
D4.4 Final DSL Runtime
Prototype

Integrated Data Analysis Pipelines for Large-Scale
Data Management, HPC, and Machine Learning

Version 1.1

PUBLIC

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 957407.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 1

Document Description
DAPHNE is an open and extensible system infrastructure for Integrated Data Analysis (IDA)
pipelines, including language abstractions, compilation and runtime techniques, multi-level
scheduling, hardware accelerators, and computational storage. Previous deliverables described
the initial [D2.1] and refined [D2.2] DAPHNE system architecture, while the initial design of the
local and distributed DAPHNE runtime system was described in D4.1 and its updates in D4.3.

In this deliverable we describe the updates in the runtime system during the last year. We also
demonstrate the use of the DAPHNE runtime by sharing a snapshot of the DAPHNE prototype,
and provide instructions how to execute its new features.

This prototype and document are the result of the collaborative work that is performed by all
consortium partners that participate in WP4 “DSL Runtime and Integration”.

D4.4 Final DSL Runtime Prototype
WP4 – DSL Runtime and Integration
Type of document D Version 1.1
Dissemination level PU Project month 48
Lead partner ICCS
Author(s) Aristotelis Vontzalidis (ICCS), Dimitrios Tsoumakos (ICCS), Stratos

Psomadakis (ICCS), Konstantinos Bitsakos (ICCS), Vassiliki Kostoula
(ICCS), Jonas H. Müller Korndörfer (UNIBAS), Quentin Guilloteau
(UNIBAS), Florina M. Ciorba (UNIBAS), Patrick Damme (TUB)

Reviewer(s) Patrick Damme (TUB), Vytautas Jancauskas (DLR)

Revision History
Version Revisions and Comments Author / Reviewer
V0.1 Initial outline Dimitrios Tsoumakos
V0.2 Updated content Dimitrios Tsoumakos, Aristotelis Vontzalidis,

Stratos Psomadakis, Konstantinos Bitsakos,
Vassiliki Kostoula

V0.3 Updated Sections 2.3 and 3.2 Dimitrios Tsoumakos, Aristotelis Vontzalidis,
Stratos Psomadakis, Vassiliki Kostoula, Jonas
H. Müller Korndörfer, Quentin Guilloteau,
Florina M. Ciorba

V0.4 Updated Section 2.1.2 Dimitrios Tsoumakos
V0.5 Updates with spelling & various

errors after reviews
Dimitrios Tsoumakos

V0.6-
V0.8

Updates in all sections based on
review comments

Dimitrios Tsoumakos, Aristotelis Vontzalidis,
Stratos Psomadakis, Vassiliki Kostoula

V0.9 Updates in formatting and missing
references

Dimitrios Tsoumakos

V1.0 Updates in Section 2.2.1 (Kernels) Patrick Damme
V1.1 Polishing document Dimitrios Tsoumakos

