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Document Description 

This report presents the final design and prototype of the scheduling components in the 

DAPHNE system, as well as performance results. It provides a comprehensive description of the 

DAPHNE scheduler (local and distributed) for pipelines and tasks, representing the outcome of 

continuous discussions among all DAPHNE partners, particularly those from WP2 (System 

Architecture), WP3 (DSL Abstractions and Compilation), WP4 (DSL Runtime and Integration), 

and WP5 (Scheduling and Resource Sharing). Extensibility remains central to the DAPHNE 

scheduler, and a robust set of scheduling strategies and techniques have been carefully 

selected in this final design to support it. The scheduler design allows future scheduling 

techniques, including user-defined strategies, to be integrated into DAPHNE.  

To ensure this report is self-contained, we begin by defining the relevant scheduling 

terminology and providing an overview of the scheduling-related components within the 

DAPHNE system architecture, with a focus on the vectorized execution engine. The following 

sections present the finalized design of the scheduling components and techniques 

implemented by the DAPHNE compiler and runtime system, along with performance 

evaluations of the prototype. 

As this document presents the final scheduler design, updates to the initial design have been 

incorporated, marking the completion of the scheduler design and prototype, as outlined in 

previous deliverables [D5.1], [D5.2], and [D5.3]. To facilitate reading, we include here 

information that can also be found on previous deliverables. 
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Executive Summary 

This deliverable presents the final design and prototype of the scheduling components within 

the DAPHNE system, an advanced architecture designed to support integrated data analytics 

pipelines that combine data management (DM), high-performance computing (HPC), and 

machine learning (ML). It represents the culmination of collaborative efforts among DAPHNE 

partners and builds upon prior deliverables by incorporating refinements, enhancements, and 

a comprehensive evaluation of the developed components. 

The report begins by establishing foundational scheduling terminology and describing the role 

of scheduling in the DAPHNE architecture. By defining concepts like task partitioning, resource 

assignment, and work timing, it sets the stage for understanding how scheduling decisions 

optimize performance across shared-memory and distributed-memory systems. 

The core of the deliverable focuses on the finalized design of DAPHNE's scheduling framework. 

Key features include: 

1. User-Centric Scheduling Options: Users can operate the system with default settings 

or configure scheduling parameters to suit specific needs. Flexibility is provided 

through tuning knobs for task partitioning, thread allocation, and resource mapping, 

ensuring that the system can cater to both non-expert users and advanced use cases. 

2. Compiler-Level Optimizations: The DAPHNE compiler plays a pivotal role in 

optimizing performance by reordering operations, fusing pipelines, and deciding on 

data- and task-level parallelism. These pre-runtime decisions ensure efficient resource 

usage and adaptability to heterogeneous system architectures. 

3. Runtime Scheduling Mechanisms: The runtime system incorporates a local scheduler 

for shared-memory systems and a distributed scheduler for multi-node environments. 

Advanced features include support for various partitioning strategies, work queue 

configurations, and adaptive scheduling methods, which balance load and optimize 

execution. 

This report also introduces the DAPHNE Scheduler Prototype, which implements these 

design principles. Detailed usage examples demonstrate the prototype’s flexibility, showcasing 

its ability to adapt to different workloads and system configurations. For instance, the 

prototype supports thirteen partitioning techniques, three queue layouts, and four victim 

selection strategies for task stealing, which users can tailor to their needs. 

Comprehensive performance evaluations highlight the benefits of the scheduling strategies. 

Experiments for both local and distributed runtimes show substantial improvements in 

execution time and scalability. For distributed environments, the report discusses the design of 

a coordinator-based architecture that enables efficient data and task distribution across 

computing nodes. 

A dedicated section emphasizes reproducibility, outlining methodologies for creating artifacts 

that align with ACM (Association for Computing Machinery) reproducibility standards. This 

includes detailed guidelines on environment setup, artifact evaluation, and ensuring 

repeatability for future research and testing. 
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The deliverable concludes with a discussion of the system’s limitations and potential future 

enhancements. Suggestions include extending the distributed runtime with additional 

coordination models, implementing inter-node work stealing, and exploring hybrid scheduling 

strategies. 

This deliverable marks the culmination of scheduling component development within the 

DAPHNE project, showcasing innovative approaches and providing a robust foundation for 

ongoing research and application in large-scale data analytics environments. 
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List of Abbreviations 

Abbreviation Meaning 

AF Adaptive Factoring 

AWF Adaptive Weighted Factoring 

DAG Direct Acyclic Graph 

DG Directed Graph 

DLS Dynamic Loop Self-Scheduling 

DM Data Management 

DSL Domain Specific Language 

FAC Factoring Self-Scheduling 

FSC Fixed-Size Chunking 

GSS Guided Self-Scheduling 

HPC High Performance Computing 

IR Intermediate Representation 

ML Machine Learning 

MLIR Multi-Level Intermediate Representation 

NUMA Non-Uniform Memory Access 

PLS Performance Loop-based Self-Scheduling 

PSS Probabilistic Self-Scheduling 

SIMD Single Instruction Multiple Data 

STATIC Static Scheduling 

SWR Static Workload Ratio 

SPMD Single Program Multiple Data 

 

1 Introduction 
The DAPHNE system architecture—comprising DaphneDSL, the compiler, and runtime—is 

designed to enable the efficient execution of integrated data analytics pipelines and workflows, 

including data management and query processing (DM), high performance computing (HPC), 

and machine learning (ML) training and scoring codes. These workflows are typically executed 

on distributed- and shared-memory systems with heterogeneous resources (Figure 1), ranging 

from traditional HPC clusters with shared-disk configurations to shared-nothing systems. 

Scheduling is a critical component in achieving various performance objectives, such as 

minimizing execution time, maximizing resource utilization, and increasing computational 

throughput. The DAPHNE system is no exception; scheduling plays a fundamental role in its 

overall performance. 
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Figure 1 Ecosystem for an integrated data analytics pipeline [IPE+21] 

Scheduling involves the process of mapping units of work to computing resources over a 

defined period of time [BW91] [Ull75]. Solutions to scheduling can be classified into several 

categories, such as online, offline, optimal, and heuristic approaches. Scheduling encompasses 

decisions on work partitioning, work assignment, and execution ordering [BW91], with these 

decisions being made at different levels of hardware parallelism in HPC systems (core, node, 

and system levels). Depending on when scheduling decisions are made, techniques can range 

from static to dynamic. 

Table 1 Scheduling decisions and implementation details in the DAPHNE system 

architecture 

Work = Task = Operator + Data 

Legend: ✓ currently supported | (✓) could be supported in the future | N/A not applicable 

Table 1 outlines the various scheduling decisions made by the DAPHNE user, the DAPHNE 

compiler, and the runtime system. We distinguish between local and distributed runtime 

system scheduling by emphasizing specific implementation details. This table serves as a guide 

HPC  code

Scientific simulations
Data preprocessing code

Machine learning code

Training ML model

Parallel environments 

Mathematical libraries

MPI/OpenMP/BLAS/MKL

ML frameworks

PyTorch/TensorFlow

Data processing frameworks

Spark/Flink

Resource allocation and management

Slurm/Mesos

Application

Middleware

Cluster
Management

Compute node

CPUs GPUs FPGA TPUs VPUs

Local storage High spend network interface

Compute node

CPUs GPUs FPGA TPUs VPUs

Local storage High speed network interface

Hardware
infrastructure

Computational

Storage

System

High speed

interconnection

network

Computation Data processing Training

DAPHNE 
Scheduling Levels 

User 
Compiler 

Runtime System 

DSL Configuration Local Distributed 

Scheduling 

Decisions 

Partitioning (✓) (✓) ✓ ✓ ✓ 

Assignment (✓) (✓) (✓) ✓ ✓ 

Ordering (✓) (✓) ✓ (✓) (✓) 

Timing N/A N/A N/A ✓ ✓ 

Implementation 

Decisions 

Work 

Queue 
N/A N/A N/A 

Centralized Centralized 

Distributed Distributed 

Data 

Placement 
N/A N/A 

Centralized Centralized 
Centralized 

Distributed 

Distributed Distributed Replicated 

Work 

Transfer 
N/A N/A N/A 

Receiver/sender-

initiated 

Receiver/sender-

initiated 

Optimization 

Goals 
Minimize User-defined User-defined 

Intermediates 

Execution time Execution time 

Scheduling 

overhead 

Scheduling 

overhead 

Maximize Data locality  Data locality Data locality 
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for describing the techniques employed by the compiler and runtime system, the associated 

scheduling decisions, and their optimization objectives. 

Although the terms in Table 1 are common to different scheduling contexts, one can 

nevertheless use these terms quite differently. Therefore, we define these terms in the context 

of DAPHNE scheduling as follows: 

Work refers to operations applied to input data.  

Work ordering refers to the order in which the operations must be executed, i. e., if the 

execution of certain operators has data or control dependencies, work ordering must maintain 

and respect the dependencies. 

Work partitioning refers to partitioning of the work into units of work (or tasks) of a certain 

granularity (fine or coarse) and of certain size (equal or variable). Work partitioning may also 

exploit data and/or functional parallelism, i. e., work is partitioned by dividing the input data 

and then, execution units apply the same operator to each data partition. Work can also be 

partitioned by enabling each execution unit to execute different operators on the input data.  

Work assignment refers to mapping (or placement) of the units of work (or tasks) onto 

individual software processing units (processes or threads). Work assignment also applies 

beyond the software level, in the form of mapping specific software units of processing 

(processes, threads) onto hardware units of execution (compute nodes, CPUs, GPUs, FPGAs) 

and computational storage devices.   

Work timing refers to the times at which the units of work are set to begin execution on the 

assigned units of execution. 

