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Integrated data analysis (IDA) pipelines — that combine data management (DM) and query
processing, high-performance computing (HPC), and machine learning (ML) training and
scoring — become increasingly common in practice. Interestingly, systems of these areas share
many compilation and runtime techniques, and the used - increasingly heterogeneous -
hardware infrastructure converges as well. Yet, the programming paradigms, cluster resource
management, data formats and representations, and execution plans differ substantially.
DAPHNE is an open and extensible system infrastructure for such IDA pipelines, including
language abstractions, compilation and runtime techniques, multi-level scheduling, hardware
(HW) accelerators, and computational storage for increasing productivity and eliminating
unnecessary overheads. In this report, we make a case for IDA pipelines, describe the overall
system architecture, its key components, and the design of a vectorized execution engine for
computational storage, HW accelerators, as well as local and distributed operations.

Modern data-driven applications in many domains deal with increasingly large and
heterogeneous data collections as well as a variety of machine learning (ML) models for cost-
effective automation and improved analysis results. Examples include ML-assisted
manufacturing, biomedical engineering [A17], natural sciences, remote sensing, transportation,
health-care, and finance [Z+19], which often include data access via open formats, data pre-
processing and cleaning, ML model training and scoring, HPC libraries and custom codes, but
also ML-assisted simulations [A+19b, P+21] and data analysis of simulation outputs [BDS14].
These complex end-to-end analysis requirements create a trend towards integrated data
analysis (IDA) pipelines that jointly utilize data management (DM), high-performance
computing (HPC), and ML systems.

Deployment Challenges: Developing and deploying such IDA pipelines is, however, still a
painful process of integrating different systems and related developers, programming
paradigms, resource managers, and data representations. Common tools include local or
distributed analytical database systems [D+16, RM20]; flexible data-parallel computation
frameworks like Spark [Z+12], Flink [C+15], or Dask [R15]; distributed ML systems like
TensorFlow [A+16] or PyTorch [P+19]; domain-specific systems and libraries; and custom
application codes. Integrating DM+ML, HPC+ML, DM+HPC for improving productivity and/or
performance are old problems though. Examples go back to Jim Gray's work on the Sloan
Digital Sky Survey [S+00], decades of data mining and advanced analytics, in-DBMS ML
[KBY17], array databases like SciDB [S+11], and more recently, data management around ML
systems (e.g., TensorFlow TFX [B+17]), and HPC-inspired (e.g., topology-aware) data
management and query processing [BKS20]. However, an open system infrastructure for
seamlessly developing and running IDA pipelines is still missing, and at the same time, new
challenges related to hardware, productivity, and utilization emerge.

HW Challenges: Interestingly, data management, HPC, and ML systems share many compi-
lation and runtime techniques; and together stress every HW aspect of storage, computation,
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and networking. Accordingly, these systems are strongly impacted by HW challenges such as
the end of Dennard scaling and the end of Moore's law, which ultimately lead to dark silicon
[JP13] and increasing specialization at device level (CPUs, GPUs, FPGAs, ASICs), storage level
(computational memory/storage, storage hierarchies), and workload level (data types and
sparsity). Similar to — and triggered by — the trend to IDA pipelines, the underlying HW
environment of DM/HPC/ML systems converges as well. This HW specialization in turn leads
to increasing heterogeneity and thus, even larger productivity and utilization challenges for
pipelines across DM, HPC, and ML systems. Although it might appear overly ambitious, we
argue that it is time for building a dedicated system infrastructure — albeit utilizing existing
compilation frameworks and runtime libraries — that can mitigate these challenges jointly.

Contributions: The DAPHNE project sets out to build an open and extensible system
infrastructure for integrated data analysis pipelines. For good integration and extensibility, we
base this infrastructure on MLIR [L+20] as a multi-level, LLVM-based intermediate
representation backed by multiple organizations and communities. This approach allows a
seamless integration with existing applications and runtime libraries (e.g., BLAS/LAPACK,
collective operations, task scheduling, DNN operations, compression, /O, and column-vector
primitives), while also enabling extensibility for specialized data types, hardware-specific
compilation chains, and custom scheduling algorithms. In this report, we share the motivation
and design of the overall DAPHNE system, including the following technical contributions:

¢ IDA Pipelines: We first make a case for IDA pipelines by example of real-world use
cases, and then summarize their main characteristics, challenges, and opportunities by
requirements on related system infrastructure in Section 3.

e System Architecture: Subsequently, we describe the overall MLIR-based architecture,
data representations, and major design decisions in Section 4.

e Vectorized Execution: We further introduce a vectorized execution engine for
compiled operator pipelines of frames, matrices, and tensors; heterogeneous HW
devices, and computational storage in Section 5.

