

D6.4 Final prototype of

managed storage tiers

including automatic

placement

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.0

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D6.4

 Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 1

Document Description

Report and final prototype of the end-to-end computation storage components. This

deliverable describes prototypes based on both on-path and off-path architectures that

integrate hardware acceleration as a form of near-data processing. We also compare these

prototypes to the new NVMe standard on computational storage, we describe how to program

computational storage and more generally discuss the lessons learnt, in DAPHNE, about

computational storage.

D6.4 Final prototype of managed storage tiers including automatic placement

WP6 – Computational Storage

Type of document D Version 1.0

Dissemination level PU Project month 48

Lead partner ITU

Author(s) Philippe Bonnet, Niclas Hedam, Alex Krause, Morten Tychsen,

Piotr Ratuszniak.

Reviewer(s) Mark Dokter, Matthias Pohl

Revision History

Version Revisions and Comments Author / Reviewer

V0.1 Structure of the document Philippe Bonnet

V0.2 First Complete Draft Philippe Bonnet,

Piotr Ratuszniak,

Niclas Hedam, Alex

Krause, Morten

Tychsen.

V1.0 Feedback from reviewers incorporated Philippe Bonnet

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 2

1. Introduction

At its core, computational storage is about increasing parallelism of data processing, by

identifying functions which can be offloaded from the host’s central porcessing unit (CPU) to a

processing unit associated to a storage device. This frees up the CPU on the host to perform

other actions.

We consider that data is staged on local solid-state drives in a HPC system equipped with

computational storage processor. The data is staged, from an object server or from an archival

storage system. In the context of DAPHNE, this placement of data from an archival tier to the

processing tier is orthogonal to the execution of a data pipeline.

A computational storage processor is equipped with a computational storage engine that

executes functions that are either statically installed or that are downloaded from the host.

These functions operate on data that is located in the local memory. Portions of the local

memory are shared with the host, with solid-state drives (SSDs) and possibly other devices.

We have described computational storage in the following book: A.Lerner and Ph.Bonnet, The

Principles of Databases and Solid-State Drives Co-Design, to be published by Springer in 2025

[1]. This book is a significant part of the dissemination effort stemming from WP6. Figure 1

below is taken from this book and illustrates the architecture of a computational storage

processor.

Figure 1: A computational storage processor is composed of (i) a controller that communicates with the

rest of the system, (ii) a computational storage engine (CSE) that performs computation and (iii) local

memory (RAM) (Figure 4.4 in [1]).

Figure 2 below further illustrates how a computational storage processor is integrated in a

complete system with a host and multiple solid-state drives. We distinguish between an on-

path architecture, where the computational storage processor is placed in between SSD and

host, and an on-path architecture where the computational storage processor is placed next

to the solid-state drives and behind a PCIe switch, so that these devices can interact with each

other without involving the host.

Port

C
o

n
tr

o
lle

r

Domain 0

CSE

R

A

M

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 3

Figure 2: Computational storage architectures with a computational storage device located between the

host and the solid-state drives (on-path) and next to the solid-state drives behind a PCIe switch (off-path)

(Figure 4.3 in [1]).

In previous deliverables, we presented the design of Delilah, a prototype that supports the

offload of eBPF functions from the host to an on-path computational storage processor. As a

result, it can be used to define a novel storage interface, but it prevents the host from accessing

directly the data that is stored on the SSDs. In the Section 2, we focus on the latest version of

the Delilah prototype, where a hardware-accelerated function is part of the computational

storage engine. With Delilah, the data path for a data processing pipeline starts with data

stored on the SSD, first processed through the computational storage processor and further

processed on the host.

In Section 3, we present a new prototype that implements an off-path computational storage

architecture. This prototype supports a data path, where data is processed as it is transferred

from a solid-state drive to the memory of a computational storage processor, where it can be

accessed from the host or from other devices.

Finally, in Section 4, we reflect on the lessons we learnt about computational storage with a

focus on an analysis of the NVMe standard, a discussion of how to program computational

storage and integrate it with a host system.

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 4

2. On-Path Hardware-Acceleration
The Delilah Computational Storage Processor has been described in previous deliverables.

Figure 3 presents the architecture of Delilah (in green) and the components it relies on (in grey),

as presented in [2] and in previous deliverables.