Work queue is an implementation detail that describes how the units of work are managed 

by the runtime system. Work queues can be centralized or distributed. 

Work transfer describes the party initiating the transfer of work, during execution, to arrive at 

a balanced execution progress. Work transfer can be initiated by underloaded parties 

(receivers) or overloaded parties (senders). 

Optimization goals may refer to minimization of user-defined goals (for the user), number 

and size of intermediate data items (by the compiler), execution time, and scheduling overhead 

(by the runtime system). They may also refer to maximization of other user-defined goals (by 

the user) or data locality (by the runtime system). 

1.1 Scheduling Terminology 

Scheduling is a vast topic [Leu04] and has been an important research focus in the DB, HPC, 

and ML communities over several decades. As the DAPHNE project has a diverse consortium 

and specific terms are used differently by the communities, defining a common terminology is 

extremely important and useful. In the following subsections, we define important terms 

related to scheduling that we use in DAPHNE.  
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1.1.1 Operators 

The term operator refers to an indivisible operation that can be applied to input data. Common 

examples are matrix operations, such as addition, subtraction, multiplication, and transpose. 

Calls to user-defined functions or precompiled third-party libraries are also considered 

operators. We also use the term kernel to refer to the actual C++ implementation of a specific 

operator, e. g., EwBinaryMat or a shallow wrapper around a third-party implementation, e. g., 

cublasDgemm for Nvidia GPUs. 

A vectorized operator refers to an operator that can be executed in vectorized form (SIMD), 

similar to Single Program Multiple Data (SPMD). 

1.1.2 Pipelines 

The term pipeline refers to an abstraction that combines one or more operators (i.e., fused 

operators). A vectorized pipeline consists of one or multiple vectorized operators which can 

be applied to vectorized data. 

1.1.3 Tasks 

A task comprises a data item and an operator to be applied.  Tasks are the smallest units of 

work considered for scheduling by the DAPHNE runtime system. 

A vectorized task consists of a data partition and a vectorized pipeline. 

1.1.4 Workflows 

The term workflow is commonly used in different communities (DM, HPC, and ML) to refer to 

execution of work in a specific order. The most common approach of representing workflows 

is to use graphs where each vertex represents a task (work step) and an edge represents a data 

or a control dependency [VA20]. Workflows can be cyclic (represented as Directed Graphs - 

DG) or acyclic (represented as Directed Acyclic Graphs - DAG), hierarchical (a workflow within 

a workflow, represented by a hierarchical D[A]G), and may form workflow ensembles (sets 

of interrelated workflows also expressed as a D[A]G) [D+19]. Since the DAPHNE compiler is 

based on MLIR, we represent workflows as DAGs. Figure 2 shows an example of a workflow 

highlighting relevant terminology for different workflow levels (adapted from [D5.1] and 

[D8.1]).  
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Figure 2 Data Analysis Workflow and the Associated Terminology at Various 

Levels. Figure adapted from D5.1 and D8.1. 

 

1.2 Scheduling Classes 

Scheduling can be categorized into two main classes:  static and dynamic scheduling. The 

main difference is when decisions are taken. In static scheduling decisions are taken before 

execution (at compilation time), while in dynamic scheduling decisions are taken during the 

execution of an application. Between these two main classes, hybrid scheduling exists.  A hybrid 

scheduling technique is not fully-static nor fully dynamic, i. e., certain decisions are taken before 

the execution, while others are taken during the execution. 

Static scheduling techniques incur minimal scheduling overhead and may be explicitly 

designed to improve data locality [LTS+93]. Dynamic scheduling techniques are explicitly 

designed to improve load imbalance [Luc92] but also to allow scheduling of work under 

dynamically evolving conditions in the application, the system, or both. 

Dynamic scheduling techniques can further be divided into nonadaptive and adaptive. 

Nonadaptive dynamic scheduling techniques take scheduling decisions (such as work 

partitioning, assignment, and timing) during execution but do not change these decisions once 

taken. For instance, a nonadaptive scheduling technique may require runtime information 

about the underlying system, e. g., processors’ speed. Such information can be obtained prior 

to the execution and used to calculate the work amount each processor receives. In contrast, 

adaptive dynamic scheduling techniques consider information obtained during execution to 

refine their scheduling decisions, i. e., processors’ speed may change during the execution (e.g., 

DVFS, Linux governors). The adaptive dynamic scheduling techniques are explicitly optimized 

to minimize load imbalance in highly irregular execution environments [Ban00]. Nonadaptive 

dynamic scheduling incurs less overhead during execution than adaptive dynamic scheduling. 
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1.3 Scheduling Levels  

A DAPHNE program is a workflow, i. e., a DAG of operators (which may originate in DM, HPC, 

and/or ML codes), their associated data, and a specific data flow. Allocating resources and 

executing such a DAG on those resources is subject to various scheduling decisions, that are 

taken at different levels: user, compiler, and runtime system. 

1.4 Summary 

This section introduces the DAPHNE system architecture, which supports efficient execution of 

data analysis pipelines, including data management, high performance computing, and 

machine learning (ML). The section highlights the critical role of scheduling in achieving key 

performance goals such as reducing execution time, enhancing resource utilization, and 

improving throughput. It also carefully defines important scheduling terminology, including 

concepts such as work partitioning, assignment, and timing. These definitions and distinctions 

lay the groundwork for the later sections, which build on this common understanding. 

2 Final Design of Scheduling Components and Extendibility 

2.1 Scheduling by the User 

By default, all scheduling-related decisions will be made by the DAPHNE system automatically 

(based on defaults provided by the DAPHNE developers), as described in Sections 2.2 and 2.3. 

However, expert or interested users may optionally configure the scheduling behavior of some 

DaphneDSL program manually through command line arguments. Available tuning knobs 

include the number of local threads and distributed workers, the task partitioning technique 

and its parameters, the placement of data and operations on certain (classes of) devices, and 

generally the modification of compiler’s behavior (including the sequence of compiler passes 

by turning certain passes on or off) through compiler flags. For details on the different available 

parameters that configure the DAPHNE local and distributed scheduler refer to Section 3 which 

describes the final prototype and provides usage examples. 

2.2 Scheduling by the Compiler 

The input to the DAPHNE system architecture is typically a DaphneDSL source code (possibly 

generated from calls to DaphneLib, the Python API for the DAPHNE system), which is a 

declarative representation of a program and specifies its intended semantics [BE+16]. A parser 

translates this into DaphneIR as the central representation for reasoning about a program at 

compile-time. The initial DaphneIR representation of the user program will usually not yield an 

efficient runtime behavior. Thus, the DAPHNE compiler exploits the declarative nature of the 

user program to perform various rewrites on the intermediate representation (IR) of the 

program, which preserve its semantics but allow for a more efficient execution.  

In particular, the DAPHNE compiler determines:  

(a) which operations to execute,  

(b) in which order to execute them (work ordering) as well as  

(c) selective aspects of whether and how to parallelize the work (work partitioning) and which 

classes of devices (e. g., CPU, GPU, FPGA) to assign tasks to (work assignment). Details on the 
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DAPHNE compiler can be found in D3.4 that includes the compiler design and overview; here 

we only provide a brief overview and highlight how compiler decisions relate to scheduling. 

2.2.1 Reordering Rewrites 

The DAPHNE compiler applies various static and dynamic simplification rewrites on the IR, 

which include the removal, insertion, exchange, and reordering of operations under different 

goals. This can lead to a reordering of the entire DAPHNE program. 

Some rewrites aim at eliminating redundant operations, or reducing the number of 

operations. These goals are addressed by generic compiler optimization techniques. For 

instance, common subexpression elimination (CSE) eliminates redundant calculations of the 

same expression (if there are no side-effects), and constant propagation performs simple 

calculations that can be evaluated at compile-time to gain more information on concrete inputs 

to operations. This may enable the elimination of branches, thereby significantly changing the 

program structure. 

Complementarily, domain-specific simplifications from linear algebra [BBE+14] and 

relational algebra [EN16] are applied with goals such as minimizing the memory footprint and 

the execution time. In that context, reducing the size of intermediate results is a natural 

objective, and for many operations, smaller inputs incur a lower effort. Examples from linear 

algebra include the optimization of chains of arithmetic operations over scalars, vectors, and 

matrices as well as matrix multiplication chain optimization [HS82]. The latter exploits the 

associativity of matrix multiplication to freely choose the parenthesization to reduce the size 

of intermediates. This rewrite is based on complex algorithms, but has the potential of speeding 

up the calculation by orders of magnitude. Examples from relational algebra include selection 

push-down, whereby predicates on a single relation can be evaluated before a join with 

another relation to reduce the size of the join inputs. Furthermore, join ordering also exploits 

associativity. Different join orders can result in intermediate size and runtime differences by 

orders of magnitude, which justifies the employment of sophisticated optimization techniques 

[HHH+21] [LGM+15] [LRG+17]. 

While most rewrites view a DaphneIR program as a DAG of operations connected through their 

inputs and outputs, this DAG must be linearized (work ordering) to be executable by each 

single worker out of multiple workers. Thus, another aim is to reorder operations by defining 

an efficient linearization of the program. Any topologically sorted order would be valid, but 

the DAPHNE compiler will aim at finding a linearization that increases temporal and spatial 

locality of data accesses, e. g., by ordering operations reading the same data close to each 

other. That way, the cache behavior may be improved and evictions from the buffer pool to 

secondary storage avoided. 