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 2

Table of Contents
1 Introduction... 5

1.1 Overview.. 5

1.2 Summary of Updates .. 6

1.3 Document organization... 6

2 Runtime Design and Implementation Updates.. 7

2.1 Runtime I/O.. 7

2.1.1 Integration with HDFS... 7

2.1.1.1 Why integrate with HDFS .. 7

2.1.1.2 HDFS Architecture – C++ API .. 8

2.1.1.3 Libhdfs3.. 8

2.1.1.4 Integration... 9

2.1.2 Integration with Lustre..10

2.1.2.1 Lustre Overview...10

2.1.2.2 Integration with DAPHNE..12

2.2 Kernel and Filetype Support...13

2.2.1 Kernel updates ...13

2.2.2 Filetype support...13

2.3 NUMA-awareness and Data Locality ..14

2.3.1 Experiments with Linux NUMA policies..16

2.3.1.1 System 1: Intel Xeon Gold ...16

2.3.1.2 System 2: QEMU Virtualized Environment..18

2.3.1.3 Discussion..20

2.3.2 Impact of NUMA Policies and Queue Layouts...20

2.3.2.1 PageRank Analysis..22

2.3.2.2 Connected Components Analysis ..23

2.3.3 Summary of Observations ...25

2.4 Other Runtime Enhancements ..26

3 Final DAPHNE Runtime Prototype ..27

3.1 Artifact Access and Use..27

3.1.1 Introduction...27

3.1.2 Reading from HDFS..28

3.1.3 Writing to HDFS...29

3.1.4 Distributed Runtime and HDFS..30

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 3

3.1.4.1 Read...30

3.1.4.2 Write..31

3.1.5 Limitations ...31

3.2 Evaluation Results ..32

3.2.1 HDFS Integration...32

3.2.1.1 Setup ...32

3.2.1.2 Results...33

3.2.1.3 Discussion on Results..35

3.2.2 Lustre Integration..36

3.2.2.1 Setup ...36

3.2.2.2 Results...37

4 Conclusions ..43

References ...44

Table of Figures
Figure 1: HDFS Architecture ... 8
Figure 2: Lustre FS System Architecture...11
Figure 3: Normal file striping in Lustre ...11
Figure 4: PageRank on Xeon Gold ...17
Figure 5: Connected Components on Xeon Gold ..17
Figure 6: PageRank on QEMU system ..19
Figure 7: Connected Components on QEMU system ...20
Figure 8: PageRank for different NUMA Layouts ...22
Figure 9: Connected Components with different NUMA Layouts ...24
Figure 10: Read –Write HDFS performance for a 10K x 1K CSV file...33
Figure 11: Read –Write HDFS performance for a 20K x 1K CSV file...33
Figure 12: Read –Write HDFS performance for a 50K x 1K CSV file...34
Figure 13: Read –Write HDFS performance for a 10K x 10K CSV file ..34
Figure 14: Read –Write HDFS performance for a 30K x 10K CSV file ..34
Figure 15: Read –Write HDFS performance vs. File size (8 worker nodes)35
Figure 16: Read time vs. number of worker nodes and matrix size (.csv files)................................38
Figure 17: Write time vs. number of worker nodes and matrix size (.csv files)39
Figure 18: Read time vs. number of worker nodes and matrix size for 4/8 OSTs..........................40
Figure 19: Write time vs. number of worker nodes and matrix size for 4/8 OSTs41

List of Tables
Table 1: Matrices and their respective sizes in Lustre experiments...37

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 4

List of Abbreviations
Abbreviation Meaning

API Application Programming Interface

CPU Central Processing Unit

CSR Compressed Sparse Row

CSV Comma-seperated Values

CUDA Compute Unified Device Architecture

DSL Domain Specific Language

GPU Graphics Processing Unit

HPC High Performance Computing

HDFS Hadoop Distributed File System

IDA Integrated Data Analysis

I/O Input / Output

JVM Java Virtual Machine

ML Machine learning

MLIR Multi-Level Intermediate Representation

MPI Message Passing Interface

NCCL NVIDIA Collective Communications Library

OpenMP Open Multi-Processing

RPC Remote Procedure Call

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 5

1 Introduction
1.1 Overview
DAPHNE (DAta Processing and High-performance computing for integrated data analysis
pipelinEs) is a system designed to meet the rising demand for integrated data analysis (IDA)
pipelines that merge data management, high-performance computing (HPC), and machine
learning (ML). DAPHNE aims to overcome integration challenges between various systems and
hardware constraints to facilitate seamless execution of complex IDA pipelines. This system is
built on MLIR (Multi-Level Intermediate Representation), which allows integration with existing
applications and runtime libraries and supports extensibility for specialized data types,
hardware-specific compilation, and custom scheduling algorithms. Key components of the
DAPHNE system are:

• DaphneDSL and DaphneLib: Users can define their workflows in either DaphneDSL, a
domain-specific language resembling Python and R, or DaphneLib, a high-level Python
API that compiles scripts into executable plans.

• Compiler: DAPHNE’s compiler pipeline generates execution plans by breaking down
high-level operations into specialized operations for different devices.

• Execution Engine (Runtime): The runtime executes the plans created by the compiler
in either local or distributed environments, leveraging parallelization for performance
optimization. At the core of the runtime, the Vectorized Execution Engine enables fine-
grained parallelism by allowing operator fusion and vectorized execution (as designated
by its compiler component counterpart) across heterogeneous hardware such as CPUs,
GPUs, and distributed nodes.

The DAPHNE runtime is structured to support efficient execution of user-defined workflows
and integrates the following components:

• DAPHNE Kernels: These are device-specific C++ kernels executing core operations,
optimized for distributed or accelerated hardware. The runtime uses specialized kernels
for diverse operations and provides flexibility for handling dense and sparse matrices.

• Data Structure Support: The runtime handles various data formats, including dense
and sparse matrices and frames with column-oriented storage, both locally and in
distributed environments.

• Communication Framework: The runtime integrates with communication frameworks
such as gRPC and MPI to handle data and code transfer across nodes. This modular
design allows flexibility in selecting the optimal communication backend based on the
use case.

• I/O Management: The runtime is optimized for efficient I/O operations, supporting
multiple formats (CSV, Apache Arrow, Matrix Market) and a custom DAPHNE-specific
file format for faster data serialization and transfer.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 6

1.2 Summary of Updates
The DAPHNE Runtime system has been significantly enhanced with integrations and
optimizations for high-performance I/O management. File system integrations include the
finalization with the Hadoop Distributed File System (HDFS1) and a new integration with Lustre2,
each offering distinct advantages for big data and distributed machine learning workflows. The
HDFS integration allows efficient, scalable data handling with high throughput and fault
tolerance, leveraging data locality to minimize latency and facilitate parallel processing. A
private cluster setup verified HDFS's improvements in both read and write performance for
distributed datasets. Lustre integration, aimed at HPC contexts, brings parallel processing with
data striping across Object Storage Targets (OSTs), reducing latency for large-scale
applications. Using a mounted Lustre client in a DAPHNE container enables seamless access to
distributed data.