Figure 3: Delilah Architecture. The computational storage engine (in green) is composed of a host driver,

a controller and a virtual machine/JIT compiler for eBPF programs as well as registered functions located

in embedded software running on ARM cores on the device (PS), with hardware accelerated functions

implemented in FPGA on the device (PL).

At its core, Delilah implements a host-controller transport protocol through a driver module

on the host kernel and a controller on the device. Delilah relies on uBPF as an eBPF run-time

environment. It makes it possible for the host to offload eBPF programs to the device, with

their arguments, execute them and retrieve the results. The host driver relies on DMA to write

an eBPF program on a program slot in the device memory, to write program arguments and

read results from a data slot, also in the device memory. Data that is read from the SSD can be

placed in a data slot or in a shared data buffer (that is available to the functions running on the

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 5

device, but not to the host). The different memory regions used by Delilah are illustrated in

Figure 4.

Figure 4: Program slot, data slot and shared data buffer are portions of the local memory of the Delilah

computational storage processor.

Program and data slots are shared memory regions between the host and the device. The host

can read and write to them via DMA. These memory regions are defined as DMA buffers in

XDMA (the DMA library that we use in Delilah). We rely on user-space mappable DMA buffers

to access them from functions runnning on the device.

Figure 3 refers to two distinct areas on the device: PL denotes a FPGA and PS denotes general-

purpose cores. Delilah is implemented on a Zynq Ultrascale+ MPSoC that combines hardware

acceleration on FPGA (PL) with the flexibility of ARM cores running embedded Linux (PS).

The Delilah controller accesses peripherals (PCIe connection to the host and to M.2 SSDs and

RAM DIMMS) through the PL. This requires a block design that defines a DMA engine over

PCIe (for communication with the host), memory interfaces (for accessing RAM) and PCIe

bridges (for communicating with the SSDs). These components are shown on Figure 5.

Figure 5 illustrates two block designs using Xilinx IP modules (white boxes) connected with

each other, external pins and the Zynq PS (grey box) with AXI point-to-point interconnects. The

red design relies on external RAM DIMMs. It is well-suited for high throughput workloads. The

green design relies on internal RAM within the Zynq PS. It is well-suited for low latency

workloads. The red block design can be used to conduct a simple bottleneck analysis. The

width of the AXI interconnect and the clock domain of the IP components involved in the red

block design are indicated on the figure. Let us consider that data is read from both SSDs,

placed in RAM, read and updated from the PS and then transferred to the host. Data can be

read from each SSD at 4GB/s. Memory bandwidth is 12.8 GB/s for each RAM DIMM. The PS

can read and write data at 4.8 GB/s from each RAM DIMM. The PCIe connection to the host

can transfer data at 16 GB/s. In this example, memory is the bottleneck as it is used for writing

data from the SSDs, reading and writing from the PS and reading to the host. This pattern

imposes an end-to-end throughput limit within the block design of 12.8 / 4 = 3.2 GB/s.

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 6

Figure 5: Delilah block design for high throughput (red) and low latency (green).

To further chracterize the performance of the different memory components, we designed a

function that executes 32 million memory loads and stores with (i) reads and writes, (ii)

sequential and random accesses, (iii) with and without 16-byte and 4-kilobyte alignment. The

memory components we consider are:

• Internal PS memory (placed in the ARM processor), both statically allocated in kernel

space on embedded Linux using UDMA (UDMA allocates contiguous memory blocks

within kernelspace via the device tree), or dynamically allocated in user space with

malloc.

RAM

(16GB)

RAM

(16GB)

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 7

• External PL memory (external DRAM DIMM modules) accessed via a Memory Interface

Generator (MIG) block in FPGA.

The experiment yields an amortised access latency, measured in nanoseconds. The results are

shown in Figure 6. As expected sequental accesses are much faster than random accesses. Our

experiment shows that there is a 2 orders of magnitude difference. Also, the choice of an

underlying RAM module for sequential reads and writes appears inconsequential, as the ARM

cores caches hide significant performance differences. However, random accesses are much

faster from PS memory. The key insight here is that processor caching and workload locality

are crucial to obtain good memory performance when offloading functions on the Delilah

computational storage processor.

Figure 6: Average latency of a single memory access when running 32 million accesses in a row. The

results are shown in linear scaling. Seq denotes sequential, rand denotes random.