Finally, the selection of physical operators has a strong impact on the execution time and 

the working memory footprint of an operation. Furthermore, the choice of the physical 

operator can have an impact on the applicability of data partitioning and multi-threading 

execution techniques, which are the basis for scheduling during the execution time. 
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2.2.2 Pipelines and Operator Fusion 

In the simplest case, the reordered sequence of operations could be executed in an operator-

at-a-time fashion, i. e., operations are executed one by one and each operator materializes its 

entire output data objects in the storage hierarchy. This approach is adopted by machine 

learning frameworks such as TensorFlow [ABC+16] and database systems such as MonetDB 

[IGN+12]. However, to avoid unnecessary materialization overhead, the DAPHNE compiler tries 

to fuse adjacent operations together into pipelines whenever possible. From outside, a fused 

pipeline looks like a single operation with a number of inputs and outputs that depends on 

the operations within the pipeline. During execution, a pipeline’s inputs are split into tiles 

(partitions). The DAG of operations within the pipeline is executed for the set of corresponding 

tiles of each input, i. e., as a vectorized execution [BZN05]. This partitioning ensures a cache-

efficient behavior if the partition sizes are chosen to fit the intermediates within the pipeline 

into the cache hierarchy. In combination with a multi-threaded execution, this leads to an 

execution akin to morsels [VL14]. 

Note that the compiler already decides whether and how (along which dimension(s) such as 

row/column/both, as of now only a partitioning per row is possible) to partition the data. For 

instance, for the elementwise addition of a matrix and a row vector, one option would be to 

partition the matrix horizontally, while broadcasting the row vector. While the compiler decides 

the task partitioning technique (see Section 2.3), the actual partitioning is performed at run-

time. In general, the fused operator pipelines created by the DAPHNE compiler define the unit 

of work for the DAPHNE runtime scheduler. 

2.2.3 Decisions about Data-level Parallelism 

The DAPHNE compiler performs intra- and inter-procedural analyses [BBE+14] to compute the 

dimensions, and estimate sparsity, and other properties of intermediate results. Based on these, 

appropriate physical data representations (such as dense or sparse matrices) are selected and 

memory footprints estimated. Depending on the physical size of the intermediates, the 

compiler decides if parallelization is required, whereby different levels are supported. For 

very small data objects, the overhead of parallelization might outweigh its benefits, e. g., due 

to thread setup or data transfer costs, rendering a sequential processing most efficient. 

However, the DAPHNE system is specifically designed for processing large amounts of data. 

Within a single computing node, multi-threading is applied to process different tasks of a 

vectorized pipeline in parallel using the local runtime. If the expected size of an intermediate 

result exceeds the memory capacity of a single computing node, the pipeline will be executed 

on several computing nodes by the distributed runtime. That means, the compiler decides if 

and at which level to parallelize a pipeline, thereby triggering either the local or the distributed 

runtime scheduler. This behavior is also controlled and influenced by the user as the 

distributed runtime must be activated to be used (see prototype Section 3). 

2.2.4 Decisions about Task-level Parallelism 

Apart from data-level parallelism, machine learning algorithms, as a core component of 

integrated data analysis pipelines, often expose task-level parallelism in the form of a for loop 

with independent loop iterations. This can be the case when training multiple models (e. g., in 

ensemble learning) as well as when training a single composable model (e. g., in stochastic 
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gradient descent). The individual loop iterations could access disjoint or overlapping parts of 

the data, or the entire data. Thus, when executing subsets of the for loop’s index range in a 

task-parallel manner, different techniques like data partitioning or memoization/sharing could 

be applied. Similar to SystemML [BTR+14], the DAPHNE system will support ParFOR loops 

(described in Section 2.1) to explicitly express opportunities for task-level parallelism. The 

DAPHNE compiler plays a crucial role by ensuring that there are no dependencies between 

iterations and by selecting an optimal task-parallel execution strategy for minimizing the 

overall runtime under hard constraints on the memory consumption and the degree of 

parallelism. In that sense, local, distributed (remote), and hybrid (local and distributed) 

execution is possible, depending on the data size. 

2.2.5 Code Generation 

By default, the operations within a fused pipeline are executed by the same runtime kernels 

used for a stand-alone operator outside a fused pipeline, whereby efficiency is achieved 

through cache-awareness and multi-threading. In the literature, approaches for the on-the-fly 

generation and JIT-compilation of tailored operators have been investigated for ML systems, 

such as SystemML [BRH+18] and Julia [BEK+17] and database systems, such as HyPer [N11]. 

The DAPHNE compiler adopts these approaches to specialize operators for the actual data and 

value types, shapes, and sparsity of the data, as well as for the hardware to use. However, since 

code generation incurs a certain extra effort during execution time, it will be applied in a cost-

beneficial manner [BRH+18]. By creating tailored operators on-the-fly, the compiler further 

defines the scope of the runtime scheduler. 

2.2.6 Placement 

By means of configuration (for more details, see [D3.1] and [D3.4]), the DAPHNE compiler is 

aware of the (heterogeneous) accelerator devices available to the system. It may automatically 

determine on which class of devices an entire operation should be placed. Moreover, the 

DAPHNE system will support the execution of vectorized pipelines by heterogeneous worker 

nodes; while the fine-grained assignment of tasks to threads and of threads to workers are 

subject to the runtime scheduler, the compiler makes important preparations by optimizing 

and JIT-compiling separate copies of the pipeline’s body for each hardware device it might be 

assigned to during the execution time. 

2.3 Scheduling in the Runtime System 

The DAPHNE runtime system manages work and data scheduling through two main 

components. The first component is the local runtime with the vectorized execution engine, 

responsible for creating tasks and assigning them to C++ worker threads (see Section 2.3.1). 

The second component is the distributed runtime (see Section 2.3.2), which, when enabled 

(refer to Section 3 for usage details), handles the distribution of work and data across multiple 

MPI or gRPC processes. 

2.3.1 Scheduling in the Local Runtime 

The local DAPHNE scheduler relies on a vectorized execution engine which was initially 

described in [D5.1] and [D4.1]. Figure 3 shows the complete workflow of the local DAPHNE 

runtime scheduler.  
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(1) The work partitioner merges operators and data to compose tasks of different sizes.  

(2) The work manager iteratively queries the work partitioner for more tasks until all data is 

consumed. The work manager also receives information from the compiler about the type of 

available workers and tasks. Finally, it initializes the workers and queues the tasks into different 

queue types depending on the worker type and queue type configured by the user (or default 

centralized queue).  

 

Figure 3 Local DAPHNE runtime scheduler workflow for work and data 

partitioning, task creation, task queuing, and task assignment. Figure adapted 

from [EC23]. 

 

The DAPHNE vectorized execution engine simplifies scheduling complexity during execution, 

i. e., all software units of processing (threads, processes) and hardware units of execution (CPUs, 

GPUs, FPGAs), execute the same operators on multiple data chunks (SPMD). This strategy 

brings certain simplifications to the runtime system, i.e., no data dependencies among 

vectorized tasks similar to DOALL loops (parallel loops with no loop-carried dependencies, 

allowing iterations to execute independently). DAPHNE leverages data parallelism, where the 

input data is divided into partitions, and the same operation (or a small set of operations) is 

applied concurrently to each partition, as shown in Figure 4. 
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Figure 4 Data parallelism in the DAPHNE runtime system. This figure is taken 

from [EC23] 

Applying data parallelism to sparse data poses challenges because the execution time of an 

operator depends on (1) the size of the data partition, (2) the hardware executing the operator, 

and (3) the execution order, which must consider spatial data locality. The DAPHNE local 

scheduler tackles these challenges in the following way. 

2.3.2 From Data to Tasks 

DAPHNE is a task-based system, where its scheduler converts inputs from the vectorized 

execution engine, namely data and operators, into tasks. Tasks are the smallest unit of work to 

be scheduled. The work granularity or task granularity is dictated by the size of the data. Since 

DAPHNE relies on dense and sparse matrix data structures [PD22], the smallest data size can 

be one row, one column, or a chunk of rows and columns of a certain size. In fact, the proper 

data size should be considered based on the size of the lower levels of cache of the target 

system. For simplicity, one can assume that the smallest data within a task is one row. The 

strategy of creating and executing fine-grained tasks minimizes load imbalance, but it incurs a 

high overhead that can increase the execution time.  

 

 

Figure 5 Data partitioning into tasks in the DAPHNE local runtime scheduler. 

Figure adapted from [D5.1] 
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One way to address this challenge is to still create fine-grained tasks but to schedule them in 

chunks of tasks (see Figure 5). This approach reduces the overhead of scheduling individual 

tasks. Another approach is to create tasks of variable sizes (see Figure 5). The local DAPHNE 

scheduler uses the latter approach (highlighted with blue background in Figure 5) to avoid an 

unnecessary level of abstraction (chunks of tasks). To determine the task size, the local DAPHNE 

scheduler employs self-scheduling techniques (see next section) to partition the work and 

data.  

2.3.3 Task Partitioning 

The DAPHNE local scheduler task partitioner has two interface points: 1) Initialize/Update which 

sets the number of workers (threads), the partitioning scheme, and the total number of tasks. 

This point is also used to give updates regarding the runtime information to the partitioner. 2) 

Get Task which provides a task for execution. The partitioner is used iteratively (see Figure 3) 

to support the extension of the DAPHNE local scheduler with dynamic and adaptive scheduling 

techniques. Task partitioning can thus be adaptive, based on runtime information or non-

adaptive following a given scheduling technique chunk size progression. The final local 

DAPHNE scheduler prototype supports twelve non-adaptive dynamic scheduling techniques 

and one automated chunking method (also non-adaptive) that can be chosen by the user to 

govern the partitioning of data into tasks. The available scheduling techniques are STATIC 

(default), SS, MFSC, GSS, TFSS, FAC2, TFSS, FISS, VISS, PLS, PSS, MSTATIC, and the automated 

chunking method is named AUTO. The detailed descriptions of these techniques and 

algorithms can be found in [D5.1] (all techniques) and [D5.3] (AUTO). 