Integrated data analysis pipelines consist of complex, often multi-phase workflows of ETL
(extraction transformation loading) processes, ML training/scoring, numerical computation or
simulation, and query processing and data analysis. In order to raise awareness of this trend
towards IDA pipelines, we briefly describe a representative real-world use case, and summarize
common characteristics, challenges, and opportunities.

We describe a selected example use case from the area of earth observation, but it is
representative for a much broader range of applications. The report D8.1 [SB+21] (which is
concurrently developed at the time of this writing) describes the DAPHNE use cases — from
earth observation, semiconductor manufacturing, material degradation, and vehicle
development — as well as their initial IDA pipelines in much more detail.
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Earth Observation: Local climate zones (LCZs) classification categorizes patches of satellite
images for modeling climate-relevant surface properties (e.g., surface imperviousness and
structure) [SO12, Z+19b]. This use case leverages the Sentinel-1 synthetic aperture radar data
and Sentinel-2 optical images (obtained by the European Space Agency as part of the
Copernicus initiative), where one year of global data is already in the range of 4 PB. For training
LCZs classifiers, the DLR team materialized and published a labeled dataset, called So2Sat
LCz42 [Z+19b, Z+20] that consists of 400,673 pairs of Sentinel-1/Sentinel-2 image patches
(32x32) and LCZ labels. The labels were hand-annotated by 15 experts in a month, and verified
by 10 experts casting votes for a subset of the dataset, yielding a high a confidence of 85%.
Together, the train, test, and validation data account for ~55.1 GB in HDF5 format. The training
pipeline includes Sentinel-2 pre-processing steps as well as training a ResNet20 [H+16, H+16b]
classifier. However, the main challenge is applying the scoring pipeline efficiently at peta-byte
scale: reading the data from complex storage hierarchies, applying pre-processing,
quantization into fixed-point representations, forward pass of ResNet20, materialization and
subsequent spatio-temporal data analysis (e.g., for research of global urbanization)

The main characteristic of many IDA pipelines is the composition of complex workflows
including data pre-processing, ML training and scoring (often with multiple models), numerical
computation and simulations, human intervention and large project teams, as well as query
processing of input data and intermediates. The following list identifies key requirements on
related system infrastructure:

¢ Seamless high-level APIs and DSLs (DM, HPC, ML; operations and primitives for
common computation tasks such as data cleaning, feature transformations, SQL query
processing ML algorithms, and model debugging; mini-batch and batch training)

¢ Extensible infrastructure (data types, kernels, metrics, scheduling; with externalized
multi-level compilation for early adoption by researchers, HW vendors, platform
developers, and performance engineers)

¢ Interoperability between frame and matrix operations (seamless data conversion,
shared data structures and operations, common zero-copy slicing and data access)

¢ Integration with resource management, programming models, and specialized
libraries (seamless integration of existing DM, HPC, ML libraries for reuse and
interoperability; integration with resource management for improved resource sharing;
timely adoption of, and integration with, new deployment models and infrastructure)

¢ Local and Distributed Data Representations (local, distributed, and out-of-core
datasets; with dense, sparse, and irregularly ragged or nested data formats; and
heterogeneous, multi-modal input formats)

e Heterogeneous Hardware (awareness and utilization of storage hierarchies,
computational storage with sync and async I/O, and heterogeneous accelerators with
a spectrum of interfaces from high-level kernel abstractions to increasing specialization)

¢ Fine-grained operator fusion and parallelism (operator fusion and code generation
for workload characteristics and heterogeneous HW, with data and plan partitioning
across devices and nodes for full utilization of available hardware resources)
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With system infrastructure addressing these requirements, new opportunities arise. Examples
include tightly integrated ML-assisted simulations; materialization decisions for late data
augmentation during ML training, and query processing of simulation outputs; as well as
improved scheduling and resource utilization in shared cluster environments.