Further experimental results are contained in Niclas Hedam’s PhD thesis [3], that he succesfully

defended on October 25th 2024.

In addition to the generic Xilinx IP showed (in white) in Figure 5, we developed a custom IP as

a hardware accelerated filter function. Our filtering accelerator is implemented in C with High-

Level Synthesis (HLS) pragmas. It supports five modes: equality, inequality, less than or equal,

greater than or equal, and between-inclusive.

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 8

Figure 7: Signature of our hardware accelerated filtering operator.

Figure 7 shows the signature of our hardware-accelerated filter operator. The function accepts

two pointers (one for input and one for output), an opcode to select the mode, and two

comparison values. The #pragma directives specify the use of two AXI ports: a high-throughput

AXI port for data access (gmem) and a low-latency AXI Lite port for reading and writing function

parameters (control).

Figure 8: Implementation of the hardware accelerated filtering operator (equality mode).

The operator utilises vectorisation, processing sets of 256 elements at once. This approach

avoids individual sequential memory requests for 32-bit elements, and instead issues 1-

kilobyte memory reads and writes. The vector is stored in local BRAM within the accelerator.

During execution, the operator first iterates over the number of vectors. Each vector iterates

over the elements in a pipelined manner, where it begins to compare the next element before

the current one finishes. The vector results counter increments on finding a match, and the

index is written to the output buffer. The output buffer is then written back to the output

pointer for each vector.

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 9

The operator is exposed as a registered function that can be called from eBPF functions. The

hardware accelerated filter operator IP generated with the code presented above is exposed

as a register function denoted delilah_hw_filter. This function transforms arguments to match

the input format of the IP. For example, pointers provided by the eBPF program are always

relative to the execution context, i.e., the logical addressing space of the data slot or the shared

data slot. It is necessary to map and transform these addresses from logical to physical

addresses. Also, the registered function is coupled with Xilinx-generated drivers. The Vivado

HLS platform automatically generates C drivers that write to the correct offsets in the HLS

registers. The registered function invokes the Xilinx driver to write any appropriate registers to

set parameters, start execution, and fetch return values.

Initially, our experiments showed a marginal difference in performance between hardware

acceleration using HLS and the eBPF baseline. With both experiments concurrently executing

four operators, HLS shows a slightly faster runtime of 5.72 seconds, compared to 5.85 seconds

for the eBPF baseline.

To better understand the limited improvement in performance, we modified the experiment

by introducing serial execution for the filtering process. In the modified version, the four

operators are run serially, with only one active function at any time. Under these conditions,

we observe a hardware-accelerated runtime of 6.46 seconds versus 7.29 seconds for the eBPF

baseline. This shift illustrates the point we made above: memory bandwidth is the scare

resource on the Delilah computational storage processor. While hardware acceleration does

offer performance improvements, its impact is reduced when the underlying data path to

memory becomes saturated.

3. Off-Path Hardware-Acceleration
The Intel team incorporated its quantization IP in the context of an off-path computational

storage architecture. The experiments were performed with an Intel Agilex® 7 FPGA I-

Series FPGA Development Kit (DK-DEV-AGI027RES) (see Figure 8).

Figure 8: Agilex® 7 FPGA I-Series FPGA Development Kit

The experiments connected the device shown in Figure 8, as a computational storage processor

in an off-path architecture together with two Intel® Optane™ P4800X SSDs to root complex

(see Figure 9).

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 10

Figure 9: FPGA and SSD devices connected on the same server motherboard.

Here, the entire computational storage engine is implemented within a FPGA, which is

associated with external DDR memory on its board. In fact, we consider a minimal engine that

(i) moves data from SSD to local memory and (ii) processes data as it is being moved using the

quantization IP placed between the FPGA PCIe IP and the DDR management component. The

quantization IP architecture implements range-based linear quantization algorithm1 using

additional scale factor and offset parameters (see Figure 10) and converts data format from 32

bits floating point to 8 bits unsigned integer.

The p2pmem-test program2 moves a data chank from first SSD device to the second one

through p2pmem device, through the FPGA with connected DDR modules exactly. When the

data chunk is read from computational storage engine memory, each data chunk is processed

through the quantization IP composed of 16 pipelines. Each pipeline processes one input 32-

bit floating point value for each clock cycle at each pipeline stage. Finally, 16*32-bit floating-

point values are transformed into 16* 8 bits integer concatenated with 24-bit zero value on

512-bit interface.