2.3.4 Worker Management 

The local DAPHNE scheduler is designed to support different types of computing resources, 

e.g., CPUs, GPUs, FPGAs, and computational storage. The decision of which type of computing 

resource will be used to execute a specific pipeline is taken by the compiler. The worker 

manager initiates workers (threads) that execute or interface with the corresponding devices 

(see Figure 4, worker manager). For example, for CPU workers, the worker manager 

creates/manages worker threads that execute the tasks on CPUs. Also, it creates worker threads 

that perform data transfers and launch kernels on target devices, such as GPUs and FPGAs. 

Queue management. The number of generated tasks is often larger than the number of 

available workers. Therefore, the tasks need to be stored for later execution by worker threads. 

The DAPHNE local scheduler offers a queuing system that stores tasks until workers become 

free to execute them. It also offers multiple queuing strategies, as shown in Figure 6.  
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Figure 6 Task queueing strategies in the local DAPHNE scheduler. 

 

The “Centralized” queueing strategy relies on creating a single queue per type of computing 

resource. When the DAPHNE compiler decides to map a particular operation to a specific 

device (CPU, GPU, FPGA), it generates the corresponding code that executes on the chosen 

device type. If the centralized queue strategy is being used, all tasks associated to a given type 

of device will be queued in a single queue. 

The “Per Device” queueing strategy relies on creating a queue for each device, e.g., in the case 

of CPUs, each CPU will have a respective queue where tasks are stored. That is, in general,  each 

worker has a separate (local) work queue from which it self-obtains tasks. Once its work queue 

is empty, the worker seeks tasks from other workers (see work assignment Section 2.3.5).  

The ”Per Device Group” queueing strategy relies on creating a queue for each device group, 

e.g., one queue per NUMA domain. This type of queue is mainly to support NUMA-awareness, 

i.e., cores that belong to the same NUMA-domain can share the work queue of that domain as 

the cost of obtaining tasks from this queue is lower compared to obtaining tasks from a queue 

residing on a different NUMA-domain (see work assignment Section 2.3.5). 

All work queues are initially filled statically (see Figure 3). That is, the DAPHNE local scheduler 

initially partitions (task partitioning) the data into tasks of different sizes following a given 

scheduling technique and then fills all queues (or a single centralized queue) with such tasks. 

Finally, the queues are consumed by the threads following different work assignment 

strategies. 

2.3.5 Work Assignment 

Work assignment refers to the mapping (or placing) of units of work (or tasks) onto individual 

units of execution (processes or threads). In the DAPHNE local scheduler, the work assignment 

is independent of task granularity (defined by task partitioning), i. e., the task granularity can 

be identified before the actual assignment and execution of the task. For work assignment, we 

consider the self-scheduling principle [WS81] which means once an execution unit is free and 

available it obtains a collection (or chunk) of tasks to execute [EC19]. In general, there are two 

approaches for work assignment: work sharing and work stealing [CG17]. Both approaches 

follow the self-scheduling principle and are implemented with centralized and/or distributed 
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work queues. Figure 7 shows the different work assignment strategies depending on the type 

of work queue being used. 

 

Figure 7 Task assignment strategies in the local DAPHNE scheduler. 

 

When using a centralized work queue, once a worker thread becomes free and available it 

obtains a new task to execute from the centralized work queue. Such strategy has the following 

advantages: 1) simple design and implementation and 2) a centralized work queue maintains 

a global overview of the remaining work, and thus, enables load balancing across all workers. 

The disadvantages of consuming work from a single centralized queue are: 1) when the 

number of workers increases, access to the centralized work queue becomes a synchronization 

bottleneck that may negatively impact performance and 2) loss of data locality. 

For distributed work queues, the assignment of tasks to workers works in two separate steps. 

Initially, while the distributed queues (either per device or per group, Figure 6) are still 

containing tasks, the threads consume their local queues in the same way as for centralized 

queue configuration. When the local distributed queues are empty, work stealing is applied 

where threads will steal work from other queues until all tasks are consumed from all queues. 

The advantages of distributed queues with work stealing are: 1) relieves the contention 

associated with concurrent access to a centralized work queue and 2) is data locality-aware. 

The disadvantages of this approach are: 1) the workers lack global knowledge of the remaining 

work to execute, and thus, only enables local load balancing among specific thief-and-victim 

workers and 2) requires a more complex design and implementation than work sharing. 

Work-stealing and victim selection. In the work stealing approach, when a worker finishes 

its local work queue it becomes a thief which needs to find a victim to steal work from. Various 

victim selection strategies are possible. In the local DAPHNE scheduler we provide four options, 

Sequential victim selection (SEQ), sequential prioritized victim selection (SEQPRI), random 

victim selection (RND), and random prioritized victim selection (RNDPRI). SEQ denotes a worker 

searching for the victim in a round-robin fashion, starting from their current position in the 

system topology [PS14]. SEQPRI prioritizes the search for victims within the same NUMA 

domain. SEQPRI preserves data locality between NUMA domains whenever possible, and 

minimizes inter-socket communication [CG17]. RND involves a random selection of one victim 
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using uniform random distribution over all victims. RNDPRI is similar to RND except that victims 

are divided according to their NUMA domains, i.e., RNDPRI randomly selects from the victims 

within the same NUMA domain. 

2.3.6 Extendibility 

The choice of the work partitioning scheme has a strong impact on the performance of 

applications.  For instance, when work stealing is chosen as a work assignment scheme, the 

granularity of the stolen tasks is determined by the chosen work partitioning scheme.  Thus, 

the choice of the work partitioning scheme indirectly influences the work assignment schemes. 

The local DAPHNE scheduler is extendable as users are allowed to modify any existing or 

add any new partitioning schemes. DAPHNE developers can use a detailed guide available on 

GitHub1 which provides step-by-step instructions on how to modify the runtime for the 

implementation of additional partitions schemes. 

 

2.3.7 Scheduling in the Distributed Runtime 

 

Figure 8 Distributed DAPHNE runtime scheduler workflow for work and data 

partitioning. Figure adapted from [EC23]. 

 

The distributed DAPHNE scheduler controls the scheduling of data and work to processes 

distributed across computing nodes using MPI or gRPC. Figure 8 shows the design extension 

 
1 https://github.com/daphne-eu/daphne/blob/main/doc/development/ExtendingSchedulingKnobs.md 

https://github.com/daphne-eu/daphne/blob/main/doc/development/ExtendingSchedulingKnobs.md
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of the local DAPHNE scheduler to support distributed-memory systems. The design reuses the 

local DAPHNE scheduler for shared-memory systems. The distributed DAPHNE scheduler adds 

a new component called coordinator that interfaces with multiple instances — one per MPI 

process — of shared-memory DAPHNE schedulers. The coordinator serves as an entry point 

that the DAPHNE runtime uses, i.e., the DAPHNE runtime system replies to the coordinator to 

divide, distribute, and collect tasks and results from individual local DAPHNE scheduler 

instances.  

The distributed DAPHNE scheduler implements different message types interfaced by a 

communication manager (see Figure 8): Broadcast Message (BM), Compute Message (CM), 

Distribute Message (DM), and Ready Message (RM). BM and DM messages are used to 

communicate data to the distributed processes. The decision of which type of message (BM or 

DM) will be used to communicate the data is taken by the compiler depending on whether 

such data is required in every process or if it can be partitioned separately. CM messages are 

used to communicate MLIR code to the distributed processes. Finally, RM messages are used 

for synchronization between the coordinator and workers. 

Distributed partitioning. The current implementation of the DAPHNE distributed scheduler 

partitions the input data in the coordinator using equally sized chunks (STATIC). Then, the data 

and MLIR code associated with it are communicated — one chunk per worker — to the workers’ 

processes. Finally, each worker process schedules its threads using its own instance of the local 

DAPHNE scheduler. 

2.3.8 Extendibility 

The distributed DAPHNE scheduler offers ample extensibility potential.  

1) The scheduling coordination can be modified to support multiple coordinators or fully 

distributed coordination.  

2) To ensure load balancing beyond the local DAPHNE scheduler, work stealing can be 

implemented across the distributed processes. The current implementation of work stealing 

for the local DAPHNE scheduler can be extended for the distributed scheduler.  

3) Additional partitioning strategies can be implemented in the distributed DAPHNE scheduler. 

Guidelines on extending the distributed DAPHNE scheduler can be found on the DAPHNE 

GitHub repository2. 

2.4 Parameter Server 

In this section, we first summarize the background of data- and model-parallel parameter 

servers, typical synchronization strategies and techniques for reducing the communication 

overhead. Subsequently, we then summarize our work on the BAGUA prototype and various 

parallelization strategies in new environments. Since Ce Zhang has left ETH Zurich in the middle 

of the DAPHNE project, these updated prototypes were explored standalone and are not 

integrated into the DAPHNE system infrastructure yet.   

 
2 https://github.com/daphne-

eu/daphne/blob/e93c94345d3e6a79ff3bebde34c577c87a43278e/doc/development/ExtendingDistributedRuntime.md 

https://github.com/daphne-eu/daphne/blob/e93c94345d3e6a79ff3bebde34c577c87a43278e/doc/development/ExtendingDistributedRuntime.md
https://github.com/daphne-eu/daphne/blob/e93c94345d3e6a79ff3bebde34c577c87a43278e/doc/development/ExtendingDistributedRuntime.md
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Background: Data- and model-parallel parameter servers, and similar distribution strategies, 

are the predominant system architecture for mini-batch training of deep neural networks 

(DNN) and other expensive ML models such as Large Language Models (LLMs) and foundation 

models [YH+22] in general. In a classical data-parallel parameter server [S+10, D+12, Li+14], 

we have M parameter servers (collectively holding the model weights), and N workers (each 

holding a disjoint partition of the data). Starting from a randomly initialized model, the workers 

pull the current model from the parameter server(s), perform one or multiple forward and 

backward passes on data batches to compute gradients, and push these gradients or local 

models back to the parameter server(s) where the gradients are aggregated and models are 

updated accordingly. Similar architectures apply to multi-threaded training [ZR14], multi-

device training [TF19], distributed training [D+12], as well as federated training [KMS20]. 