Enhancements also include NUMA-aware data placement, optimizing memory locality in
NUMA architectures to reduce access latency. This improvement particularly benefits dense
matrix computations, showing substantial performance gains in both native and virtualized
environments. New filetype support now includes Coordinate List (COO) for sparse matrices,
improving memory efficiency for ultra-sparse data. Additionally, Technical Data Management
Streaming (TDMS) format support was added for high-performance data acquisition in
technical and engineering applications, with efficient readers and writers mapping TDMS
structures to DAPHNE's data formats. Finally, a number of further improvements that include
new kernels, kernel timemeasurement, systematic error message generation, and efficient data
exchange between DaphneLib and Python libraries have been delivered. Together, these
enhancements make DAPHNE more robust for complex data processing across diverse, large-
scale environments.

1.3 Document organization
The remainder of this document is organized as follows: Section 2 describes all the updates
performed during the past year, categorized. In Section 3, we first present the artifact for the
Final version runtime prototype and how to use it. Then, we detail a set of benchmarking results
over different important dimensions that affect the runtime performance. We conclude this
document in Section 4.

1 https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
2 https://www.lustre.org/

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 7

2 Runtime Design and Implementation Updates
This section describes the updates in the design and implementation of the DAPHNE Runtime
system that took place within the last reporting period (i.e., since D4.3 [D4.3] in November
2023).

2.1 Runtime I/O
2.1.1 Integration with HDFS
2.1.1.1Why integrate with HDFS
In [D4.3] we described our effort (until the time of the deliverable) to integrate the Hadoop
Distributed File System (HDFS) filesystem with the Daphne Runtime. HDFS integration is
required for several reasons, especially in the context of large-scale data processing and
machine learning.

Firstly, the specific system is highly scalable. HDFS is built to work with large amounts of data
and is scalable as the amount of data increases. This makes it an essential part of growing
datasets in big data and machine learning execution and management environments.

Another important factor is ecosystem support. HDFS is compatible with multiple important big
data tools and frameworks like Hadoop, Spark, and Hive. This compatibility means that
machine learning applications can run in a stable and adaptable environment that can leverage
the many tools available of the ecosystem.

A very important feature of HDFS is data locality. Data locality is important for reducing I/O
costs because it minimizes the need to move large datasets across a network. In HDFS, data is
stored on the same nodes that perform the computations. This allows tasks to access data
locally rather than over the network, significantly reducing I/O wait times and network
congestion, which in turn boosts overall processing speed and efficiency.

As for reliability, HDFS provides fault tolerance via data replication. HDFS replicates data by
storing multiple copies of each data block across different nodes in the cluster. A file served
from HDFS is split into blocks, and each block is stored on multiple nodes according to the
configured replication factor (default is three). This redundancy ensures data reliability and
availability, allowing the system to recover from node failures by accessing replicated blocks
on other nodes.

Last but not the least, HDFS offers high throughput for large data sets. It is designed for high
throughput access and is ideal for use in big data and machine learning applications. This
guarantees that large data sets can be read and written effectively, which is a characteristic of
large data operations common in these disciplines.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 8

2.1.1.2HDFS Architecture – C++ API
HDFS has a coordinator-worker architecture with one coordinator node called NameNode and
multiple worker nodes called DataNodes. Such division of roles helps in the management and
distribution of data within the system in an efficient manner. As for the data storage, the files
in HDFS are divided into data blocks with a default size of 128 MB and these blocks are located
in DataNodes. This distribution enables efficient management of the load and the amount of
parallel processing required.

Figure 1: HDFS Architecture

To achieve fault tolerance, each data block is stored in multiple DataNodes in the Hadoop
cluster. This replication strategy offers protection, as it ensures that the system does not lose
data in case of hardware failure. The NameNode is responsible for managing metadata and
the namespace of the file system. It tracks the data blocks and their locations so that access to
files remains fast and easy for users and applications. These are described in Figure 13.

2.1.1.3 Libhdfs3
The libhdfs3 library4 offers a C/C++ client that enables native and efficient access to HDFS.
Optimized for performance, it also manages resources when it is embedded in C and C++
applications. Another advantage of libhdfs3 is that it does not require Java dependencies

3 https://www.researchgate.net/figure/HDFS-Architecture-Diagram_fig2_376718504
4 https://github.com/erikmuttersbach/libhdfs3

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 9

and thus avoids the issues related to jars and JVM libraries. This makes it easier to integrate
into C/C++ projects than other options that involve Java-based elements.

Also, libhdfs3 provides asynchronous I/O operations, which means that it is possible to read
data without blocking. This feature improves the application’s interactivity and the number of
requests per unit of time, which makes it ideal for applications that require massive data
processing.

