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1 Introduction
Modern data-driven applications have to deal with increasingly large and heterogeneous data
collections as well as a variety of machine learning (ML) models for cost-effective automation
and improved analysis results. This requirement creates a trend towards integrated data
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analysis (IDA) pipelines that jointly utilize data management (DM), high-performance
computing (HPC), and ML systems. As described in [D+22], developing and deploying such
IDA pipelines is, however, still a painful process of integrating different systems and related
developers, programming paradigms, resource managers, and data representations.
Integrating DM+ML, HPC+ML, DM+HPC for improving productivity and/or performance is an
old problem. However, an open system infrastructure for seamlessly developing, deploying,
and running IDA pipelines is still missing, and at the same time, new challenges related to
hardware, productivity, and utilization emerge.
To overcome that, the DAPHNE project sets out to build an open and extensible system
infrastructure for integrated data analysis pipelines. To achieve that goal, our envisioned
infrastructure is based on MLIR as a multi-level, LLVM-based intermediate representation
backed by multiple organizations and communities. This approach allows a seamless
integration with existing applications and runtime libraries while also enabling extensibility for
specialized data types, hardware-accelerated kernels, hardware-specific compilation chains,
and custom scheduling algorithms. While the DAPHNE reports D2.1 - Initial System
Architecture [D2.1] and D2.2 - Refined System Architecture [D2.2] have described the overall
DAPHNE system architecture, report D7.1 - Design of integration hardware (HW) accelerators
[D7.1] has presented the overall design of the integration of HW accelerators as well as has
detailed on accelerated operations and primitives.

As introduced in DAPHNE report D7.1 [D7.1], the challenges for the integration of HW
accelerators are (i) developing as well as generating operators - hereafter also called
computation kernels or kernels for short - which can be efficiently executed on accelerators
such as CPUs, GPUs or FPGAs, (ii) integrating these accelerator-specific operators in the whole
DAPHNE compilation and runtime infrastructure in a seamless way, and (iii) selecting the best-
fitting accelerator for efficient execution depending on the specific IDA pipeline and hardware
environment [D7.1]. While challenge (i) is addressed by Task 7.1 - Accelerated Key Operations
and Data Access Primitives, Task 7.4 - Multi-Device Operation Kernels, and Task 7.5 - Code
Generation for HW Accelerators, challenge (ii) is considered in Task T7.2 - Compiler and Runtime
Support for HW Accelerators. Selecting the best-fitting accelerator for efficient execution -
challenge (iii) - is part of Task 7.2 - Compiler and Runtime Support for HW Accelerators as well
as Task 7.3 - Performance Models and Cost Estimation.

In the subsequent DAPHNE report D7.2 [D7.2], we demonstrated an initial approach how to
develop hardware-accelerated kernels and how to anchor these hardware-accelerated kernels
in the entire DAPHNE infrastructure. Additionally, we gave an overview on the devised
performance models for a cost-based approach for hardware-accelerated kernels and data
placement decisions in a heterogeneous hardware environment. The third DAPHNE report
D7.3 [D7.3] of work package 7 enhanced the work presented in D7.2 by introducing extended
concepts for code generation of hardware-accelerated kernels and the integration into the
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entire DAPHNE infrastructure. On the one hand, we focused on accelerating relational data
processing with the usage of Single-Instruction Multiple-Data (SIMD) extensions of general-
purpose CPUs as well as FPGAs. In particular, we demonstrated a concept that allows to
execute single-source SIMD-oblivious code on both CPU and FPGA without having to consider
FPGAs in isolation. On the other hand, we presented how our efforts regarding code
generation for sparsity exploitation on GPU are improving end to end performance of selected
algorithms available in the DAPHNE source repository.

This fourth and final report summarizes our work and achieved results with regard to multi-
device operations and data placement on multiple homogeneous and heterogeneous devices.
The remainder of this deliverable is structured as follows:

• In Section 2, we detail the access to our prototype artifacts for this written deliverable
document.

• Then, we introduce our prototypes by describing the underlying demonstration
scenarios in Section 3.

• Afterwards, we explain the folder structure of our prototype artifacts in Section 4.

2 Artifact Access
The extended prototype is publicly accessible under the following link:

• Link: https://tinyurl.com/daphne-D74 (tgz archive > 50 MB)

This is a snapshot of the branch D7.4 of the DAPHNE open-source repository at
https://github.com/daphne-eu/daphne (commit as indicated in the file githash.txt in the tgz
archive).
The directories contained in the artifact are described in more detail in section 4.

3 Demonstration scenario
In this deliverable, we present three different scenarios, each focusing on a different kinds of
multi-device settings:

• [Homogeneous Multi-Core CPU]: The first scenario focuses on accelerating relational
data processing with the combined usage of thread-level and data-level parallelism on
general-purpose CPUs. The description is based on the already accepted paper [S+25].

• [Heterogeneous CPU/GPU]: The second scenario extends the homogeneous multi-core
CPU scenario by adding a GPU for co-processing.