Synchronization Strategies: Commonly applied update strategies for when to update the 

models include Bulk Synchronous Parallel (BSP), Asynchronous Parallel (ASP), and Synchronous 

with backup workers [D+12, A+16, J+17]. BSP introduces barriers and waits for updates from 

all workers which ensures consistency but is prone to stragglers (slow workers) because workers 

wait for the slowest. In contrast, ASP avoids barriers by immediately updating and returning 

the model for every worker update. However, in case of slow workers, there is the problem of 

working on stale models which can slow down the learning process, and in extreme cases, even 

lead to divergence. Synchronous with backup workers combines the advantages of BSP and 

ASP by waiting only for N updates of the N+b workers, and thus ignoring the b slowest workers 

on every synchronization step (i.e., model update). Further strategies bound the maximum 

staleness (i.e., differences between the fastest and slowest worker) [Ho+13]. Recent work 

[YW+22] made a case for independent subnet training, where sparse disjoint subnets are 

assigned to the different workers which train these subnets locally. The coarse-grained iterative 

model aggregation and reassignment of independent subnets largely eliminates the need for 

synchronization and thus yields significant speedups, especially with many workers.   

Reduced Communication Overhead: Given the broad applicability of the parameter server 

architecture and importance of fast communication, existing work extensively studied reducing 

the communication overhead. Commonly applied techniques include larger batch sizes [G+17] 

(i.e., fewer communications steps), more advanced optimizers [GKS18] (i.e., fewer model 

updates until convergence), decentralized training [L+17] (i.e., barriers among sub-groups of 

workers), prefetching and overlapping computation with communication [TF19] (e.g., layer-

wise All-Reduce overlapped with backward pass computation), lossless and lossy compression 

of transferred data [S+14, J+18], sparse communication [R+22], different communication 

primitives, direct device communication, and even in-network aggregation [S+21]. 

BAGUA Demonstrator:  In order to facilitate the exploration of combining such techniques 

for reduced communication overhead, we created the standalone BAGUA system [G+21]. 

BAGUA provides well-defined communication alternatives at extension hooks and thus, allows 

experimenting with combinations of optimization algorithms, communication primitives, and 

system relaxations. In detail, BAGUA includes parameter servers, collective operations like All-

Reduce (MPI and NCCL), and decentralized learning; techniques for overlapping 

communication and computation, synchronous and asynchronous updates; and means of lossy 

compression and sparsification. A user specifies the network architecture, an optimizer, and a 
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BAGUA wrapper with additional configurations. BAGUA then provides a dedicated optimization 

framework for automatic scheduling and batching. This optimization framework applies 

overlapping communication and computation (via dynamic profiling), fusion and flattening of 

intermediates into continuous objects (batched communication), and hierarchical 

communication across nodes and multiple devices per node. The demonstrator artifact is 

available at https://daphne-eu.know-center.at/index.php/s/N6YJ3oScY7rS3tp and can be 

tested through the prepared tutorials at https://tutorials.baguasys.com/.  

Scheduling in Different Environments: Additional prototypes focus on hybrid scheduling 

strategies in different environments such as in-database learning, function-as-a-service 

environments, and decentralized training strategies in large-scale heterogeneous networks.  

First, CorgiPile [XQ+24] introduces a hierarchical data shuffling strategy (for in-database 

learning) that avoids a full reshuffling before mini-batch training while maintaining good 

convergence rates of stochastic gradient descent.  Second, LambdaML [JG+24] systematically 

explores and evaluates mini-batch training strategies in function-as-a-service (serverless) 

environments and finds that scheduling strategies need to be selected according to workload 

characteristics. Third, we introduce a new scheduling algorithm [YH+22] for training large 

foundation models in decentralized, heterogeneous, and low-bandwidth environments. This 

algorithm combines data-parallelism and pipeline parallelism, and computes cost-optimal 

groups of devices and communication schedules. These new scheduling strategies for different 

environments are a basis for a future holistic system support for alternative and extensible 

scheduling strategies for integrated data analysis pipelines.    

2.5 Summary 

The "Final Design of Scheduling Components and Extendability" details the DAPHNE system's 

scheduling framework, designed to efficiently manage tasks across distributed and shared-

memory systems. This section introduces three key roles in scheduling decisions.  

1) User-Driven Scheduling: while default scheduling settings are available for ease of use, 

expert users can adjust parameters such as task partitioning, thread allocation, and resource 

placement, tailoring performance without requiring deep scheduling expertise.  

2) Compiler-Level Scheduling: At compile time, the DAPHNE compiler optimizes parallel 

execution by partitioning work, reordering tasks, and fusing operations. This approach 

improves efficiency by reducing redundant data movement and choosing suitable resources 

(e.g., CPU, GPU) for task execution. It ensures that tasks are structured to maximize memory 

locality and execution speed.  

3) Runtime System Scheduling: The runtime system manages task execution using a 

vectorized approach, with a local scheduler for shared-memory processing and a distributed 

scheduler for multi-node coordination.  

Dynamic scheduling techniques help manage workload distribution, while the modular design 

allows for future customizations, including support for new scheduling methods. The DAPHNE 

scheduling framework is highly extensible, enabling ongoing adaptation to meet specific 

performance goals and accommodate new developments in computational infrastructure. 

https://daphne-eu.know-center.at/index.php/s/N6YJ3oScY7rS3tp
https://tutorials.baguasys.com/
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3 Final DAPHNE Scheduler Prototype 
This section presents the novel features in the final design of the DAPHNE scheduler. We 

summarize and provide examples on how to use the scheduling options of DAPHNE for the 

local runtime (Section 3.1) and for the distributed runtime (Section 3.2). 

3.1 Local Runtime Scheduling Prototype Usage, Results, and Performance 

The implementation of the entire DAPHNE local runtime scheduler involves numerous files 

and hundreds of lines of code. Detailed information and documentation, including extendibility 

guidelines, is available on the DAPHNE GitHub3 repository.  

The key files that are used for adding a new scheduling technique to the DAPHNE local 

scheduler are: 

1. src/runtime/local/vectorized/LoadPartitioning.h 

2. src/api/cli/daphne.cpp 

The first file LoadPartitioning.h contains the implementation of the currently supported 

scheduling techniques, i.e., the current version of DAPHNE uses self-scheduling techniques to 

partition the tasks. In this file, the developer should change two things: 

1. The enumeration that is called SelfSchedulingScheme. The developer will have to add 

a name for the new technique, e.g., MYTECH 

enum SelfSchedulingScheme { STATIC=0, SS, GSS, TSS, FAC2, TFSS, FISS, VISS, PLS, MSTATIC, 

MFSC, PSS, MYTECH }; 

2. The function that is called getNextChunk(). This function has a switch case that selects 

the mathematical formula that corresponds to the chosen scheduling method. The 

developer has to add a new case to handle the new technique. 

 

Enabling the selection of the newly added technique: 

The second file daphne.cpp contains the code that parses the command line arguments and 

passes them to the DAPHNE compiler and runtime. The developer has to add the new 

 
3 https://github.com/daphne-eu/daphne/blob/main/doc/development/ExtendingSchedulingKnobs.md 

https://github.com/daphne-eu/daphne/blob/main/doc/development/ExtendingSchedulingKnobs.md
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technique as a vaild option. Otherwise, the developer will not be able to use the newly added 

technique. There is a variable called taskPartitioningScheme and it is of type  

opt<SelfSchedulingScheme>. The developer should extend the declaration 

of opt<SelfSchedulingScheme> as follows: 

 

To use the new technique, one simply need to select “MYTECH” as the --partitioning command 

line option of DAPHNE. For more details, see the final prototype in the next subsections.  

3.1.1 Usage 

The following presents the steps to build and execute DAPHNE with scheduling options. The 

sequence of steps is similar to the steps in [D5.3]. 

Step 1 Download the snapshot from:  

https://github.com/daphne-eu/daphne/archive/refs/tags/0.3.zip 

 

 

Step 2 Install dependencies:  

Set up a Linux environment and install the software dependency versions specified in 

docs/GettingStarted.md. Other alternatives to build the DAPHNE prototype are described in 

docs/GettingStarted.md and include the use of containers, e.g., Docker and Singularity. The 

use of the provided containers is recommended to ensure that all required software 

dependencies and versions are correct. 

Step 3 Build DAPHNE:  

Within the daphne directory, run the build script. The first time DAPHNE is built; it may take 

~30 minutes.  

     

If the build fails, try to clean the build directory and rebuild DAPHNE as follows:  

 

 

unzip 0.3.zip 
cd daphne-0.3  

./build.sh  

 

./build.sh –-clean 

./build.sh 
 

 

 

https://github.com/daphne-eu/daphne/archive/refs/tags/0.3.zip
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Step 4 Check the Help menu of DAPHNE 

After the installation is completed, one can access the help menu by executing the following 

command: 

 

The output of the help command can be found below. The usability updates are 

highlighted in yellow and annotated with call-out boxes. The DAPHNE’s help menu 

contains numerous other options which are not directly related to scheduling and were 

redacted to improve clarity. 