2.1.1.4 Integration
The integration between DAPHNE and HDFS is designed to support seamless handling of large
datasets and distributed computing tasks. In terms of the workflow specification, the
integration facilitates data upload in both the DAPHNE binary format and the widely used CSV
file format. This flexibility ensures compatibility with different data sources. Moreover, it
provides distributed read and write capabilities, allowing for efficient management of large
datasets across multiple nodes.

DAPHNE is employed for distributed data processing and machine learning tasks, where it is
optimized for high performance on big data workloads through its architecture and,
specifically, distributed and vectorized runtime. After data processing is complete, the data
save functionality enables users to store the processed results in either DAPHNE binary format
or CSV format, depending on their requirements. It also supports distributed write operations,
offering users the ability to specify output destinations, be it HDFS or local storage.

Several implemented methods underpin this integration. For example, the system supports
reading and writing in DAPHNE's native binary format with optimized efficiency. Similarly, it
handles CSV file formats for input and output operations, maintaining compatibility with
standard data formats. The integration also includes distributed read/write operations for both
DAPHNE binary and CSV formats, ensuring scalable performance for large datasets in
distributed environments. This combination of features makes the DAPHNE-HDFS integration
highly effective for big data processing tasks.

Libhdfs3 provides straightforward file handlers for manually reading and writing data. Instead
of relying solely on predefined functions like complete CSV readers or writers, these file
handlers enable us to directly interact with the data. This approach offers a high degree of
flexibility, allowing us to fine-tune operations. By leveraging this level of control, we can
optimize data processing workflows for particular use cases, such as selectively reading subsets
of data or implementing custom serialization techniques. This granularity complements the
distributed and high-performance design of DAPHNE, ensuring that the integration remains
both robust and adaptable to a wide range of big data scenarios.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 10

2.1.2 Integration with Lustre
2.1.2.1 Lustre Overview
Lustre5 is a high-performance, POSIX-compliant, open-source parallel distributed file system
designed primarily for large-scale computing environments. It is widely used for applications
requiring extensive data processing, such as scientific research, AI, and big data analytics. Lustre
is renowned for its scalability, with the ability to handle petabytes of data and thousands of
clients, making it suitable for high-performance computing (HPC) clusters and supercomputing
environments.

The Lustre filesystem is built on a client-server architecture, split into specialized components
that manage metadata and storage for high efficiency and scalability. Key components are:

• Metadata Server (MDS): Manages metadata operations (e.g., directory structure,
permissions).

• Object Storage Server (OSS): Handles the actual file data, storing it across one or more
Object Storage Targets (OSTs).

• Management Server (MGS): Central repository for configuration data, which is shared
among all Lustre clients.

• Clients: Endpoints that mount the Lustre filesystem, appearing as a POSIX-compliant
mount point on the client OS.

These are pictorially described in Figure 26:

Lustre achieves performance through data striping, where files are divided across multiple
Object Storage Targets (OSTs) in chunks called stripes based on parameters like
stripe_count and stripe_size. The stripe count determines how many OSTs will be used
to store the file data, while the stripe size determines how much data will be written to an OST
before moving to the next OST in the layout. Each object contains chunks of data from the file,
and chunks are written to the file in a circular round-robin manner. When the chunk of data
being written to a particular object exceeds the stripe size, the next chunk of data in the file is
stored on the next object. The client selects the striping layout and determines the
stripe_count and stripe_size parameters which are fixed once the file is created.

5 https://www.lustre.org/
6 https://wiki.lustre.org/File:Lustre_components.png

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 11

Figure 2: Lustre FS System Architecture

As an example, consider the file layouts shown in Figure 37 for a simple file system with 3 OSTs
residing on 3 different OSS nodes. Note that OSC and LOV correspond to Logical Object
Volume and Object Storage Client (OSC) components. Requests for data are routed to LOV
which acts as an abstraction layer for all of the OSC components. There is an OSC component
for each OST target in the file system.

Figure 3: Normal file striping in Lustre

7 https://wiki.lustre.org/Understanding_Lustre_Internals

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 12

2.1.2.2 Integration with DAPHNE
For DAPHNE to support I/O to Lustre FS, a Lustre client that mounts the filesystem is required.
Then, a DAPHNE docker container is deployed on top of that client. The container mounts the
external Lustre mount point inside the container, allowing DAPHNE kernels to interact with the
Lustre filesystem. This separates the Lustre Client modules from the DAPHNE containers,
meaning that we can easily use DAPHNE on existing Lustre infrastructures. It also minimizes
the dependencies that are installed on the DAPHNE container, since it only needs the C API
library to interact with the mounted filesystem. Our integration work utilizes the
liblustreapi C API. This is the official C API which is part of the Lustre source code.

Currently, Read and Write kernels have been implemented for CSV files and serialized DAPHNE
objects. The kernels are implemented for both the local and the distributed runtime. The Lustre
C API library is used to create a file and set the striping layout. Since Lustre is POSIX-compliant,
regular system calls can be used to obtain file descriptors for the Lustre files after file creation.
In turn, these descriptors are used to read and write data with system calls such as pread and
pwrite respectively.