DAPHNE is an open and extensible system infrastructure for developing and executing
integrated data analysis pipelines. In this section, we share the design of the overall system
architecture and its key components.

The DAPHNE system architecture is shown in Figure 1. DAPHNE is built from scratch in C++
(for seamless integration with HW specialization), but utilizes MLIR [L+20] as a multi-level,
LLVM-based intermediate representation (IR) as well as existing runtime libraries such as BLAS,
LAPACK, and DNN kernels as well as collective operations. These libraries are augmented with
more specialized, custom kernel implementations. Users specify their IDA pipelines in the
DaphneDSL (a language similar to Julia, PyTorch, or R) or DaphnelLib (a high-level Python API
with lazy evaluation that internally compiles DaphneDSL scripts as well). These scripts are then
compiled — via a multi-level compilation chain — into executable runtime plans.
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Figure 1: DAPHNE System Infrastructure.
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Extensibility: A major design decision is the focus on an extensible infrastructure allowing the
registration of new data types, kernels, and scheduling algorithms in predefined extension
hooks. Extensibility goes beyond recent work on combining variants (variability) of
communication primitives [G+21]. We further allow sideway entries into the multi-level
compilation chain for enforcing certain physical data types and kernels. These enforced
physical properties are treated as constraints and the optimizing compiler respects and works
around them. In contrast to more declarative interfaces, this multi-level abstraction can simplify
experimentation and extensions while providing data independence and automatic
optimization for unconstrained scripts. Related research directions include appropriate
abstractions — for essential extension points — which limit potential increases in system
complexity, and ensure low overhead and high performance. An example is an operator
abstraction for new kernels that exposes interesting properties, which in turn, can be used by
more broadly applicable simplification rewrites.

Compilation Chain: The DaphneDSL scripts are converted by an ANTLR parser into MLIR,
specifically, DaphnelR as an MLIR dialect comprising conditional control flow, matrix and frame
data types, as well as logical and physical frame and matrix operations. Additionally, we
integrate a(n) SQL query parser that translates SQL into frame operations, and parsers for
existing DSLs (like SystemDS’ [BA+20] DML) in order to reuse DSL-based primitives for data
cleaning, data preprocessing, ML algorithms, and model debugging. After parsing, we apply
various MLIR optimization passes such as common-subexpression elimination, and code
motion, but also new passes such as algebraic simplifications, inference of interesting
properties, and cost-based optimization. The joint system infrastructure also enables
cardinality [BH+07, MNS09] and sparsity [SB+19] estimation in a holistic manner. In contrast
to other MLIR dialects, we lower frame and matrix operations to C++ kernels and only use
LLVM for control flow and scalar operations. At the same time, this design still allows the
implementation of selected kernels in LLVM, or other MLIR dialects, if beneficial.

Runtime Environment: At runtime, the kernels are executed sequentially and produce
materialized intermediates in memory with copy-on-write semantics and operator-level
synchronization barriers. Besides this basic execution model, DAPHNE will adopt hierarchical
scheduling mechanisms for ML pipelines; task-parallel loops and operations; data-parallelism
across nodes, devices, NUMA nodes, and cores; as well as vector-instruction-parallelism. Our
vectorized execution engine — as described in Section 5 — further provides means of operator
fusion, and a seamless integration of heterogeneous computing devices, computational
storage, and distributed operations.

DAPHNE's basic data types are frames, matrices, and scalars, where a frame is a bag (unordered
multiset) of tuples with a schema, and a matrix is a two-dimensional array. Each matrix, scalar
or frame-column has a value type (e.g., FP32, BF16, UINT8). At DSL level, users deal with these
abstract data types, and the compiler systematically lowers operations to kernels that produce
local or distributed physical data structures.
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Local Data Structures: DAPHNE's core data structures are dense or sparse matrix formats.
Both use row-major representations: a dense linearized one-dimensional array, and a
compressed sparse row (CSR) [S94] format of row offsets, column-index and value arrays. While
matrices are homogeneous arrays, frames have a schema and thus, require the handling of
value types. Given common analytic workload characteristics, our frames rely on a column-
oriented storage implemented via a dense matrix per column or column group. This
composition allows the reuse of matrix operations as frame operations. Finally, for zero-copy
indexing (e.g., slicing or vectorized execution), each matrix can specify a view window on top
of a potentially larger array.
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Figure 2: Examples of Distributed Data Structures.