Per-to-peer memory (p2pmem) is used for the direct communication between two PCIe

devices, between the two SSDs in described scenario. FPGA device exposes to the system 16MB

p2pmem memory on PCIe Base Address Register(BAR0). To make the memory visible as a peer-

to-peer memory required linux kernel driver (dpdr.ko) has been implemented according to

peer-to-peer DMA support requirements3 for a peer-to-peer memory Provider. Additional

linux user space driver is required() to enable/disable quantization and for used offset and scale

factor definition. The code of the prototype(linux kernel/user space drivers and FPGA project)

is available at the following URL: XXX

The host is responsible for setting up the peer-to-peer DMA transfer, after that computational

storage engine and SSD communicate directly through p2pmem.

1 https://intellabs.github.io/distiller/algo_quantization.html
2 https://github.com/sbates130272/p2pmem-test
3 https://www.kernel.org/doc/html/latest/driver-api/pci/p2pdma.html

Agilex® FPGA board

Intel® Optane™ SSD

FPGA board

https://intellabs.github.io/distiller/algo_quantization.html
https://github.com/sbates130272/p2pmem-test
https://www.kernel.org/doc/html/latest/driver-api/pci/p2pdma.html

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 11

For comparison, the quantization IP was validated in another project with FPGA as a stand-

alone computing accelerator with data moved from host memory to device memory and back.

Here, the data is directly obtained from a SSD (and the result of the quantization can be written

to SSD) without involving the host.

Here is a terminal output showing the difference between native peer-to-peer DMA (without

quantization)

[pratuszn@localhost p2pmem-test]$ sudo ./p2pmem-test /dev/nvme0n1 /dev/nvme0n1
/sys/devices/pci0000:80/0000:80:02.0/0000:83:00.0/p2pmem/allocate -c 1 -s 4k --check -o 0

Running p2pmem-test: reading /dev/nvme0n1 (1.5TB): writing /dev/nvme0n1 (1.5TB): p2pmem buffer
/sys/devices/pci0000:80/0000:80:02.0/0000:83:00.0/p2pmem/allocate.

 chunk size = 4096 : number of chunks = 1: total = 4.096kB : thread(s) = 1 : overlap = OFF.

 skip-read = OFF : skip-write = OFF : duration = INF sec.

 buffer = 0x7fcdefb14000 (p2pmem): mmap = 4.096kB

 PAGE_SIZE = 4096B

 checking data with seed = 1731192712

MATCH on data check, 0x947c878 = 0x947c878.

Transfer:

 4.10kB in 908.9 us

and peer-to-peer DMA with quantization - output quantized data are fulfilled with zero values:

pratuszn@localhost p2pmem-test]$ sudo ./p2pmem-test /dev/nvme0n1 /dev/nvme0n1
/sys/devices/pci0000:80/0000:80:02.0/0000:83:00.0/p2pmem/allocate -c 1 -s 4k --check -o 0

Running p2pmem-test: reading /dev/nvme0n1 (1.5TB): writing /dev/nvme0n1 (1.5TB): p2pmem buffer
/sys/devices/pci0000:80/0000:80:02.0/0000:83:00.0/p2pmem/allocate.

 chunk size = 4096 : number of chunks = 1: total = 4.096kB : thread(s) = 1 : overlap = OFF.

 skip-read = OFF : skip-write = OFF : duration = INF sec.

 buffer = 0x7efda7b02000 (p2pmem): mmap = 4.096kB

 PAGE_SIZE = 4096B

 checking data with seed = 1731192742

MISMATCH on data check, 0x733ab514 != 0x23000000.

Transfer:

 4.10kB in 922.2 us

Additional peer-to-peer data transfers with quantization experiments are in progress using

PCIe Gen3 switch (PEX 8747) on server motherboard and using external PCIe Gen5 switch

(PEX89048) on separate development board are in progress and significant bandwidth

improvement is expected .

