS82] T. C. Hu, M. T. Shing: Computation of Matrix Chain Products. Part I. SIAM J. Comput. 11(2): 362-
373 (1982).

[IGN+12] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, Martin L.
Kersten: MonetDB: Two Decades of Research in Column-oriented Database Architectures. IEEE Data Eng.
Bull. 35(1): 40-45 (2012).

[IPCO9] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg.
2009. Quincy: fair scheduling for distributed computing clusters. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (SOSP '09). Association for Computing Machinery,
New York, NY, USA, 261-276. DOI: https://doi.org/10.1145/1629575.1629601

[IPE+21] Ihde, Nina, Paula Marten, Ahmed Eleliemy, Gabrielle Poerwawinata, Pedro Silva, Ilin Tolovski,
Florina M. Ciorba, and Tilmann Rabl. (2021) "A Survey of Big Data, High Performance Computing, and
Machine Learning Benchmarks." In Proceedings of In Proceedings of the 13th Transaction Processing
Council Technology Conference on Performance Evaluation & Benchmarking.

[KD19] K. Dursun et al. A Morsel-Driven Query Execution Engine for Heterogeneous Multi-Cores. PVLDB,
12(12), 2019.

[KKM17] J. B. Kotra, S. Kim, K. Madduri and M. T. Kandemir, "Congestion-aware memory management
on NUMA platforms: A VMware ESXi case study," 2017 IEEE International Symposium on Workload
Characterization (IISWC), 2017, pp. 146-155, DOI: 10.1109/ISWC.2017.8167772.

[KK17] Michael Kaufmann and Kornilios Kourtis. 2017. The HCl Scheduler: Going all-in on Heterogeneity.
In 9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 17). USENIX} Association.
[KW85] Clyde P. Kruskal and Alan Weiss. Allocating Independent Subtasks on Parallel Processors. |IEEE
Transactions [PK87] Constantine D. Polychronopoulos and David J. Kuck. Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Computers,
100(12):1425-1439,1987.

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, Thomas
Neumann: How Good Are Query Optimizers, Really? Proc. VLDB Endow. 9(3): 204-215 (2015)

[LRG+17] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, Thomas Neumann: Cardinality
Estimation Done Right: Index-Based Join Sampling. CIDR 2017

[MTH11] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. 2011. Bubble-Up:
increasing utilization in modern warehouse scale computers via sensible co-locations. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44). Association for
Computing Machinery, New York, NY, USA, 248-259. DOI: https://doi.org/10.1145/2155620.2155650.
[MV15] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous Computing
Techniques. ACM Comput. Surv. 47, 4, Article 69 (July 2015), 35 pages. DOI:
https://doi.org/10.1145/2788396.

[LCG16] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis.
2016. Improving Resource Efficiency at Scale with Heracles. ACM Trans. Comput. Syst. 34, 2, Article 6
(May 2016), 33 pages. DOI: https://doi.org/10.1145/2882783.

[Leu04] Leung, Joseph YT, ed. Handbook of scheduling: algorithms, models, and performance analysis.
CRC press, 2004.

[LSM15] J. Lee, M. Samadi and S. Mahlke, "Orchestrating Multiple Data-Parallel Kernels on Multiple
Devices," 2015 International Conference on Parallel Architecture and Compilation (PACT), 2015, pp. 355
366, DOI: 10.1109/PACT.2015.14.

[Luc92] Steven Lucco. A Dynamic Scheduling Method for Irregular Parallel Programs. In Proceedings of
the ACM Conference on Programming Language Design and Implementation, 1992, pages 200-211.
[LTS+93] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik. Locality and loop scheduling on NUMA
multiprocessors. In Proceedings of the international conference on parallel processing, 1993, pages 140-
147.

[N11] Thomas Neumann: Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc. VLDB
Endow. 4(9): 539-550 (2011).

25

heduler ' ipelin (QQ’DAPHNE

[NPG19] Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios Karakostas, Georgios
Goumas, and Nectarios Koziris. 2019. DICER: Diligent Cache Partitioning for Efficient Workload
Consolidation. In Proceedings of the 48th International Conference on Parallel Processing (ICPP 2019).
Association for Computing Machinery, New York, NY, USA, Article 15 1-10. DOI:
https://doi.org/10.1145/3337821.3337891.

[PD22] P. Damme, et. al. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data
Analysis Pipelines. 2022.

[PK87] Constantine D. Polychronopoulos and David J. Kuck. Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Computers, 100(12):1425-1439,
1987.

[PSM15] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anastasia Ailamaki.
2015. Scaling up concurrent main-memory column-store scans: towards adaptive NUMA-aware data
and task placement. Proc. VLDB Endow. 8, 12 (August 2015), 1442-1453. DOI:
https://doi.org/10.14778/2824032.2824043.

[TMS11] Lingjia Tang, Jason Mars, and Mary Lou Soffa. 2011. Contentiousness vs. sensitivity: improving
contention aware runtime systems on multicore architectures. In Proceedings of the 1st International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era (EXADAPT '11). Association
for Computing Machinery, New York, NY, USA, 12-21. DOI: https://doi.org/10.1145/2000417.2000419.
[TN93] Ten H. Tzen and Lionel M. Ni. Trapezoid Self-Scheduling: A Practical Scheduling Scheme for
Parallel Compilers. IEEE Transactions on Parallel and Distributed Systems, 4(1):87-98, 1993.

[TZP16] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-Balter, and
Gregory R. Ganger. 2016. TetriSched: global rescheduling with adaptive plan-ahead in dynamic
heterogeneous clusters. In Proceedings of the Eleventh European Conference on Computer Systems
(EuroSys '16). Association for Computing Machinery, New York, NY, USA, Article 35, 1-16. DOI:
https://doi.org/10.1145/2901318.2901355.

[SYTO7] Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng. A Performance-based Parallel
Loop Scheduling on Grid Environments. Journal of Supercomputing, 41(3):247-267, 2007.

[UlI75] J. D. Ullman. NP-complete Scheduling Problems. Journal of Computer and System Sciences,
10(3):384-393, 1975.

[VA20] Versluis, Laurens, and Alexandru losup. (2020). "A Survey and Annotated Bibliography of
Workflow Scheduling in Computing Infrastructures: Community, Keyword, and Article Reviews--
Extended Technical Report.". arXiv preprint:2004.10077.

[VL14] V. Leis et al. Morsel-driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD, 2014.

[WS81] Burton, F. Warren, and M. Ronan Sleep. Executing functional programs on a virtual tree of
processors. In Proceedings of the 1981 conference on Functional programming languages and computer
architecture, pp. 187-194. 1981

[WZY+14] Wang, Yizhuo, Yang Zhang, Yan Su, Xiaojun Wang, Xu Chen, Weixing Ji, and Feng Shi. An
adaptive and hierarchical task scheduling scheme for multi-core clusters. Parallel computing 40, no. 10
(2014): 611-627.

26

DAPHNE - 957407 Public