• [Multi-Device GPUs]: The third scenario describes the multi-GPU capabilities of
DAPHNE’s vectorized engine.
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3.1 Homogeneous Multi-Core CPU

Despite the continuous evolution of computing units with GPUs, FPGAs etc. in mind, the
enduring dominance of general-purpose CPUs for an efficient data processing remains a
significant fact. The reason for this is that modern general-purpose CPUs still offer high-
computational power. This computational power is achieved through three different sources
of parallelism: thread-level parallelism (based on the Multiple Instruction Multiple Data --
MIMD -- parallel paradigm), data-level parallelism (based on the Single Instruction Multiple
Data -- SIMD -- parallel paradigm), and instruction-level parallelism. State-of-the-art data
processing engines usually leverage all three sources of parallelism in a more or less common
way to reduce the processing latency:

• Thread-level parallelism is usually applied on the level of individual query operators
or pipelines (intra-operator/intra-pipeline parallelism) by distributing the input data
equally among threads (physical cores). That means the same operator/pipeline is
simultaneously executed on multiple (logically) disjoint data partitions (see also [D5.1]
for decision on thread-level parallelism).

• Data-level parallelism is achieved by explicitly using SIMD instructions within query
operators/pipelines. A single SIMD instruction processes multiple data elements
simultaneously, increasing the single-thread performance. The SIMD instructions are
usually applied to contiguous data elements in main memory.

• Instruction-level parallelism is achieved by applying the same operation to a vector
of elements or by compiling operations into intertwined pipeline machine code
(vectorized processing).

While instruction-level parallelism is about executing several instructions in sequence on
loaded or cached data, thread-level and data-level parallelism are used to process data in
parallel. Moreover, thread-level and data-level parallelism complement each other and should
usually be combined to exploit the full potential of modern CPUs. Nevertheless, thread-level
often has a higher priority than data-level parallelism since the main memory bandwidth is
already fully saturated with the use of thread-level parallelism. This aspect is clearly shown in
the diagram in Figure 1(a) illustrating the measured memory throughput for calculating an
aggregating sum of a large array of integer values with increasing thread-level parallelism
(increasing number of physical cores) as well as with (+SIMD) and without (+Scalar) using data-
level parallelism. As depicted, the use of data-level parallelism only reduces the number of
required threads to achieve the maximum throughput of roughly 60GiB/s. The hardware
foundation for these experiments was a recent Intel Xeon Max 9648 (Sapphire Rapids
architecture) with 48 physical cores on a socket and the experiment was conducted on a single
socket with 12 physical cores.
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Figure 1: Comparing multi-threaded throughput for aggregating sum with data in different main memory
technologies.

Since our hardware foundation does not only have regular DRAM, we also repeated the same
experiment with the whole data in High-Bandwidth Memory (HBM) as well. Interestingly, when
executing the same operation on data in HBM (cf. Figure 1(b)), exploiting data-level parallelism
becomes mandatory to utilize the interconnect fully. This experimental result clearly shows
that the joint utilization of MIMD and SIMD is gaining in importance with developments such
as of HBM. However, due to diverging granularities of parallelism and scopes of data accesses,
the state-of-the-art interplay of MIMD and SIMD execution paradigms requires different
approaches, which creates algorithmic overhead when combining them. Therefore, we argue
that it is time to fundamentally rethink the MIMD-SIMD interplay on modern general-purpose
CPUs through a unified memory access approach. Before we discuss our novel approach in
Section 3.1.2, we will first summarize the state-of-the-art in Section 3.1.1. Then, we describe
our prototypical implementation in Section 3.1.3 and present selected evaluation results in
Section 3.1.4.

3.1.1 Preliminaries

As mentioned above, parallelism is the name of the game for an efficient processing of
analytical queries on general-purpose CPUs. According to Flynn's classification, modern CPUs
offer the following hardware parallelization opportunities: (i) Multiple Instruction Multiple Data
(MIMD) and (ii) Single Instruction Multiple Data (SIMD). As next, we will discuss the state-of-
the-art approaches for both. As a representative running analytical example, we compute the
aggregating sum over a large column or array of integer data (contiguous memory area). A
scalar implementation of this aggregating sum sequentially iterates over the array and adds
up the values one after the other.

MIMD: CPUs offering MIMD have a number of homogeneous processing elements (PE) --
cores -- that operate asynchronously and independently. That means individual PEs may be
executing different instructions on different pieces of data at any time. This opportunity -- also
called thread-level parallelism -- is a heavily used optimization technique in columnar database
engines. In detail, MIMD is used to realize a data-partitioned intra-operator parallelism. Here,
all data objects, e.g., columns, are logically partitioned and partitions are exclusively accessed
by the assigned worker thread that is pinned to a specific PE. With this so-called data-oriented
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architecture, the same operator or query pipeline is logically simultaneously executed on
disjoint data partitions. Data partitions are usually equally sized, so every PE processes the
same amount of data, thus minimizing overall runtime.
Listing 1 illustrates our running example implemented as a partitionable loop. The #pragma
(omp parallel) instructs the compiler to partition the following for loop into T_CNT partitions
(if specified) and consequently assigns a set of loop iterations to a distinct thread. Iterations
can be assigned en bloc or interleaved based on a static or dynamic OpenMP scheduler.
However, a specific iteration is only processed by a single thread. To avoid data loss or even a
segmentation fault, the global sum variable must not be written by multiple threads
simultaneously Therefore, it could be either made atomic or a thread-local partial sum is
calculated, e.g., through the custom reduction(+:sum) operation, which only adds up the partial
sums at the end of each block.
Thus, this state-of-the-art approach naturally extends the scalar processing to a thread-level
parallelism and is widely used. Especially for query operators with a sequential memory access
pattern, no sophisticated control mechanisms are required, as there are usually no data or
control flow dependencies between the processed partitions. But it can also be used to realize
more complex operators. We can conclude that MIMD is used to realize a logically
synchronous -- but physically asynchronous – and independent processing of logically
partitioned data for an efficient analytical query processing.