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 12

4. Lessons Learned

2.1 NVMe Standard

In December 2023, NVMe released the first iteration of the Computational Programs
Command Set Specification4. This specification defines two new names- paces/command
sets:

• The Compute namespace and command sets defines the mechanism for offloading and

storing programs on an NVMe device. These programs, which serve specific and well-

defined purposes, can be defined by the device or downloaded from the host. A program

is associated with one or several memory ranges defined with the SLM namespace.
• The Subsystem Local Memory (SLM) command set exposes the device memory as a

collection of memory ranges and defines operations that the host and local programs

(from the compute namespace) can issue on those memory ranges.

Figure 9: Compute and SLM namespaces in the NVMe standard. (Figure 4.5 in [1]).

The proposed execution model supposes that data is copied between storage (i.e., NVM

namespaces) and the device subsystem local memory by the host, prior to (after) program

execution, using an NVMe I/O commands. More specifically, the subsystem local memory

(SLM) copy command is used (by the host) to copy data from an NVM namespace (i.e., flash)

to a device memory namespace, from one device memory namespace to another, or from a

device memory namespace to an NVM namespace. The write command is used to write data

from the host to a device memory, i.e., to send input values to a program, while the read

command is used to read data from the device memory onto the host, i.e., to get the output

of a program.

In addition, commands on the computational program namespace make it possible to load or

activate a program, associate it to a memory range, and execute it. Programs run to completion.

Each program has a globally unique program identifier. A program can call another program.

Device-specific programs are installed in hardware (FPGA bitstream) or software (OS image)

4 https://nvmexpress.org/nvm-express-computational-storage-standardizing-storage-management-

and-reducing-storage-and-latency-costs-in-the-enterprise/

MU …

…

MU

MUMU

NVM Set 0

NVM Set 1

MU

MU

NVM namespace 100

NVM namespace 101

SLM

Namespace

Compute

namespace

Compute namespace 0

Compute namespace 1

Program 0

Program 1

Program 0

Program 1

Program 2

Memory

Namespace 10

Memory

Namespace 11

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 13

before a namespace is attached. Downloadable programs, represented in hardware agnostic

bytecode (eBPF), can be installed on a computational namespace after it is attached to a host.

There are many similarities between Delilah and the NVMe compute command set. In both

cases, functions (that are denoted programs in the NMVe terminology) are loaded in program

slots on the device, associated to memory ranges (where arguments are written by the host

and results are read from the host, with memory ranges defined as shared buffers across

functions) and executed. eBPF is used to represent downloadable programs, that may access

device-specific programs (denoted registered functions in Delilah).

However, the standard does not address any issue related to (i) concurrent accesses to shared

memory from multiple computational storage functions and (ii) concurrent access to data slots

between host and computational storage function. We will consider these concurrency issues

in the context of end-to-end programming of computational storage.

2.2 End-to-end Programming

End-to-end programming of computational storage relies on (i) a program executing on a host

that issues commands triggering the execution of (ii) one or several functions on a

computational storage processor. We denote CSF (computational storage functions), the

functions executing on computational storage.

Here is an overview of the design space:

• CSFs are installed on computational storage statically (at deployment time) and/or

dynamically (at run-time through I/Os). CSFs that are installed dynamically are denoted

downloadable CSFs.

• CSFs are associated to memory regions statically (at deployment time) and/or

dynamically (at run-time through I/Os).

• Downloadable CSFs are pre-defined on the host or they are automatically generated

(through code generation).

• CSFs are compiled on the host into a bytecode representation that can be shipped to

the device (e.g., eBPF) where it is interpreted or JIT-compiled, or into a binary

representation that is well-suited for the target device (e.g., bitstream for FPGA, binary

executable for general-purpose CPU).

When a host program executes a CSF, it proceeds through the following steps: (1) the program

accesses the CSF (that is stored as bytecode or binary in a file when pre-defined or already in

memory when automatically generated), (2) loads the CSF onto the device through an I/O

command onto a program slot on the device (see Figure 4), (3) associates the CSF to one or

several memory regions (including one data slot, and possibly several shared buffers), (4) writes

input parameters into the data slot (or reuse an existing one), (5) executes the CSF on a given

program slot and (6) reads the returned value on the data slot.