Distributed Data Structures: The distributed matrix and frame representations are then
composed from the local data structures. We support the following two abstractions that give
a great balance of flexibility and control:

¢ Distributed Collections of Tiles: A matrix is divided into fixed-size blocks and stored
as a collection of block-indexes and blocks [KBY17]. By default, such a bag is unordered
but can be partitioned (hash, range) or sorted. Figure 2.a shows an example 4500-x-
3000 matrix, organized as a collection of squared 1K-x-1K blocks and hash-partitioned
into three partitions, which can then be stored and processed in a distributed manner.

¢ Federated Matrices/Frames: A federated matrix is a virtual matrix whose individual
parts (identified by index ranges, and address information for accessing remote data)
are stored as local or distributed data at a federated site [B+21] or device. Figure 2.b
shows again an example 4500-x-3000 matrix that is federated across host and device
memory, where the federated meta data comprises index ranges and pointers.

Both of these abstractions are amenable to data-parallel computation, but they have different
tradeoffs regarding distribution, load balancing, sparsity, and direct access.

The compiler produces an execution plan with calls to C++ host kernels for local, distributed,
or accelerator operations. Our kernels make heavy use of C++ templates for both value types
and combinations of dense and sparse inputs. Since we support hundreds of operations that
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require specialization, we automatically generate the template instantiations. For n-ary
operations with mixed types, the compiler injects casts, some of which (e.g., casting an FP32
frame-column to an FP32 matrix) are no-ops.

Context Objects: Access to distributed runtimes and HW accelerators is encapsulated in a
context object that is passed to individual kernels. The initializers of specific contexts are local
kernels themselves that add state to the global context. This approach simplifies the integration
of new accelerators via shared libraries of kernels and optimization passes.

Distributed Runtime: We aim for an integration with different distributed programming
models and resource managers. As a first step, we are building the DAPHNE standalone
distributed runtime with dedicated worker processes, simple RPC communication, and a basic
integration with SLURM as a common HPC resource manager. The host kernels of distributed
operations then bring data into a distributed representation if needed and spawn distributed
jobs in the form of MLIR snippets that can be compiled in an architecture-aware manner at the
individual workers. In the future, we aim to further integrate MPI and device-specific collective
operations (e.g., NVIDIA NCCL), and embedded deployments in different HPC, cloud, and DB
environments. Accordingly, we keep the initial design generic enough to allow such extensions.

Most HW accelerators like GPUs, FPGAs, and near-SSD compute have a cache hierarchy and
high-bandwidth memory. In hybrid runtime plans that utilize heterogeneous hardware, a data
object might be partitioned or replicated across devices. For maximum flexibility — for example
in programs with conditional control flow — we keep this data-location information in runtime
data structures. Specifically, matrices and frames reference the host data (which can be a
nullptr) and/or data on HW accelerators, computational storage devices, and distributed
workers. For example, a compiled GPU operation is called through its host kernel, which first
invokes primitives to make the inputs available in GPU memory. If the data is already on the
GPU, there is no additional transfer, and otherwise the primitive utilizes implicit (stream and
discard) or explicit (copy and retain) means of data transfer. Additionally, we allow the compiler
to inject prefetch and broadcast directives to overlay anticipated transfers with other
operations. These distribution primitives nicely generalize to HW accelerators, the distributed
runtime, and computational storage [BD21, LB21]. For example, for the DLR inference workload
from Section 3.1, we might broadcast the quantization boundaries (and/or parts of the trained
model) to the near-SSD CPU or FPGA, stream FP32 data from the SSD's flash chips, quantize
the data in batches to UINT8, and thus, reduce the PCle data transfer by 4x. More detailed
designs of managed storage tiers, and near-data processing, as well as the integration and full
utilization of HW accelerators will follow in dedicated deliverables of WP6 and WP7.