SIMD: Contrary to MIMD, SIMD describes computing units with multiple PEs -- SIMD register
lanes -- that perform the same instruction on multiple data elements parallel in lockstep. That
means SIMD exploits data-level parallelism, but not concurrency: there are parallel
computations, but each PE performs the exact same instruction on different pieces of data at
any time. On general-purpose CPUs, each core offers SIMD capabilities through specific SIMD
instruction set extensions with varying capabilities (e.g., Intel SSE, AVX2, AVX512, or ARM
Neon/SVE). From an abstract point of view, the state-of-the-art SIMD processing for an
efficient analytical query processing resembles its scalar counterpart. Data has to be loaded
sequentially into a (SIMD-)register, which can then be further processed through explicit
intrinsics rather than higher-level abstract operators such as + or -. Lines 7 and 8 in Listing 2
show the exact translation of the scalar variant via AVX512 intrinsics. Based on the SIMD
properties and their standard interpretation, we can conclude that SIMD is used to realize a
synchronous and dependent processing of consecutive data elements for efficient analytical

1 uint64_t const * data; /* previously initialized */

2 uint64_t sum = 0;

3 #pragma omp parallel for num_threads(T_CNT) reduction(+:sum)

4 for (size_t i = 0; i < total_elements; ++i) {

5 const auto val = data[i];

6 sum += val;

7 }

Listing 1: Basic OpenMP aggregation.

1 #pragma omp declare reduction(simd_add :...)

2 uint64_t const * data; /* previously initialized */

3 uint64_t sum = 0;

4 __m512i vec_sum = _mm512_set1_epi64(0);

5 #pragma omp parallel for num_threads(T_CNT) reduction(simd_add : vec_sum)

6 for (size_t i = 0; i < total_elements / VEC_SZ; ++i) {

7 const auto vals = _mm512_loadu_epi64(data + (i * VEC_CNT));

8 vec_sum = _mm512_add_epi64(vec_sum, vals);

9 }

Listing 2: Basic OpenMP aggregation with explicit SIMD.
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processing. This is an entirely different approach compared to the thread-level parallelism
discussed above.

Interplay MIMD-SIMD: Listing 2 also shows that linear SIMD processing can be easily
enriched with OpenMP to combine both approaches, i.e., thread-level parallelism and data-
level parallelism happen in the same operator. On the outer scope, data is divided into a set
of logical partitions, which are processed by an individual thread. However, the SIMD approach
processes multiple elements simultaneously in the inner scope per partition. This
amalgamation employs two orthogonal algorithmic approaches to realize an intra-operator
parallelism, although both want to execute the same operator code for different data elements.
The difference can be explained in more detail from the data access perspective, in this case,
from the underlying array of our running example. While non-contiguous array elements are
accessed across all thread-level PEs, only contiguous array elements are accessed by data-level
PEs. Moreover, the non-contiguous access is logically equivalent to a strided access, where
array elements are accessed equidistantly because the partitions are equally sized. Therefore,
the stride distance (or stride size) equals the partition size. However, this strided access is
implicitly executed by the thread-level parallelism, as each thread is assigned its own start
position in the array and runs through the array from this start position to the end position of
the respective data partition.
This interleaving of strided and linear access naturally makes implementing parallel query
operators more difficult, as different approaches have to be considered. To overcome that, we
argue that the strided access can also be applied to data-level parallelism (SIMD), which thus
allows for a unified parallelization concept as follows: On the outer thread-level scope, data is
divided into a set of coarse-grained logical partitions, which are processed by an individual
thread. On the inner data-level scope, coarse-grained logical partitions are further subdivided
into fine-grained partitions, which are processed by individual SIMD register lanes. To
supplement our claim, we developed a set of carefully designed microbenchmarks, which are
explained in the remainder of the paper. Our microbenchmarks tackle different corner cases
for combinations of data access patterns, applied relational query operators, and the
underlying storage format.