The first issue with this model is that the host program must wait until the CSF is done executing

before it can read the return value produced by the CSF. There is a need for synchronization

between device and host. In Delilah, we address this need with an explicit flag that is set

whenever a function is done executing. This flag is located in the region of memory that is used

to expose the computational storage device as a PCIe device (so-called BAR register). We

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 14

implemented a driver function that blocks until a CSF function is done executing. This way, the

host can wait until a CSF function actually returns its value.

Put differently, the Delilah design and the NVMe computational storage standard are both

essentially based on synchronous remote function calls between host and device. This is a

direct consequence of the use of data slots to hold both the input and return value of each

function call. Such synchronous function calls are a barrier to performance as they restrict the

number of inflights CSF calls that can be issued by the host and managed by the device. A

radically different design is needed to efficiently overlap processing between host and device.

The second issue concerns the concurrent execution of multiple programs accessing the same

memory region. In cases where both programs write to the memory region, there is a need for

concurrency control. This need is specially acute, when a program produces a value that is

consumed by another.

In Delilah, as in the NVMe computational storage standard the necessary synchronization

betwewen concurrent execution of CSFs must be managed by the host. The host must identify

conflicts and schedules CSF execution to avoid them. Again, this form of coarse-grained

synchronization is costly in terms of performance if at all possible.

An alternative is to introduce a resource manager on the device that mediates accesses to

memory locally, see Figure 10. In order for the CSF programmer to focus on how a CSF should

transform data, and not have to worry about concurrency, we want to provide the following

guarantees:

1. (1) A CSF is guaranteed to eventually gain access to any region of shared memory used

in the CSFs computation.

2. (2) Once a CSF has obtained access to a region of shared memory, the contents of that

region will not change outside operations performed by the CSF itself.

3. (3) A CSF that has started execution will not be aborted due to concurrency conflicts.

Guarantee (1) and (3) also means that we promise no deadlocks, as this would require aborting

a CSF to guarantee access. To achieve this we utilize a queue system to impose a total ordering

on requests, an approach found in deterministic databases. See [4] for details.

Figure 10: A resource manager is responsible for scheduling accesses to shared data to avoid conflicts.

D6.4

Final prototype of managed storage tiers including automatic placement

DAPHNE – 957407 15

5. Conclusion
We presented two prototypes of computational storage illustrating the on-path and off-path

architectures. The Delilah prototype is on-path, with downloadable CSFs (represented in eBPF)

as well as statically installed CSFs implemented both on a general-purpose processor equipped

with an embedded operating system, and as hardware-accelerated functions in FPGA. CSFs are

dynamically associated to memory regions at run-time. We showed that memory is the scarce

resource on Delilah and is thus the main criteria that should be used to decide what programs

to offload on the device. The Intel prototype is off-path, with statically installed CSF,

implemented in FPGA and associated to memory regions fixed at deployment time. In the Intel

prototype the CSF is incorporated as an extension of the DMA engine and it is triggered in the

context of peer-to-peer DMA, without host involvement.

Finally, we reflected on the new NVMe standard for computational storage based on the

lessons we learnt with Delilah. In particular, we identified synchronization and concurrency

control as two key issues. We proposed to add a resource manager on computational storage

as a way to deal with CSF concurrent accesses to shared memory regions.

Some of the key limitations of computational storage, in particular the synchronization issues,

should be addressed before it can be incorporated into large-scale systems such as DAPHNE.

References
[1] Alberto Lerner, and Philippe Bonnet. “Principles of Database Systems and Solid-State Drives

Co-Design”. Springer, 2025. https://link.springer.com/book/9783031578762

[2] Niclas Hedam, Morten Tychsen Clausen, Philippe Bonnet, Sangjin Lee, and Ken Friis Larsen.

2023. “Delilah: eBPF-offload on Computational Storage”. In Proceedings of the 19th

International Workshop on Data Management on New Hardware (DaMoN '23). Association for

Computing Machinery, New York, NY, USA, 70–76. https://doi.org/10.1145/3592980.3595319

[3] Niclas Hedam. “Delilah: Efficient eBPF Offload for Integrated Data Pipelines on

Computational Storage”. Doctoral Thesis, ITU, 2024.

[4] Morten Tychsen, Jieung Kim, Philippe Bonnet. “Rogers: How to Write Programs for

Computational Storage”. Under submission.

https://link.springer.com/book/9783031578762
https://doi.org/10.1145/3592980.3595319