Basic runtime plans of kernels with materialized intermediates offer good performance and
simplify debugging. Although this model is commonly used in most ML systems and many
column stores, it suffers from several limitations. Materializing intermediates has large
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temporary memory and memory-bandwidth requirements, multi-threaded kernels create too
fine-grained synchronization barriers per operator, and device placement of operators is too
coarse-grained. In order to address these limitations, we introduce a vectorized execution
engine for compiled operator pipelines of frames and matrices, which allows fine-grained
operator fusion and parallelism across HW devices.
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Figure 3: Vectorized Execution of Compiled Operator Pipelines
(with multi-device data and task placement).

Vectorized Task Execution: Figure 3 shows the basic integration of vectorized operator
pipelines into execution plans. Similar to LLVM loops, such a vectorized pipeline has multiple
inputs, multiple outputs, and an IR body. Additionally, we specify split (e.g., row slicing) and
combine (e.g., row-bind concatenation or aggregate) functions. In this example, we perform
matrix standardization ((X-colMeans(X))/colSds(X)), append a column of ones for
intercept computation, and compute XX and X'y as part of a close-form linear regression
algorithm. The input matrix X is federated across CPU, GPU, and FPGA memory, and vectorized
execution creates tasks for aligned row partitions (similar to morsels [L+14]) and appends them
to one or multiple (device-specific) task queues.

Definition 1 - Vectorized Task: A task comprises its input data, an operator pipeline (graph)
with a specific input data binding (scalar, row, or tile), outputs, and a combiner. The inputs and
outputs can be zero-copy views (index ranges) or specific buffers, where the task size refers to
the length of the range (e.g., number of rows). If the task size is greater than the data binding,
the pipeline is invoked for each data item.

Worker threads then read from the queue, execute the tasks, and combine the results (with
worker-local aggregation if needed). Any HW accelerator worker is implemented as a CPU
thread that launches the actual accelerator kernels.

Fused Operator Pipelines: By controlling the task size, we can ensure bounded memory
requirements and fit intermediates into the device caches. That way, the entire operator
pipeline behaves like a dedicated, hand-crafted kernel. A task is the unit of scheduling with
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potential worker contention on shared task queues and outputs, and random access to the
start of the task data. The more tasks (or the smaller the task size), the higher the overhead but
the better for load balancing. Separating task size from data binding provides additional
flexibility. For example, the pipeline in Figure 2 can be invoked at row granularity (for which we
could specialize the matrix multiplications dsyrk and dgemv to an outer product dger and
daxpy), minimizing the size of intermediates. However, with sufficiently many features (e.g.,
>1000) every row's outer product and accumulation would flush the last-level cache. Instead,
a tiling with multiple rows allows more efficient, cache-conscious operations.

Multi-device Scheduling: As shown in Figure 3, the vectorized execution allows a seamless
integration of HW accelerators and scheduling. For CPU kernels, we leverage single-operator
pipelines as the default multi-threading which applies to many element-wise and aggregation
operations. In this framework, we will further explore different task partitioning and scheduling
strategies, single and multiple task queues (e.g., device-specific with task stealing), and data-
locality-aware scheduling, and runtime adaptation. Finally, vectorized execution also nicely
integrates with computational storage where operator pipelines can be executed, for instance,
on near-SSD CPUs or FPGAs; and the task queues can also connect asynchronous I/O and
subsequent computation pipelines.

Code Generation: Vectorized execution also simplifies code generation. Instead of
interpreting vector kernels sequentially, we can compile device-specific kernels for different
workers, but reuse the split and combine infrastructure. Code generation allows fine-grained
specialization, sparsity exploitation, and exploitation of reconfigurable devices like FPGAs. For
CPU pipelines, we use MLIR which leverages LLVM for scalar data bindings, and vectorized
kernels or libraries like BLAS and TVL [U+20] for matrices and frames; for GPUs, we compile
CUDA C++ code and call CUDA libraries; and for FPGAs, we use OneAPl DPC++, T2S [S+19],
and hand-crafted kernels. Similarly, but largely unexplored, for computational storage, we aim
to compile eBPF byte-code programs [LB21].

System infrastructure for IDA pipelines is related to a wide variety of areas. We specifically
discuss the context of modern system support for IDA pipelines, trends of HW accelerator
integration, and vectorized execution models.