3.1.2 Unified Data Access for MIMD-SIMD Interplay

SIMD extensions of modern general-purpose CPUs consist of two main building blocks: (i)
SIMD registers, which are larger than traditional scalar registers, and (ii) SIMD instructions
working on those SIMD registers. Contrary to scalar processing, SIMD registers must be
explicitly populated with data elements frommainmemory using a load or a gather instruction.
On the one hand, load is applied, whenever a linear data access pattern is conducted as done
in the state-of-the-art for analytical query processing using SIMD capabilities. Linear implies
that the accessed data elements are organized as a contiguous sequence like an array. On the
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other hand, gather is used when a random-access pattern -- data elements from non-
consecutive memory locations -- is required. The general guideline has been that gather
should be avoided as far as possible due to the considerable performance loss.
In [H+22], we already have shown that the gather instruction can achieve the same
performance as the load instruction with a so-called block-strided access pattern. A memory
access pattern is called strided when memory fields accessed are equally distant and the
distance is usually denoted as stride size. The particular property of our proposed block-strided
access pattern is that the input data, e.g., an array, is logically divided into blocks. In the
simplest case, each block consists of k consecutive pages, where k is the number of SIMD lanes
of the underlying SIMD register. The blocks are successively processed and for each block, the
SIMD processing works as follows: Each SIMD lane is assigned a page from the block and each
lane is further responsible for processing the assigned page. To achieve that, a strided access
with the page size as the stride size is performed on the block using the gather instruction.
However, the SIMD processing with this block-strided access pattern is quite complicated and
requires a two-stage partitioning into blocks as well as pages. To overcome that shortcoming,
we investigated the conducted simple partitioning approach of thread-level parallelism for
SIMD processing. In this case, data is logically divided into k equally sized partitions in a
straightforward way and partitions are exclusively pinned to a specific SIMD lane. To load the
corresponding data elements of the k data partitions into the k lanes of a SIMD register, we
issue a gather instruction conducting a strided access, whereby the stride size now equals the
partition size. Then, the same processing functionality through a SIMD instruction is
simultaneously executed on the loaded data elements. Subsequently, the consecutive data
elements within the k partitions are loaded until all data elements of the partitions are
processed.
In the case of our aggregating sum, each SIMD lane computes a partial sum per data partition
like each thread but synchronously. The advantage now is that we apply the same instruction
independently for each lane and can, therefore, rely on element-wise SIMD instructions. In the
final step, we have to add up the individual partial sums, which we can do through the use of
horizontal addition. Figure 3(a) compares the single-threaded throughput results for the
aggregating sum operation with all data in DDR5 main memory on our hardware system using
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Figure 2 :Comparing single-threaded throughput for aggregating sum with all data in DDR5 main memory and with
different access patterns: scalar, linear, and data-partitioned SIMD.
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(i) purely scalar processing (Scalar), (ii) AVX-512 SIMD processing with a linear access pattern
(SIMD Linear), and (iii) AVX-512 SIMD processing with the described simple data-partitioned
approach (SIMD Gather). In the experiments, we varied the array size with randomly generated
uint64_t elements in the range from 0.02 to 500 MiB as depicted on the x-axes of both
diagrams in Figure 3. As we can see, the linear SIMD variant offers significant throughput
advantages if the data fits into the L2 cache (2 MiB on our CPU). However, if the total amount
of data exceeds the size of the L3 cache, then our proposed data-partitioned SIMD approach
outperforms the linear variant. This effect also applies for AVX2 with 32-bit and 64-bit data
types but not for AXV512 with 32-bit data types, which is in line with the results presented in
[H+22]. In addition, we repeated the same experiments with all data in HBM2 main memory
on our Intel Xeon Max hardware system and Figure 3(b) shows the measured throughput
values. The results confirm the DRAM findings for HBM as well.

3.1.3 Implementation and Execution

Traditionally, SIMD is employed in analytical database engines whenever a columnar storage
or decomposition storage model (DSM) is implemented. Two reasons are decisive for this: (i)
only the columns that are relevant to the query need to be read, and (ii) the values per column
are stored contiguously and can therefore be processed very well with a linear access pattern.

In the previous section, we showed that our data-partitioned SIMD processing is on-par or
even better than a linear SIMD processing with the limitation to a single-threaded and single-
column environment. This section transfers this finding in the multithreaded environment and
to the DAPHNE system.
Figure 4 and Listing 3 show our proposed unified parallelization concept for thread-level and
data-level parallelism illustrated on our aggregating sum example. In the illustration of Figure
4, each of the four threads is assigned to a contiguous, coarse-grained and equally sized
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Figure 3: Comparing single-threaded throughput for aggregating sum with all data in HBM main memory and with
different access patterns: scalar, linear, and data-partitioned SIMD.

Figure 4: Unified data access pattern for a combined outer MIMD and inner SIMD aggregating sum.
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partition of the data column. Within each logical partition, we subdivide again into four smaller
partitions, whereby each equally sized fine-grained partition is now processed by one of the
register lanes in parallel. To apply the same partitioning scheme, the MIMD stride size equals
one-fourth of the data size, whereas the SIMD stride size equals one-fourth of the coarse-
grained partition size. Hence, the access pattern for both the global and local computation
follows the same pattern. The corresponding code snippet is depicted in Listing 3.

To demonstrate the feasibility of our approach, we implemented the different concepts for the
aggregating sum within the DAPHNE code base using the kernel extension concept. To
execute this demonstrator, the following steps are necessary:

1. Build daphne
./build.sh

2. Switch to the corresponding extension folder
cd scripts/examples/extensions/mimd_simd_interplay

3. Build all extensions within this folder
make

4. Go back to the DAPHNE root directory
cd ../../../..

5. Execute the aggregating sum using the state-of-the-art MIMD-SIMD interplay
./bin./daphne –kernel-ext scripts/examples/extensions/mimd_simd_interplay/myKernels.json
scripts/examples/extensions/mimd_simd_interplay/AggSIMDLoad.daphne

6. Execute the aggregating sum using the state-of-the-art MIMD-SIMD interplay
./bin./daphne –kernel-ext scripts/examples/extensions/mimd_simd_interplay/myKernels.json
scripts/examples/extensions/mimd_simd_interplay/AggSIMDGather.daphne

In both cases, we populate an array with randomly generated integer values and compute a
sum over these values. The corresponding DAPHNE scripts are: AggSIMLoad.daphne and
AggSIMDGather.daphne. In both cases, the sum is displayed as output, which must be
identical, since the same data is generated. To execute both examples, a general-purpose Intel
CPU with a least 8 cores and the SIMD extension AVX512 is required.