 

The local DAPHNE runtime scheduler exposes 13 different partitioning techniques, 3 queue 

layouts, and 4 victim selections (only applicable when there are several queues). See Section 

2.3.1 for a complete description of all options of the local DAPHNE scheduler. 

One can use the following command and include --timing to record the execution time and 

set the number of workers with --num-threads. Here we start by using a single worker. 

Step 5 Download the DaphneDSL Scripts and Input Matrix: 

Download the archive containing the DaphneDSL scripts: 

 https://zenodo.org/records/14102956/files/D5.4.zip 

OVERVIEW: The DAPHNE Prototype. 
This program compiles and executes a DaphneDSL script. 
USAGE: daphne [options] script [arguments] 
OPTIONS: 
Advanced Scheduling Knobs: 
  --debug-mt                       - Prints debug information about the Multithreading Wrapper 
  --grain-size=<int>               - Define the minimum grain size of a task (default is 1) 
  --hyperthreading                  - Utilize multiple logical CPUs located on the same physical CPU 
  --num-threads=<int>          - Define the number of the CPU threads used by the vectorized execution engine 
(default is equal to the number of physical cores on the target node that executes the code) 
  --partitioning=<value>           - Choose task partitioning scheme: 
    =STATIC                        -   Static (default) 
    =SS                            -   Self-scheduling 
    =GSS                           -   Guided self-scheduling 
    =TSS                           -   Trapezoid self-scheduling 
    =FAC2                          -   Factoring self-scheduling 
    =TFSS                          -   Trapezoid Factoring self-scheduling 
    =FISS                          -   Fixed-increase self-scheduling 
    =VISS                          -   Variable-increase self-scheduling 
    =PLS                           -   Performance loop-based self-scheduling 
    =MSTATIC                       -   Modified version of Static, i.e., instead of n/p, it uses n/(4*p) where n is number of 
tasks and p is number of threads 
    =MFSC                          -   Modified version of fixed size chunk self-scheduling, i.e., MFSC does not require 
profiling information as FSC 
    =PSS                               -  Probabilistic self-scheduling 
    =AUTO                           -  Automatic partitioning 
  --pin-workers                  - Pin workers to CPU cores 
  --pre-partition                 - Partition rows into the number of queues before applying scheduling technique 
  --queue_layout=<value>           - Choose queue setup scheme: 
    =CENTRALIZED           -   One queue (default) 
    =PERGROUP                -   One queue per CPU group 
    =PERCPU                     -   One queue per CPU core 
  --vec                               - Enable vectorized execution engine 
  --victim_selection=<value>       - Choose work stealing victim selection logic: 
    =SEQ                             -   Steal from next adjacent worker (default) 
    =SEQPRI                       -   Steal from next adjacent worker, prioritize same NUMA domain 
    =RANDOM                   -   Steal from random worker 
    =RANDOMPRI             -   Steal from random worker, prioritize same NUMA domain 
 
...  
 
DAPHNE Options: 
 
  --distributed                    - Enable distributed runtime 
 
... 
 
Distributed Backend Knobs: 
 
  --dist_backend=<value>           - Choose the options for the distribution backend: 
    =MPI                           -   Use message passing interface for internode data exchange (default) 
 
 
... 

./bin/daphne --help 
 

https://zenodo.org/records/14102956/files/D5.4.zip
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and decompress the archive in the daphne-0.3 directory. 

 

The DaphneDSL scripts need to operate on an input matrix. Download the input matrix 

(Wikipedia-20051105): 

 https://zenodo.org/records/14102956/files/wikipedia-20051105.tar.gz 

Then, decompress the archive of the matrix, and set up the meta data: 

 

Step 6 Execute DAPHNE: 

 

 

The output of the command above should look similar to the following. Highlighted in bold is 

the execution time of the script. 

 

 

One can also increase the total number of workers as follows: 

 

 

The output below shows the increased performance with more workers: 

 

 

One can also change the partitioning technique, for example using AUTO instead of STATIC: 

 

 

Which yields the following output: 

 

 

3.1.2 Results  

Figure 9 shows the performance of the different scheduling techniques offered by the local 

DAPHNE runtime scheduler for the execution of the Connected Components algorithm on the 

unzip D5.4.zip 

tar -xzf wikipedia-20051105.tar.gz 

echo '{"numRows":1634989,"numCols":1634989,"valueType":"f64","numNonZeros":19753078}' > wikipedia-

20051105/wikipedia-20051105.mtx.meta 

 

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=1 --partitioning=STATIC ./D5.4/cc.daph 

f=\"./wikipedia-20051105/wikipedia-20051105.mtx\" 

 

{"startup_seconds": 0.021306, "parsing_seconds": 0.0030423, "compilation_seconds": 0.0499436, 

"execution_seconds": 27.3668, "total_seconds": 27.4411} 

./bin/daphne --vec --select-matrix-repr --timing --num-threads=6 --partitioning=STATIC D5.4/cc.daph 

f=\"./wikipedia-20051105/wikipedia-20051105.mtx\"  

{"startup_seconds": 0.0228854, "parsing_seconds": 0.00338405, "compilation_seconds": 0.0769501, 

"execution_seconds": 16.5234, "total_seconds": 16.6266} 

ç 

./bin/daphne --vec --select-matrix-repr --timing --num-threads=6 --partitioning=AUTO D5.4/cc.daph 

f=\"./wikipedia-20051105/wikipedia-20051105.mtx\" 

{"startup_seconds": 0.0264353, "parsing_seconds": 0.00919016, "compilation_seconds": 0.061362, 

"execution_seconds": 14.6002, "total_seconds": 14.6971} 

https://zenodo.org/records/14102956/files/wikipedia-20051105.tar.gz
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wikipedia-20051105 matrix. These experiments were conducted using 6 pinned workers (6 

threads) and executed on an Intel Xeon E5-2640 v4 node with a total of 2 sockets, 10 cores per 

socket, and disabled hyperthreading. A single CENTRALIZED work queue (default) was 

considered. The results shown in Figure 9 are based on the execution of the following 

command repeatedly 5 times for each different “--partitioning” strategy. The dashed line 

corresponds to the mean execution time for the STATIC partitioning (the default partitioning 

for DAPHNE). The percentage represent the reduction in execution time compared to STATIC. 

Thus, for this particular experiment, MFSC performs 35% faster than STATIC. This highlights the 

importance of offering multiple scheduling techniques to users. The DAPHNE local scheduler 

is able to be adapted to cope with the underlying system and workload imbalance of 

application or inputs (e.g., matrices). 

 

 

Figure 9 Execution time of the Connected Components (CC) application for 

several local DAPHNE runtime scheduler configurations. 

 

3.2 Distributed Runtime Scheduling Usage, Results, Performance 

The implementation of the whole DAPHNE distributed runtime scheduler also involves 

numerous files and hundreds of lines of code. Guidelines and documentation on extending the 

distributed DAPHNE scheduler can be found on the DAPHNE GitHub repository4. 

 
4 https://github.com/daphne-

eu/daphne/blob/e93c94345d3e6a79ff3bebde34c577c87a43278e/doc/development/ExtendingDistributedRuntime.md 
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# The command below is a simple example and will not work if copied directly. We include it here simply to 

illustrate the set of commands used to execute the experiment. 

 

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=6 --partitioning={STATIC, GSS, FAC2, ... AUTO} 

./D5.4/cc.daph f=\"./wikipedia-20051105/wikipedia-20051105.mtx\" 

 

https://github.com/daphne-eu/daphne/blob/e93c94345d3e6a79ff3bebde34c577c87a43278e/doc/development/ExtendingDistributedRuntime.md
https://github.com/daphne-eu/daphne/blob/e93c94345d3e6a79ff3bebde34c577c87a43278e/doc/development/ExtendingDistributedRuntime.md
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3.2.1 Usage  

Step 1 It is necessary to compile DAPHNE with MPI support 

One can use the following command: 

 

For this example, another DAPHNE script called D5.4/nbody.daph is used. 

 

The prompt below highlights specific options related to the distributed DAPHNE runtime 

scheduler. 

 

For an execution with the distributed runtime, users must use the `--distributed` flag, as well as 

specifying the backend for the distributed runtime: either MPI or gRPC. 

Step 2 Execute the nbody.daph DAPHNE script  

The following command executes the example with the distributed runtime: 

 

This will start 2 MPI processes with one of them being the coordinator which will not execute 

any computation, and the other being a DAPHNE worker. 

We can add more workers by increasing the number of MPI processes (from 2 to 4 below). In 

that case there will be one coordinator and 3 DAPHNE workers. 

 

OVERVIEW: The DAPHNE Prototype. 
This program compiles and executes a DaphneDSL script. 
USAGE: daphne [options] script [arguments] 
OPTIONS: 
 
...  
 
DAPHNE Options: 
 
  --distributed                    - Enable distributed runtime 
 
... 
 