Our implementation of the Read andWrite kernels is similar to the ones for the local filesystem.
One important compromise that was made in our initial implementation for CSV files is that
each value needs to be padded to a predetermined number of characters. This results in each
row of the DAPHNE matrix having a predetermined size in bytes. This is necessary, as the
distributed worker calculates an offset given a starting row when writing/reading to/from a
Lustre file. Alternative ways to calculate the byte offset each worker should operate on would
inevitably introduce the additional complexity of translating byte offsets to rows and vice versa.
When handling serialized DAPHNE objects, no padding is necessary since we are dealing with
raw data, meaning their size in bytes is predetermined. Apart from this padding, the Lustre
Read and Write kernels for the distributed runtime are very similar in logic to the ones using
the local filesystem.

Lustre being POSIX-compliant means we can use an offset to read/write at a specific location.
This allows a distributed design where each worker handles a different segment of the matrix
whilst performing operations to the same file. The segment of the file that each worker is
responsible for can be calculated given a starting row of the matrix, hence the requirement for
the row size to be set. For now, only synchronous gRPC is supported as the backend for the
distributed runtime. Finally, we note that each file is independent of the method used to create
it. This means that the same file can be used by a local runtime or a distributed runtime with
varying numbers of workers transparently.

The code for our integration is currently on a separate repository, since there are some conflicts
with the dependencies. For this reason, the current working version of the prototype builds
upon an older DAPHNE commit (commit 336420e4b40e20a6ab43709d78c95edc61b231a7, 25
September 2024). We will soon investigate the best way to merge this integration upstream.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 13

2.2 Kernel and Filetype Support
2.2.1 Kernel updates
Since Deliverable D4.3 [D4.3] we have further expanded DAPHNE’s existing collection of C++-
based runtime kernels. In the following, we give a short overview of the newly added kernels.

• Sparse data: We added a kernel specialization of matrix multiplication on CSR matrices.
• Lists: WP3 introduced a new list data type in DaphneDSL for storing matrices of

homogeneous data/value type and heterogeneous shapes. The DAPHNE runtime offers
kernels for operations on these lists such as createList, append, and remove.

• Deep neural networks (DNN): So far, the DAPHNE runtime provided CUDA-based
kernels for typical DNN operations such as convolution, max/avg-pooling, or bias
addition, targeting the execution on GPUs (in collaboration with WP7). As not all
DAPHNE users have a GPU set up, we decided to add fallback kernels for CPU execution
for all DNN-related operations supported by DAPHNE.

• String handling: In collaboration with WP3, we added support for a string value type
in DAPHNE matrices and frames, i.e., strings are supported as the elements of these
data structures. To this end, we adapted various existing kernels such that they can be
instantiated for the string value type. This includes elementwise comparisons, string
manipulation operations (elementwise lower/upper case, concatenation, length), casts,
reorganization (transpose, reverse, order), and left/right indexing.

• Data preprocessing: We added kernels for essential data preprocessing operations
such as recoding and binning.

• Control flow: We added a kernel for the new stop() built-in function in DaphneDSL,
which allows DAPHNE users to terminate the program execution, e.g., in case
application-specific constraints are violated.

• CUDA-based GPU kernels: In collaboration with WP7, we implemented additional
elementwise binary operations, such as min, max, and not-equal.

• Miscellaneous kernels: Furthermore, we added support for additional elementwise
unary operations (e.g., trigonometric functions, logarithm, isNan) and additional
full/row-wise/column-wise aggregations (e.g., mean, variance, standard deviation).

With these additional kernels, DAPHNE can be used more smoothly and productively. In fact,
many of these kernels were added in reaction to the needs of our use case partners from WP8.

2.2.2 Filetype support
The Coordinate List (COO) sparse matrix representation was integrated into the DAPHNE
runtime, enhancing its ability to handle sparse matrices efficiently. The COO format, unlike
traditional dense or CSR (Compressed Sparse Row) formats, is especially suited for ultra-sparse
matrices by storing only the non-zero values along with their row and column indices, thus
optimizing memory usage. The implementation involved creating a COOMatrix class with
attributes to manage matrix values, row, and column indices. Key methods include:

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 14

• Getters and Setters: For accessing and modifying matrix elements.
• Aggregation Kernels: New aggregation methods to handle operations across rows,

columns, or the entire matrix.
• Element-wise Operations: Support for unary and binary element-wise operations on

COO matrices.
• Random Matrix Generation and Transposition: For efficiently generating random COO

matrices and performing transpositions.

The TDMS (Technical Data Management Streaming) file format was also integrated into the
DAPHNE project, enhancing its data processing capabilities. TDMS is widely used in
engineering and manufacturing for high-performance data acquisition, often handling large-
scale datasets. This supports DAPHNE's goal of robust data processing, enabling it to handle
more complex, large-scale datasets efficiently, particularly in technical and engineering
domains. Support for TDMS was of particular interest to our use-case partners (KAI –WP8).