1 #pragma omp parallel num_threads(T_CNT) reduction(+:sum)

2 {

3 uint64_t sum = 0;

4 const size_t offset = elements_per_thread / VEC_SZ;

5 const __m512i idx = _mm512_setr_epi64(

6 0, 1 * offset, 2 * offset, ..., 7 * offset);

7 for (size_t i = 0; i < offset; ++i) {

8 const auto vals = _mm512_i64gather_epi64(

9 idx,

10 data + (omp_get_thread_num() * elements_per_thread) + i,

11 sizeof(uint64_t));

12 sum += _mm512_reduce_add_epi64(vals);

13 }

14 }

Listing 3: Hierarchical partitoned aggregating sum using
OpenMP and strided access.
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Now, Figure 5 compares the achieved performance results for the aggregating sum of the
state-of-the-art OpenMP approach from Listing 2 to our proposed unified data-partitioned
approach as outlined in Listing 3 on our tested hardware platform. In our evaluation, we varied
the explicit T_CNT parameter from 1 to 12, since our hardware exhausts the memory bus with
12 concurrent threads in a memory-bound scenario. Further, we tested different data
placements for both DRAM and HBM. When the data was placed in DRAM, cf. Figure 5(a), we
can observe a plateau forming at around 63 GiB/s, for both SIMD-linear and SIMD-Gather. The
right-hand side of this figure shows the results of the same experiment but with data placed
in HBM. However, no such plateau can be observed for either variant, leaving a throughput
gap between the two of about 40 GiB/s. We used the code from the mentioned listings for this
experiment and fixed the coarse-grained partition size per thread to 256 MiB, filled with 64-
bit unsigned integer values. Consequently, when increasing T_CNT, the total amount of data
increases, but the coarse- and fine-grained partition size and, hence, both the outer and inner
stride size stays constant. We used AVX512 for SIMD processing, which provides 8 SIMD lanes
for 64-bit values. The general finding of this experiment emphasizes our claim that, at least for
DRAM, our proposed data-partitioned SIMD processing can be applied to the inner loop part
while maintaining a comparable throughput.

3.1.4 Furter Evaluation Results

To analyze the effect of the slightly lower throughput compared to the microbenchmark results
from Section 3.1.2, we take a step back to the single-threaded execution but with multiple
columns now. We expanded our aggregating sum into a filter-aggregating sum scenario to
do this. This scenario works as follows: Assuming we have X columns (table with X attributes
as frame), then a filter condition is checked on each of the X-1 columns. Only the last attribute
is used for the aggregation if the tuple qualifies, and we observe that the selectivity of the filter
has no visible impact since we have to read all the data in any case. In Figure 6(a), we have
chosen a column size of 128 MiB and used this size for all columns. Since we consider AVX512
and 64-bit integer data, our fine-grained partitions have a size of 16 MiB in this case. This size
is also our stride size for the necessary strided access. Moreover, each fine-grained partition
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Figure 5: Througput for OpenMP with a linear and data-partitioned aggregating sum on SIMD with different memory
types.



DAPHNE – 957407
14

occupies 4096 pages in this case since our system uses a page size of 4 KiB. This results in a
setting where the fine-grained partitions are page-aligned, and therefore, the strided access
is also page-aligned. The strided access now loads the following data: The first gather
instruction loads the elements at position 0 of 8 different pages, whereby the page distance
between two elements is 4096 pages (stride size of 16 MiB). The subsequent gather
instructions load the following elements with ascending positions. As illustrated in Figure 6(a),
the achieved throughput of the data-partitioned SIMD processing (DSM SIMD Gather) is
slightly slower compared to linear SIMD processing (DSM SIMD). This is also consistent with
the results as presented in [H+22].

Based on this finding, however, the question arises as to why the microbenchmark results from
Section 3.1.2 have shown a performance benefit. The reason for this can only be the page
alignment. To investigate that, we reduced the total amount of data by a small fraction in a
second experiment, i.e., to 127.98 MiB per column, which in turn means that not every fine-
grained partition starts on a new page. As visible in Figure 6(b), the linear SIMD processing
achieves the same throughput results as for the column size of 128 MiB (cf. Figure 6(a)).
However, now our data-partitioned SIMD processing clearly outperforms the linear variant.
The main takeaway from this experiment is, that we achieve higher throughput values
compared to the state-of-the-art when the resulting fine-grained partitions are not perfectly
page aligned. We suspect the hash function of the cache system to play a crucial role in this
effect since it might hash accessed data elements to conflicting cache positions.

3.1.5 Interim Conclusion

Exploiting parallelism is crucial to achieve low latency for analytical queries. For example,
modern general-purpose CPUs offer high-computational power through two data-oriented
parallel paradigms: MIMD and SIMD. As both tackle different granularities, data has to be
partitioned differently to satisfy their respective requirements, which in turn creates
algorithmic overhead when combining them. To overcome that, we showed that we can
seamlessly transfer the MIMD partitioning to SIMD due to the recent advances for SIMD on
CPUs. Moreover, we clearly demonstrated that the resulting unified parallelism approach offers
several advantages.
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Figure 6: Filter-aggregating sum comparison for linear load and gather with data in DRAM.