Distributed Backend Knobs: 
 
  --dist_backend=<value>           - Choose the options for the distribution backend: 
    =MPI                           -   Use message passing interface for internode data exchange (default) 
 
 
... 

mpirun -np 2 ./bin/daphne --vec --num-threads=4 --partitioning=STATIC --distributed --timing --

dist_backend=MPI D5.4/nbody.daph nb_particles=100 

{"startup_seconds": 0.109135, "parsing_seconds": 0.00602752, "compilation_seconds": 0.170672, 

"execution_seconds": 29.7032, "total_seconds": 29.989} 

 

mpirun -np 4 ./bin/daphne --vec --num-threads=4 --partitioning=STATIC --distributed --timing --

dist_backend=MPI D5.4/nbody.daph nb_particles=100 

{"startup_seconds": 0.119317, "parsing_seconds": 0.00564794, "compilation_seconds": 0.168974, 

"execution_seconds": 31.8412, "total_seconds": 32.1352} 

./build.sh --mpi 

 

./bin/daphne --help 
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3.2.2 Results  

To test the performance and scalability of the MPI distributed runtime of DAPHNE, we executed 

a N-body simulation on the VEGA supercomputer, where each node has an AMD Rome 7H12 

with 2 sockets and 64 cores per socket. We can see on Figure 10 that as the number of nodes 

increase, the execution time of the simulation decreases. We also point out that the choice of 

the scheduling technique at the local DAPHNE runtime scheduler level has an influence on the 

total execution time. In these experiments, for the local DAPHNE runtime scheduler we 

consider the STATIC (default) and AUTO partitioning schemes while for the distributed 

scheduler the partitioning is STATIC. 

 

Figure 10 Performance of the DAPHNE MPI distributed runtime (N-body 

simulation). 

3.3 Reproducibility 

The development of the DAPHNE scheduler components (and DAPHNE as a whole) also 

considers reproducibility as a key aspect for the success of the project. ACM defines three levels 

of reproducibility5. The first level is “Repeatability”, which means that one team of researchers 

is able to re-execute experiments on the same experimental setup. The next level is 

“Reproducibility”, which means that a different team than the one that designed the 

experiments, is able to re-execute the experiments on the original experimental setup. The final 

 
5 https://www.acm.org/publications/policies/artifact-review-and-badging-current 

0

1000

2000

3000

4000

4 Nodes
8 Ranks

448 Threads 

8 Nodes
16 Ranks

960 Threads 

12 Nodes
24 Ranks

1472 Threads 

16 Nodes
32 Ranks

1984 Threads 

20 Nodes
40 Ranks

2496 Threads 

E
x
e
c
u
ti
o
n

 t
im

e
 [
s
]

Local DAPHNE Scheduler Partitioning techniques

STATIC

AUTO

for 100 iterations of a 100'000−par ticle N−body simulation

Distributed DAPHNE Runtime Scheduler Performance on Vega



 D5.4 Final design and Prototype of Scheduling Components 

32 

DAPHNE – 957407 Public 

level is “Replicability” where a different team is able to reach the same conclusions without 

access to the original experimental setup. 

In the context of DAPHNE, and of this Work Package, we are mainly interested in the 

“Repeatability” and “Reproducibility” of our experiments. This means creating an experimental 

artifact that we can confidently share among members of the Work Package, the consortium, 

and Reproducibility reviewers of conferences. 

3.3.1 Artifacts Description 

In the case of DAPHNE, creating reproducible artifact mainly consists in a precise control of the 

software environment and of the DAPHNE version (i.e., git commit). 

Concerning the software environment, DAPHNE provides two ways of setting it up: native 

installation of dependencies or use of containers. 

In the `build.sh` building script, the third-party dependencies are downloaded and installed 

locally. The reproducibility of these installations is guaranteed by the fact that all the desired 

versions are correctly specified in the `software-package-versions.txt` file. Regarding 

containers, the Dockerfiles, which generate the containers, based themselves on the `build.sh` 

script. One potential reproducibility issue when using the native installation might come from 

the lack of control of the 2nd level dependencies to build the third-party dependencies of 

DAPHNE (e.g., the local version of the compiler). The Docker containers solve this issue by 

capturing these hidden dependencies at the build time of the container. However, rebuilding 

the same container image from the same Dockerfile in the future might not yield the same 

software environment as Dockerfiles rely on non-reproducible tools (e.g., apt). Hence, once the 

container has been built, a long-term storage of the result is crucial to achieve long-term 

reproducibility. Using DockerHub is a solution, but might only guarantee short- to middle-term 

storage, and thus reproducibility. 

We provide an example of an artifact to reproduce Figure 9 of this deliverable following the 

guidelines on Zenodo: https://doi.org/10.5281/zenodo.14016947. Using Zenodo allow us to 

have long-term storage of the artifact. The Zenodo archive gathers several research objects. 

First the source code of the experiments. The source code of the experiments is also archived 

on Software Heritage with the complete and transparent history of the git repository: 

https://archive.softwareheritage.org/swh:1:dir:b834ba364fc85f64a8f0fc5218b13977e7f

cd3d1;origin=https://bitbucket.org/unibasdmihpc/demonstrators;visit=swh:1:snp:b055

1121df00380f9d4a96b95988cd0274838f48;anchor=swh:1:rev:c221210651ae8efe7cc764

bde11166239a2c22eb. The experiments will use the ̀ daphne-dev` Docker image6 to build and 

execute DAPHNE, as well as a Docker image for the analysis and plotting of the results. 

Uploading those Docker images to DockerHub provide an easy way for users to have access 

to the container, however, in the long-term, those images might be removed from DockerHub, 

or overwritten. Hence, the Zenodo archive also contains the Docker images. The daphne-dev 

image is produced with a classical Dockerfile recipe which might have some reproducibility 

issues if the recipe needs to be built in the future. The Docker image for the analysis and 

 
6 https://hub.docker.com/r/daphneeu/daphne-dev 

https://doi.org/10.5281/zenodo.14016947
https://archive.softwareheritage.org/swh:1:dir:b834ba364fc85f64a8f0fc5218b13977e7fcd3d1;origin=https:/bitbucket.org/unibasdmihpc/demonstrators;visit=swh:1:snp:b0551121df00380f9d4a96b95988cd0274838f48;anchor=swh:1:rev:c221210651ae8efe7cc764bde11166239a2c22eb
https://archive.softwareheritage.org/swh:1:dir:b834ba364fc85f64a8f0fc5218b13977e7fcd3d1;origin=https:/bitbucket.org/unibasdmihpc/demonstrators;visit=swh:1:snp:b0551121df00380f9d4a96b95988cd0274838f48;anchor=swh:1:rev:c221210651ae8efe7cc764bde11166239a2c22eb
https://archive.softwareheritage.org/swh:1:dir:b834ba364fc85f64a8f0fc5218b13977e7fcd3d1;origin=https:/bitbucket.org/unibasdmihpc/demonstrators;visit=swh:1:snp:b0551121df00380f9d4a96b95988cd0274838f48;anchor=swh:1:rev:c221210651ae8efe7cc764bde11166239a2c22eb
https://archive.softwareheritage.org/swh:1:dir:b834ba364fc85f64a8f0fc5218b13977e7fcd3d1;origin=https:/bitbucket.org/unibasdmihpc/demonstrators;visit=swh:1:snp:b0551121df00380f9d4a96b95988cd0274838f48;anchor=swh:1:rev:c221210651ae8efe7cc764bde11166239a2c22eb
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plotting of the results has been built with Nix7, which should provide a long term and exact 

rebuild of the Docker container in the future. 

3.3.2 Artifacts Evaluation 

One of our observations is that the process of running an artifact is often very manual and 

involves a lot of copy pasting, or executing fragile bash script. In this artifact for Figure 9, we 

use the GNU Make tool to provide a clear description (captured in the Makefile) of the workflow 

of the experiments (i.e., downloading the requirements, building DAPHNE, running the 

experiments, collecting the data, and plotting the results). 

The workflow of the experiments requires to download some object from the internet (mostly 

from our Zenodo archive). When downloading an object, one should verify that the content of 

the downloaded object matches the expected content of the object to ensure the correctness 

of the download. To do so, we provide in the artifact, the sha256 hashes of all the objects that 

the artifacts might need to download. In the workflow, after each download the sha256 of the 

downloaded object is automatically verified to the expected one from the artifact. If the sha256 

hashes differ, then the workflow will halt. 

One complex aspect of the creation of artifact is their flexibility. By flexibility, we mean that if 

the system of the reproducer slightly differs from the one of the authors, then running the 

artifact might be much more cumbersome. In order to reduce the potential hurdles of the 

reproducer, we try to provide several means of installing DAPHNE (natively, with Docker, or 

with Singularity) and to execute the experiments (locally, or on a cluster managed by SLURM). 

3.3.3 Reproducibility Badges 

At the end of the artifact evaluation process, artifacts are awarded badges (left of Figure 11) to 

reflect their levels of reproducibility. Depending on the venue those badges differ slightly but 

encompass the same ideas. 

In the case of ACM conferences, the main badges are the following: the “Artifacts Available” 

badge reward authors who did the efforts of publicly publishing their artifacts. The “Artifacts 

Evaluated” badge indicates that the artifact is well documented and contain all the required 

objects to attempt a reproduction of the results. Finally, the “Results Reproduced” badge 

indicates that the reproducibility reviewers managed to reproduce the main result from the 

paper. 

Based on the results of our study on Artifact Descriptions of leading parallel and distributed 

conferences in 2023 [GC+24], we concluded that a crucial dimension of reproducibility is not 

currently covered by the current badges: the longevity of the artifact. One of the goals of 

reproducibility is to produce solid scientific work for future researchers to build upon, hence, if 

the artifact disappears or changes through time (e.g., source code of a dependency not 

available anymore), having the ”Results Reproduced” badge brings very little information about 

the artifact for the future researchers trying to use the scientific work. 

Hence, there is a need to reward the “Longevity” dimension of artifacts, and thus proposed a 

new badge to integrate into the current badging system. We also proposed a grading system 

 
7 https://nixos.org 
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to award, at publishing time, the “Artifacts Longevous” badge (right of Figure 11) based on 

several criteria (how the artifact was shared, how the software environment was captured, and 

where the experiments were carried out).  

 

 

Figure 11 Current ACM badges (left) and proposition for a new badge 

rewarding artifact that will pass the test of time (right). 