TDMS files are organized in a three-level hierarchy (file, group, and channel) to manage large
datasets effectively. Each file contains groups, which contain channels where the actual data is
stored. Channels store the raw data, while metadata provides structure. TDMS files are
composed of segments with three parts—Lead In, Metadata, and Raw Data. This layout allows
for efficient data storage and access. Segments store metadata on the file structure and
indexing, enabling quick retrieval of specific data segments.

For implementing TDMS reader methods, a C++ library8 to read TDMS files into DAPHNE’s
structures (DenseMatrix and Frame) was utilized. This involved parsing TDMS data and
mapping it to DAPHNE matrices or frames, organizing data by group and channel.

For TDMS writer methods: The writers convert DAPHNE matrices and frames into TDMS files
by assigning a single group with multiple channels (one for each matrix column). Each data
column is assigned a unique channel to facilitate structured data storage. A helper library9 is
used for generating files in the TDMS format.

2.3 NUMA-awareness and Data Locality
NUMA-aware data placement is an optimization technique used in systems with Non-Uniform
Memory Access (NUMA) architectures. In NUMA systems, memory is divided among different
nodes (typically CPU sockets). Each node exhibits faster access time to its own local memory.
Accessing memory located on a different node incurs higher latency and lower bandwidth.
NUMA-aware data placement thus organizes data in memory so that it is located as close as
possible to the CPU or thread that will use it. This minimizes remote memory accesses,

8 https://github.com/gmarkantonatos/TDMS-reader based on https://www.iondev.ro/tdms/
9 https://github.com/MahdaSystem/TDMS/tree/master

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 15

improving data access speed and overall system performance. In terms of how memory is
allocated (i.e., Memory Allocation Policies) we can briefly define the following NUMA policies:

• Preferred Node: Memory is allocated from a preferred node, but if that node’s memory
is exhausted, other nodes are used.

• Interleaved Allocation: Memory is spread evenly across nodes, balancing memory load
and bandwidth but potentially increasing access latency.

• Local Allocation: Memory is allocated on the same node as the CPU that requested it,
which helps minimize remote memory access.

In DAPHNE, NUMA-aware efforts were two-fold: The DAPHNE runtime scheduling incorporates
NUMA-aware strategies that enhance data locality and minimize memory access latency. The
DAPHNE local scheduler handles tasks efficiently with multiple queue types: a centralized
queue for all devices (and their NUMA domains) on the node, partially decentralized per-device
group (i.e., a single NUMA domain) queues tailored, and per-device queues (i.e., NUMA
domains on a device) that assign tasks to specific devices (e.g., CPUs or GPUs). Per-device
group queues enable tasks to be placed within the same NUMA domain, reducing inter-
domain data transfers and leveraging faster, local memory access. These queues are
complemented by work assignment strategies that dynamically distribute tasks, either by work-
sharing from centralized queues, work-stealing across distributed queues to balance load while
maintaining locality, or a combination of both for queues organized hierarchically. For a
comprehensive discussion of these queue types and work assignment strategies, refer to
Deliverable D5.4 (under concurrent submission this period).

In terms of OS-level efforts, we have taken advantage of the fact that many operating systems,
like Linux, provide options to control memory allocation policies to make applications NUMA-
aware. Our study examines DAPHNE’s matrix processing capabilities in NUMA systems,
focusing on performance across matrix types and configurations on two systems: an Intel(R)
Xeon(R) Gold and a QEMU virtualized environment, both over an AMD EPYC server. Through
various NUMA policies and memory placements, experiments were conducted using Linux
NUMA tools, such as numactl and numastat, for both sparse and dense matrices. Scenarios
considered include cases where allocated memory fits within a single NUMA node and cases
requiring memory to span multiple NUMA nodes.

For the evaluation, we use the DAPHNE implementation of the PageRank and Connected
Components algorithms, available on the DAPHNE Github repository. Both algorithms use an
adjacency matrix to store the input graph and feature a tight loop of linear algebra operations
(matrix-vector and elementwise multiplications). For the input matrix, we synthetically generate

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 16

(via uniform sampling) a ~18GiB matrix, which we instantiate within the DAPHNE runtime as
either dense or sparse (CSR) matrix and evaluate the effect NUMA policies for both cases.

2.3.1 Experiments with Linux NUMA policies

2.3.1.1 System 1: Intel Xeon Gold
We first show the results of various NUMA configurations on a 2-socket Intel Xeon Gold
(Skylake) server with 128GiB of DDR4 memory per socket. For this set of experiments, the
memory allocated by the DAPHNE runtime fits entirely within a single NUMA node. The results
are normalized to the performance of the baseline default Linux scenario, i.e., when we run
DAPHNE without tweaking any Linux NUMA policies or configuration.