DAPHNE – 957407
15

From our perspective, our proposed approach offers interesting points for future work. On the
one hand, the transfer of MIMD techniques for SIMD should be further investigated. Our
approach can only be seen as an initial attempt showing the potential. On the other hand, it
would of course also be very interesting to investigate whether the simple OpenMP
programming approach for MIMD can also be transferred to SIMD. This would (i) simplify the
SIMD utilization and (ii) improve the possibilities for autovectorization (with an deep
integration into the DAPHNE compiler).

3.2 Heterogeneous CPU/GPU

In contrast to CPUs, GPUs leverage a larger amount of much simpler compute cores. While a
top end general-purpose CPU has 192 cores, a GPU can have about 15.000 cores. These are
partitioned into streaming multi processors which contain between 32 and 128 cores.
Considering the memory hierarchy, streaming multiprocessors have a small amount of fast on
die memory and are connected to a large amount of VRAM by a shared memory bus. The
programming model of GPUs is called Single Instruction Multiple Threads (SIMT). Every
instruction is performed on a group of 32 threads. If an instruction cannot be executed on 32
threads, it needs to be executed multiple times, leading to performance losses. Programs
running on GPUs are called Kernels. A Kernel is executed with many thousands threads which
are partitioned into blocks. One block is assigned to one streaming multiprocessor.
There are different approaches to program GPUs. While vendor specific languages like CUDA
only work on GPUs from the specific Vendor there are also more generic approaches. SYCL
allows parallel code to run on GPUs, FPGAs (as shown in deliverable D7.3) and CPUs across
different hardware vendors. As it is important to allow a data processing systems to run on a
variety of hardware, SYCL has been chosen as GPU programming model. Out of the different
SYCL implementations, the Intel oneAPI toolset has been used to evaluate heterogeneous CPU
GPU co-processing for Daphne. The Intel DPC++ compiler is based on LLVM/Clang. To execute
kernels with SYCL, a SYCL device needs to be chosen. This can be a CPU, an Intel based GPU
or an Nvidia GPU. Both accelerator and integrated GPUs can be used with SYCL. One kernel
code is mapped to a specific hardware by the compiler. Thus, a single hardware-oblivious
kernel can be run on different hardware devices from different vendors with SYCL, unlike
CUDA.
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To explore the potential benefit of CPU-GPU coprocessing as addition the demonstrated
benefit of CPU-FPGA co-processing in DAPHNE deliverable D7.3 [D7.3], a prototype has been
integrated into DAPHNE. It takes two columns as input, performs an element-wise operations
and writes back the result to a third column. It uses SYCL unified memory, which provides a
pointer to memory that can be accessed both from kernel code on GPU and C++ Code on
CPU. This simplifies development as memory transfers are handled at driver level if necessary.
For the DAPHNE prototype, an integrated Intel GPU has been evaluated for coprocessing. The
input data is partitioned into two parts. Each part runs in a different thread. One part runs in
parallel on CPU cores using OpenMP. The other part is executed on a GPU using SYCL in
parallel. As unified memory is used, no additional synchronization steps between devices are
needed.

Our achieved results as depicted in Figure 7 shows that there is no performance benefit to run
CPU-GPU co-processing instead of using only the GPU. For this reason, we have not pursued
a deeper integration into DAPHNE beyond the CPU-GPU co-processing prototype. On the x-
axis in the diagram in Figure 7, the distribution between GPU SYCL and CPU based OpenMP is
shown. At OpenMP share 0, only the GPU processes data, which leads to the highest observed
throughput.

For the corresponding prototype, the elementwise addition operation is overloaded using a
kernel extension called coproc. This extension can be found in the folder
scripts/examples/extensions/cpu_gpu_coproc. To run our example, it needs to be compiled as a
DAPHNE extension. The hardware requirement is to have a SYCL capable GPU device. Which
can be either an intel CPU with an integrated graphics or a Nvidia GPU. The software
requirements are listed in the DAPHNE documentation. Additionally, toolset and drivers of the
chosen GPU backend are needed. In case of an Intel GPU, the OneAPI tool set is required. If

Figure 7: CPU-GPU co-processing evaluation results.
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you chose to use a Nvidia GPU, a working CUDA GPU driver and the matching toolset version
including compiler and libraries is needed. To change the device executing the SYCL kernel in
our implementation, a different SYCL device selector has to be chosen in the file
myKernels.cpp: sycl::gpu_selector_v executes on a GPU, while sycl::cpu_selector_v runs on the
CPU.
To execute our provided example, please execute the following steps:

1. Go to the directory
cd scripts/examples/extensions/cpu_gpu_coproc/

2. Build the CPU-GPU coprocessing extension as shared library for daphne
make

3. Go back to the DAPHNE root directory
cd ../../../..

4. Execute the sample DAPHNE script
./bin/daphne --kernel-ext scripts/examples/extensions/cpu_gpu_coproc/myKernels.json
scripts/examples/extensions/cpu_gpu_coproc/ewAddCoproc.daphne

The expected output will look like this:

Figure 8: DAPHNE output of CPU/GPU micro benchmark

An elementwise addition will be performed as described in this section using CPU-GPU
coprocessing. Afterwards DAPHNE runs an aggregation by computation a total sum of all
output elements. This is shown in the last line of the screenshot. To summarize this section, a
flexible co-processing approach that can be run on any SYCL capable GPU in parallel to CPU
has been realized by the DAPHNE kernel extension.