Systems for IDA Pipelines: The trend toward IDA pipelines is currently handled with a
combination of existing systems including standalone and embedded DBMS like DuckDB
[RM20], ML systems like TensorFlow [A+16] or PyTorch [P+19], data-parallel computation
frameworks like Spark [Z+12], Flink [BZNO5], or Dask [R15] (often with collections of tiles of an
overall matrix or frame), and variety of specialized systems or libraries (e.g., for graph
processing and time series analysis). Furthermore, ML systems are extended with features for
basic data processing (e.g., from TensorFlow to TFX [B+17]), DBMS are extended with ML
capabilities (e.g., via UDFs or lambda functions) [KBY17], data-parallel frameworks aim to
provide a unified environment [Z+12], compilation frameworks like MLIR [L+20] or CVM
[M+20] provide common compiler infrastructure and HPC techniques are increasingly adopted
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across these systems [BKS20]. However, these integrated systems often rely on separate
libraries and data representations for query processing, ML, and HPC; the integration of HW
accelerators is not holistic; and handling of numerical HPC codes is poor.

HW Accelerator Integration: The spectrum of hardware acceleration ranges from CPUs with
SIMD, over GPUs and FPGA, to custom ASICs and focuses on different tradeoffs of
reconfiguration capabilities and levels of performance or energy efficiency. Additional
dimensions include custom data types, sparsity exploitation (e.g., via operator fusion [B+18],
or HW support [N20]), and near-data processing (e.g., on smart SSDs [BD21], as used in (e.g.,
Amazon AQUA [AA21]). Existing work largely relies on manual or heuristic operator placement,
but there is also work on using reinforcement learning for operator placement onto multiple
heterogeneous devices [M+17], and new link technologies significantly influence these
decisions [L+20b, R+20]. Recent work further applies self-scheduling schemes across devices
[D+19], or partitions the data accordingly to expected device performance [G+19], for utilizing
all available devices jointly. At systems level, mostly HW-vendor-provided libraries (e.g., BLAS,
DNN, but also frame operations [N+20b]) are used for CPU, GPU, and partially FPGA
operations, while FPGAs and ASICs are often integrated via dedicated compilation frameworks
like TensorFlow XLA [LW17], TVM [C+18], EVEREST [P+21b], or target-specific compilers [021].
DAPHNE as a compiler and runtime system aims to improve the productivity, extensibility, and
performance of utilizing multiple heterogeneous devices.

Vectorized Execution: Vectorized execution is a heavily overloaded term including (1)
computation via coarse-grained (vectorized) array operations, (2) SIMD (vector) instruction
parallelism, and (3) vector-at-a-time (vectorized) query processing a la MonetDB/X100
[BZNO5]. Interestingly, all three interpretations apply to DAPHNE: the system is optimized for
data analysis and linear algebra on frames and matrices, the kernels and LLVM compiler exploit
SIMD and SPMD parallelism, and a central component is our vectorized execution engine
processing batches of data. Besides ML systems, recent work on vectorized array operations
include tensors for data processing [K+21], decision tree predictions in Hummingbird [N+20],
slicing finding in SliceLine [SB21], and maximum inner-product search in Maximus [A+19],
which all cleanly map complex algorithms to vectorized array operations. Furthermore,
vectorization is related to fused and compiled operator pipelines in SystemDS [B+18] and
Tuplex [SYS21] as well as work on morsel-driven query processing [L+14, D+19].

We described the overall architecture and key design decisions of the DAPHNE system
infrastructure as an open and extensible system for integrated data analysis pipelines,
comprising query processing, ML, and HPC. Major aspects are an MLIR-based compilation
chain, frame and matrix representations, HW accelerators and computational storage, multi-
level scheduling, and a vectorized execution engine that allows for fine-grained fusion and
parallelism across these heterogeneous components.

Preliminary experiments with selected ML pipelines on CPUs, GPUs, and FPGAs show promising
results. In the next few years, we will build out this infrastructure and tackle research challenges
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across the different levels from resource management, device kernels, I/O and buffer

management, and vectorized execution, over compilation, operator and pipeline scheduling,
to seamless extensibility and customization for IDA pipelines.
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