PageRank Algorithm

• Sparse Matrix Performance: For PageRank with sparse matrices on the Xeon Gold
system, where the dataset fit entirely within a single NUMA node, performance
remained stable or worsened across NUMA configurations. Minor performance gains
were observed under --interleave=all and -m0 policies, but the default Linux
policy delivered nearly optimal performance. This stability suggests that, for sparse
matrices on this system, PageRank generally benefits from NUMA policies, given the
dataset’s confinement to a single NUMA node.

• Dense Matrix Performance: Dense matrices, in contrast, showed a marked response
to NUMA configurations. The -m0 policy provided substantial performance
improvements, likely due to better alignment of memory with CPU locality, which is
beneficial for dense data. This reduction in access latency highlights the importance of
specific NUMA-aware optimizations for dense matrices within a single NUMA node,
where efficient memory-thread alignment can reduce runtime.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 17

Figure 4: PageRank on Xeon Gold

Connected Components Algorithm

Figure 5: Connected Components on Xeon Gold

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 18

• Sparse Matrix Performance: When executing the connected components algorithm
on sparse matrices, the Xeon Gold server showed similar stability across NUMA
configurations as observed with PageRank. Alternative policies offered negligible
improvement, and in some cases, deviated slightly from default performance. This
consistency indicates low sensitivity of sparse matrix computations to NUMA
configurations when datasets fit within a single NUMA node.

• Dense Matrix Performance: Dense matrices showed substantial gains when the -N0
-m0 policy was applied, achieving a 15% improvement over other configurations. This
performance boost likely stems from -N0 -m0 directing both memory allocation (-m0)
and thread execution (-N0) to the same NUMA node, optimizing access times by
reducing cross-node latency. Such alignment enhances data locality, crucial for dense
matrix workloads where frequent memory accesses benefit from minimized NUMA
overhead. These results underscore the potential of localized NUMA policies like -N0
-m0 to enhance performance in dense matrix operations, especially in algorithms like
connected components that are sensitive to memory access latency.

2.3.1.2 System 2: QEMU Virtualized Environment
For this set of experiments, we use QEMU on an AMD EPYC server to create a 2-socket virtual
machine with smaller-sized NUMA nodes. This way, we evaluate the effect of various NUMA
configurations and policies on DAPHNE performance, when the input data cannot fit in a single
NUMA node. In similar fashion to the previous section, we use a uniformly-sampled synthetic
input matrix, and we report the results for various NUMA configurations for both dense and
sparse matrices for the Page Rank and Connected Components algorithms, normalized to the
performance of these algorithms when using the default Linux NUMA policy.

PageRank Algorithm

• Sparse Matrix Performance: Sparse matrices running PageRank on the QEMU
environment (which required memory to span two NUMA nodes) showed significant
performance improvement with the --interleave=all configuration, achieving
approximately 7.5% improved efficiency. Numastat indicated a reduction in NUMA
misses with interleaving, reinforcing its effectiveness in multi-node memory scenarios.
Conversely, executing in a single node resulted in performance degradation due to
memory contention, highlighting the need for interleaving in NUMA-limited
environments for sparse matrix PageRank.

• Dense Matrix Performance: For dense matrices, the --interleave=all policy
again provided improved results on QEMU, as this configuration helped distribute

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 19

memory across nodes more evenly, reducing contention and improving runtime. Dense
matrices benefit more noticeably from interleaving under multi-node conditions, where
memory spanning and workload balancing are critical to performance.

Figure 6: PageRank on QEMU system

Connected Components Algorithm

• Sparse Matrix Performance: Sparse matrices in the connected components algorithm
on QEMU performed best under the default NUMA policy. The default configuration
appears to optimize sparse memory access patterns sufficiently, reducing potential
NUMA misses without requiring interleaving. This result indicates that sparse matrices
in the connected components algorithm can achieve efficient memory access with
default policies, avoiding the additional overhead interleaving can introduce in certain
multi-node scenarios.

• Dense Matrix Performance: Dense matrices in connected components also showed
substantial improvements with --interleave=all, achieving around 10% better
performance than the default policy. This improvement highlights the advantages of
interleaving for dense matrices, as it minimizes NUMA-related latency and ensures
more consistent memory access patterns. By mitigating NUMA overhead, interleaving
can notably benefit dense datasets spanning multiple NUMA nodes.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 20

Figure 7: Connected Components on QEMU system

2.3.1.3Discussion
Across both systems, sparse matrices displayed relatively stable performance with minimal
sensitivity to NUMA configurations, particularly when confined to a single NUMA node. Dense
matrices, on the other hand, demonstrated a greater dependency on NUMA-aware
configurations, with --interleave=all and -m0 yielding noticeable gains in multi-node
environments. For both PageRank and Connected Components, interleaving was beneficial for
dense data on QEMU, where memory spanning across nodes introduced potential contention.
The notable 15% performance gain observed with -N0 -m0 for Xeon Gold further emphasizes
the importance of aligning memory and thread locality in NUMA-aware systems. However,
sparse matrices running Connected Components on QEMU benefitted most from the default
policy, suggesting that interleaving can sometimes introduce unnecessary overhead for certain
algorithms and matrix types.