3.3. Multi-Device GPUs

In this section we describe the use of multiple GPU devices at the same time when
running DAPHNE scripts. While the previous methods make use of SYCL through
Intel’s OneAPI, the method described here is based on DAPHNE’s older (as in more
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mature) GPU support through the Nvidia CUDA API. Consequently, this solution
restricts the user to a single vendor. As SYCL-support evolves, this shortcoming
will be attenuated.
DAPHNE’s multi-threading model is implemented using a task queueing paradigm
that spawns worker threads that consume these tasks. This feature, that was
already described in previous deliverables [D2.1, D5.1] and publications [D+22].
We now extend the vectorized engine with a work queue for GPU tasks and
multiple worker threads – one thread per GPU device. A schematic explaining this
setup is displayed in figure 9. While it is possible to mix CPU and GPU execution
with the vectorized engine, we put the multi-device operation in focus in this
example and therefore do not put tasks into the CPU queues.

FIgure 9: Vectorized engine work queues
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The setup for an upcoming paper experiment will be running as a job in a
singularity container on a SLURM cluster. The system configuration is a single
socket Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz with 32 cores and 512 GB
of memory. Each node hosts four A100 GPU devices (see figure 10 for details). As
a workload we chose a task that is one of GPU’s prime disciplines. Coming from a
computer graphics background, this is single precision matrix multiply.
Nevertheless, it is worth mentioning that the A100 can do double precision
calculations with only a 50% slow-down. In other words, the performance ratio of
this device between single and double precision is 1 : 2, making it a suitable
platform for high precision scientific simulations, where this overhead is often put
up with for the sake of improved results. This double precision performance is one
of the reasons (amongst extra high memory bandwidth and a build quality for
24/7 operation) that makes this type of device very expensive. To put this in a
better context – consumer graphics cards (also at the high end of the performance
spectrum) yield a floating point performance ratio of 1 : 32 or even 1 : 64 and
rely on active cooling, while data center devices like the A100 require rack servers
with a cooling design that accommodates the requirements for operating such a
device. The source code of our micro benchmark is listed in DaphneDSL below in
code listing 1.

FIgure 10: GPU information for multi device micro benchmark

To execute the provided example, go to the directory where you have built
DAPHNE and issue the command

bin/daphne --vec --cuda --timing --config UserConfig.json --exp
lain=kernels -select-matrix-repr D7.4/d74_3mm.daph x=1000 y=1000

In the example above, an input matrix dimension of 1000x1000 is chosen.
DAPHNE will print out the intermediate representation (IR) of the chosen kernel
calls and will yield a script output something like this:

9.99805e+14
{"startup_seconds": 0.165294, "parsing_seconds": 0.0016899, "compilation_seconds": 0.334608,
"execution_seconds": 0.154946, "total_seconds": 0.656538}
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The command output above lists the sum of all elements in the matrix multiply
result and some timing information. This sample output was generated on a local
development server with a Tesla T4 GPU to preview the implementation while
some details for the final paper experiments are sorted out.

Code Listing 1: Matrix multiply micro benchmark in DaphneDSL
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IR after kernel lowering:
module {
func.func @main() {
%0 = "daphne.constant"() {value = 12345 : si64} : () -> si64
%1 = "daphne.constant"() {value = 0.000000e+00 : f32} : () -> f32
%2 = "daphne.constant"() {value = 67890 : si64} : () -> si64
%3 = "daphne.constant"() {value = false} : () -> i1
%4 = "daphne.constant"() {value = true} : () -> i1
%5 = "daphne.constant"() {value = 1.000000e+00 : f64} : () -> f64
%6 = "daphne.constant"() {value = 2.000000e+03 : f32} : () -> f32
%7 = "daphne.constant"() {value = 1000 : index} : () -> index
%8 = "daphne.constant"() {value = 94026496311968 : ui64} : () -> ui64
%9 = "daphne.constant"() {value = 94026496311840 : ui64} : () -> ui64
%10 = "daphne.constant"() {value = 94026496311712 : ui64} : () -> ui64
%11 = "daphne.constant"() {value = 140721229647768 : ui64} : () -> ui64
%c0_i32 = arith.constant 0 : i32
%12 = "daphne.call_kernel"(%11, %10, %9, %8, %c0_i32) {callee =

"_createDaphneContext__DaphneContext__uint64_t__uint64_t__uint64_t__uint64_t"} : (ui64, ui64, ui64, ui64, i32) ->
!daphne.DaphneContext
%c1_i32 = arith.constant 1 : i32
"daphne.call_kernel"(%c1_i32, %12) {callee = "CUDA_createCUDAContext"} : (i32, !daphne.DaphneContext) -> ()
%c2_i32 = arith.constant 2 : i32
%13 = "daphne.call_kernel"(%7, %7, %1, %6, %5, %0, %c2_i32, %12) {callee =