3.4 Summary 

The “Final DAPHNE Scheduler Prototype” section presents a demonstration of usage of the 

local DAPHNE scheduler in Section 3.1, exhibiting the different options (partitioning 

techniques, queue layouts, victim selection, and number of threads options), in Section 3.2, we 

present the usage of the distributed DAPHNE scheduler, exemplified with the MPI backend. 

Section 3.3 summarizes our knowledge about reproducibility in the context of the DAPHNE 

project, and presents an example of artifact aiming for long-term reproducibility. 

4 Conclusion 

4.1 Discussion of Results and Comparison with other Frameworks 

DAPHNE allows users to execute their IDA (Integrated Data Analysis) pipelines in a distributed 

setting without having to go through the hassle of integrating with libraries such as MPI as 

they would in different programming languages/frameworks. In this section, we present 

preliminary results comparing the scaling performances of an application executed with 

DAPHNE, Python, Julia, and C++, as well as the user’s “effort” to integrate MPI in the sequential 

version of the application.  

We compared the implementations of the Connected Components (CC) algorithm in C++, 

Python, Julia, and DaphneDSL for a sequential, single node parallel, and distributed executions. 

We collected the number of lines of codes as well as the number of required third-party 

libraries (required for linear algebra operations on sparse matrices and reading the 

MatrixMarket file format), and present them in Figure 12. 
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Figure 12  Characteristics of the implementation of the Connected Components 

algorithm in the considered languages for sequential, parallel on a single node, 

and distributed node executions. 

For DAPHNE, no changes of the source code were required to execute in parallel or distributed 

setting. For the other languages, the linear algebra libraries can be parallelized by setting 

environment variables (e.g., OMP_NUM_THREADS), however, to execute the application on 

several nodes, the users need to integrate their application with libraries such as MPI, which 

increases the effort. 

Figure 13 shows the strong scaling performance of the implementations of the CC algorithm 

on various node counts. Based on preliminary experiments, we used 20 MPI processes with 1 

thread each on each node for C++, Julia, and Python. For DAPHNE, we used 1 MPI process per 

node with 20 threads per MPI process. We evaluated the default configuration of DAPHNE 

(STATIC with CENTRALIZED queue), and DAPHNE with AUTO scheduling on a CENTRALIZED 

queue, to highlight the potential gain to use a different scheduling technique. We observe that 

for small matrices (amazon0601), DAPHNE is outperformed by all other versions, with almost 

no scaling beyond 4 nodes. However, for larger and sparser matrices (wikipedia-20070206 and 

ljournal-2008), DAPHNE performs much better and even outperforms Python and Julia. C++ 

clearly outperforms all implementations. 

We compared a DaphneDSL implementation for the Connected Components algorithm against 

Python, Julia, and C++ implementations along several dimensions: external dependencies, 

effort to adapt the code for parallel and distributed executions, and performance. The results 

demonstrate the value of DaphneSched’s various scheduling options. Although DAPHNE does 

not yield the highest performance in a distributed setting compared to C++, it has the benefit 

of requiring no effort for seamlessly scaling applications across nodes with MPI and in certain 

circumstances outperforms Python and Julia implementations. Hence, DAPHNE positions itself 

as a trade-off between "Ease of Use" and "Scaling Performance". 

The data and the analysis scripts are available on Zenodo8.  

 
8 https://zenodo.org/records/11196525 

https://zenodo.org/records/11196525


 D5.4 Final design and Prototype of Scheduling Components 

36 

DAPHNE – 957407 Public 

 

Figure 13 Strong scaling from 1 to 9 compute nodes. Inside a node, the work is 

parallelized with MPI for C++, Julia and Python, and with threads for DAPHNE. 

We execute DAPHNE with its default configuration (CENTRALIZED + STATIC) 

and with the AUTO scheduling technique and a CENTRALIZED queue to show 

the importance of scheduling on performance. 

 

4.1.1 Results of Scheduling in the Local Runtime 

The local runtime scheduler of the DAPHNE system was evaluated (results in Section 3.1.2, 

Figure 9) using the CC benchmark to test the different partitioning and schemes available. The 

results indicate that the choice of partitioning strategy significantly impacts the performance, 

particularly in scenarios with high variability in task execution times. Dynamic strategies such 

as FAC2 and FSC demonstrated reduced execution time for such irregular workloads compared 

to STATIC approaches. For regular workloads, simpler techniques like STATIC scheduling might 

still be viable as they incur lower scheduling overhead. Overall, the local runtime's flexibility in 

supporting a variety of scheduling techniques allows it to adapt to diverse application 

requirements, as evidenced by the performance improvements of up to 42% using FSC 

compared to STATIC.  

The results in Figure 13 also show the potential of DAPHNE compared to other languages. 

Naturally, given the whole infrastructure of DAPHNE, the runtime overhead of the system is 

higher than lower-level languages such as C++. However, comparing DAPHNE against higher-

level languages such as Python and Julia showed that performance is comparable while the 

development effort (in terms of lines of code) in DAPHNE is much smaller. Finally, the DAPHNE 

local runtime scheduler options are a unique feature that is not commonly available on other 

languages (unless explicitly implemented by external libraries or the user itself). As shown in 

Figure 13, the partitioning scheme AUTO from the local DAPHNE scheduler becomes extremely 

relevant even on distributed memory executions. Looking at the right plot of Figure 13, we can 

see that, despite C++, executions with AUTO outperform every other language/configuration. 

4.1.2 Results of Scheduling in the Distributed Runtime 

The distributed runtime scheduler extends the local scheduling capabilities to a multi-node 

setting, leveraging MPI or gRPC for inter-process communication. The evaluation focused on 

testing the scalability and efficiency of the distributed scheduler. The results in Sections 3.2.2 

and 4.1 (Figures 10 and 13) showed a sub-linear speedup when increasing the number of 

distributed workers due to communication overhead and data distribution imbalances. The 

distributed DAPHNE scheduler still requires further optimization for enhanced performance. 
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The integration the of local and distributed schedulers ensures efficient task execution, 

demonstrating the scheduler’s capability to manage both shared-memory and distributed-

memory parallelism effectively. 

4.2 Limitations and Suggestions for Overcoming Them 

Despite its versatility, the DAPHNE scheduler still faces limitations that can affect performance 

in specific scenarios. First, the local runtime does not yet offer support for adaptive scheduling 

techniques. This can become a limitation in scenarios where there are system perturbations or 

heterogeneity. The implementation of adaptive partitioning techniques will require minor 

changes in the local runtime to allow the adaptation of task sizes during execution. Another 

limitation of the local DAPHNE scheduler is that for the usage of accelerators (e.g., GPUs), 

individual queues are created for CPUs and GPUs. This limits or complicates the process of load 

balancing work between CPU and GPU. The implementation of a common task queue and/or 

work stealing between queues for different types of devices can be done but requires 

significant changes in the DAPHNE runtime system. 

The major limitation of the distributed DAPHNE runtime scheduler is that it relies on static 

partitioning and a centralized coordinator. The static partitioning limits the inter-node load 

balancing capabilities of DAPHNE while the centralized coordinator can become a bottleneck 

for large input data and large number of workers. Incorporating dynamic partitioning schemes 

and cross-node work-stealing mechanisms to the distributed DAPHNE runtime scheduler will 

enhance its load balancing capabilities. Also, the implementation of distributed coordination 

can eliminate the centralized coordinator bottleneck. The implementation of dynamic 

partitioning and work-stealing mechanisms can be achieved with the current design of the 

DAPHNE scheduler. Implementation of fully distribute coordination will require a different 

design. 

4.3 Outlook 

The work carried in Work Package 5 enables DAPHNE users to achieve performance and 

scalability with no additional development effort, while remaining in control of the 

scheduling configurations (partitioning techniques, queue layouts, victim selections). As there 

is not a one-fits-all scheduling configuration, it is crucial to yield control of this configuration 

to the users. DAPHNE’s scheduling configurations could further be explored at runtime to find 

the best configuration for the user’s application without having the user specifying any 

particular configuration. The use of exhaustive search and reinforcement learning methods is 

also to be considered.  

5 Summary 
This deliverable presents the final design and prototype of the DAPHNE scheduling 

components, showcasing an innovative framework for managing integrated data analytics 

pipelines that combine data management, high performance computing, and machine 

learning. It builds on the foundational architecture of the DAPHNE system, which incorporates 

user-driven flexibility, compiler-level optimizations, and robust runtime mechanisms to achieve 

efficient and scalable task execution. 
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The report begins by defining scheduling terminology and contextualizing the role of 

scheduling within the DAPHNE system. It highlights the interplay between user-configurable 

settings, compiler optimizations, and runtime adaptations that collectively ensure effective 

resource utilization and high performance. The core design of the scheduler emphasizes 

extensibility, enabling both default configurations and customizable strategies for diverse 

workload requirements. 

The prototype implementation demonstrates the practical applicability of these concepts. It 

includes a local runtime scheduler optimized for shared-memory systems and a distributed 

runtime scheduler that coordinates work across multiple nodes. Experimental evaluations 

reveal significant performance gains achieved through various scheduling techniques, 

validating the effectiveness of the proposed methods. 

While the current framework showcases significant advancements, limitations remain, 

particularly in scaling distributed coordination, and minimizing communication overheads. 

Addressing these challenges opens avenues for future enhancements, including decentralized 

scheduling architectures, adaptive partitioning strategies, and advanced hardware integration. 

The deliverable concludes with a forward-looking perspective, emphasizing the potential for 

DAPHNE to support increasingly complex workloads and environments. By exploring advanced 

scheduling models, hybrid strategies, and real-time capabilities, the DAPHNE scheduler is 

poised to become a versatile and cutting-edge solution for large-scale data analytics 

workflows. 
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