"_randMatrix__DenseMatrix_float__size_t__size_t__float__float__double__int64_t"} : (index, index, f32, f32, f64, si64, i32,
!daphne.DaphneContext) -> !daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>
%c3_i32 = arith.constant 3 : i32
%14 = "daphne.call_kernel"(%7, %7, %1, %6, %5, %2, %c3_i32, %12) {callee =

"_randMatrix__DenseMatrix_float__size_t__size_t__float__float__double__int64_t"} : (index, index, f32, f32, f64, si64, i32,
!daphne.DaphneContext) -> !daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>
%15 = "daphne.vectorizedPipeline"(%13, %14, %3, %7, %7, %12) ({
^bb0(%arg0: !daphne.Matrix<?x1000xf32:sp[1.000000e+00]>, %arg1:

!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, %arg2: i1):
%c4_i32 = arith.constant 4 : i32
%17 = "daphne.call_kernel"(%arg0, %arg1, %arg2, %arg2, %c4_i32, %12) {callee =

"_matMul__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float__bool__bool"} :
(!daphne.Matrix<?x1000xf32:sp[1.000000e+00]>, !daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i1, i1, i32,
!daphne.DaphneContext) -> !daphne.Matrix<?x?xf32:sp[1.000000e+00]>
%c5_i32 = arith.constant 5 : i32
"daphne.call_kernel"(%arg1, %c5_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
%c6_i32 = arith.constant 6 : i32
"daphne.call_kernel"(%arg0, %c6_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<?x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
"daphne.return"(%17) : (!daphne.Matrix<?x?xf32:sp[1.000000e+00]>) -> ()
}, {
^bb0(%arg0: !daphne.Matrix<?x1000xf32:sp[1.000000e+00]>, %arg1:

!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, %arg2: i1):
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%c7_i32 = arith.constant 7 : i32
%17 = "daphne.call_kernel"(%arg0, %arg1, %arg2, %arg2, %c7_i32, %12) {callee =

"CUDA_matMul__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float__bool__bool"} :
(!daphne.Matrix<?x1000xf32:sp[1.000000e+00]>, !daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i1, i1, i32,
!daphne.DaphneContext) -> !daphne.Matrix<?x?xf32:sp[1.000000e+00]>
%c8_i32 = arith.constant 8 : i32
"daphne.call_kernel"(%arg1, %c8_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
%c9_i32 = arith.constant 9 : i32
"daphne.call_kernel"(%arg0, %c9_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<?x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
"daphne.return"(%17) : (!daphne.Matrix<?x?xf32:sp[1.000000e+00]>) -> ()
}) {combines = [1], operand_segment_sizes = array<i32: 3, 1, 1, 1>, splits = [1, 0, 0]} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, !daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i1,
index, index, !daphne.DaphneContext) -> !daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>
%c10_i32 = arith.constant 10 : i32
"daphne.call_kernel"(%14, %c10_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
%c11_i32 = arith.constant 11 : i32
"daphne.call_kernel"(%13, %c11_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
%c12_i32 = arith.constant 12 : i32
%16 = "daphne.call_kernel"(%15, %c12_i32, %12) {callee = "CUDA_sumAll__float__DenseMatrix_float"} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> f32
%c13_i32 = arith.constant 13 : i32
"daphne.call_kernel"(%15, %c13_i32, %12) {callee = "_decRef__Structure"} :

(!daphne.Matrix<1000x1000xf32:sp[1.000000e+00]>, i32, !daphne.DaphneContext) -> ()
%c14_i32 = arith.constant 14 : i32
"daphne.call_kernel"(%16, %4, %3, %c14_i32, %12) {callee = "_print__float__bool__bool"} : (f32, i1, i1, i32,

!daphne.DaphneContext) -> ()
%c15_i32 = arith.constant 15 : i32
"daphne.call_kernel"(%c15_i32, %12) {callee = "_destroyDaphneContext"} : (i32, !daphne.DaphneContext) -> ()
"daphne.return"() : () -> ()
}
}

4 Prototype structure
This project structure shows most of the important directories of the prototype.

● bin/ (compiled system and parser; generated via build.sh)
● containers/ (Docker container specific files)
● data/ (data files for experimenting)
● doc/ (basic setup and developer documentation)
● D7.4/ (scripts for running the multi-GPU example)
● lib/ (generated kernel libraries)
● scripts/ (DaphneDSL scripts as examples)

o examples/
§ extensions. (multi-CPU and CPU-GPU examples using SYCL;
based on DAPHNE’s kernel extension mechanism)
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● src/ (main source code repository)
o api/ (cli including daphne which orchestrates the remaining
components)

o compiler/ (execution, explain, inference, lowering)
§ codegen/ (code generation source)
§ lowering/ (compiler passes)

o ir/ (DaphneIR including the DAPHNE MLIR dialect)
o parser/ (DaphneDSL, SQL)

§ sql/ (SQL Parser)
o runtime/ (distributed, local including data, I/O, kernels, and
vectorization)

§ local/kernels/ (kernels)
• CUDA/ (CUDA device kernels)
• FPGA/ (FPGA device kernels)

o util/ (helper functions etc.)
● test/ (test suite of component and integration tests, organized by
components)

● thirdparty/ (dependencies such as llvm, including their build directories)
● build.sh (build script to build the DAPHNE compiler)
● test.sh (Daphne test suite)
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