2.3.2 Impact of NUMA Policies and Queue Layouts

The purpose of these experiments is to evaluate the performance of the DAPHNE framework’s
task scheduling and memory access strategies under different configurations, especially when
dataset sizes exceed the memory capacity of a single NUMA node. When datasets span across
multiple NUMA nodes, performance can be influenced by both memory access patterns

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 21

(NUMA policies) and task distribution methods (queue layouts). Understanding these
interactions is critical in NUMA environments, where efficient memory locality and task
distribution play a significant role in minimizing latency and optimizing computational
throughput.

In these tests, we ran the PageRank and Connected Components algorithms with various queue
layouts and NUMA configurations to assess how these factors affect performance in the
context of distributed memory. We used the same virtualized (QEMU) setup as described
before. Specifically, we experimented with both the default allocation and interleave policy in
combination with three queue layouts: CENTRALIZED, PERGROUP, and PERCPU. The queue
layouts represent different approaches to work assignment in the DAPHNE framework, with
CENTRALIZED relying on a single queue for all tasks, while PERGROUP and PERCPU introduce
multiple work queues to support work-stealing mechanisms. These layouts help distribute tasks
across CPUs to reduce bottlenecks and optimize core utilization, depending on whether task
queues are assigned per worker (PERCPU) or per group of workers (PERGROUP). The resulting
plots display the runtime across various NUMA and queue layout configurations, highlighting
the impact of these setups on algorithm performance.

These experiments will reveal how different NUMA policies and queue layouts impact
computational performance when data must be spread across multiple nodes, rather than
residing in one. By comparing default and interleaved memory policies with centralized and
distributed work queues, this analysis aims to identify configurations that balance task
distribution with memory access efficiency, ultimately guiding optimization strategies for the
DAPHNE framework in NUMA-based, multi-node environments. In these comparisons, the
same physical size (~18 GiB) is used for both sparse and dense datasets, which explains why
sparse operations appear slower than dense ones. This explicit choice ensures a fair evaluation
of memory policies and queue layouts under consistent physical memory constraints.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 22

2.3.2.1PageRank Analysis

Figure 8: PageRank for different NUMA Layouts

• Sparse Matrix Performance: In the sparse matrix case, default-CENTRALIZED showed the
slowest performance, which is consistent. The centralized queue layout can lead to task
contention and inefficient memory access patterns, particularly in a NUMA environment
where a single queue creates memory access bottlenecks across nodes. This layout also
increases cross-node memory access as all CPUs compete for tasks from the same queue,
adding latency. Among default executions, default-PERCPU had the best performance, with
default-PERGROUP also showing improvement over centralized. PERCPU’s dedicated queue
for each CPU allowed better task distribution and minimized contention, improving access
locality for CPUs accessing local memory. PERGROUP, which organizes tasks by node,
helped maintain more efficient memory access patterns, reducing the amount of cross-node
access compared to CENTRALIZED. With interleaving, memory is spread across nodes,
balancing memory demands and improving access for all layouts. All interleave
configurations performed significantly better than their default counterparts, as the memory
load was distributed across both nodes. The interleave-PERGROUP layout had the best
performance, though it was very close to interleave-PERCPU. This suggests that both layouts
benefit similarly under interleaving, with PERGROUP having a slight edge due to its
alignment with NUMA nodes, reducing cross-node latency while balancing tasks effectively.
Interleave-CENTRALIZED also performed better than any default configuration, showing that

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 23

even a centralized queue benefits from distributed memory access across nodes when
interleaving is enabled.

• DenseMatrix Performance: For dense matrices, the performance differences across queue
layouts in default mode were minimal. Default-PERGROUP showed the best performance,
though only slightly better than PERCPU and CENTRALIZED. Dense matrix operations
require continuous memory access, and default-PERGROUP’s node-based task grouping
aligns well with this requirement, allowing CPUs in each node to access memory without
excessive cross-node calls. The small performance differences across default queue layouts
suggest that, for dense matrices, the locality of memory access is already well-managed
even without strict queue isolation. With interleaving enabled, all layouts saw improved
performance, as memory is spread evenly across nodes, preventing any single node from
becoming a bottleneck. Interleave-PERCPU achieved the best performance, although
interleave-PERGROUP and interleave-CENTRALIZED were very close. This slight edge of
PERCPU under interleaving could be due to each CPU’s dedicated queue, which helps
distribute tasks while maintaining consistent access to interleaved memory. However, the
differences are minimal, indicating that interleaving has a more substantial impact on dense
matrix operations than the specific queue layout.

2.3.2.2Connected Components Analysis
• Sparse Matrix Performance: In the sparse matrix case, the default-CENTRALIZED layout
showed the worst performance among the queue layouts. This result aligns with
expectations, as a centralized queue can lead to congestion, especially when dealing with
large datasets that require frequent memory access. With all workers fetching tasks from a
single queue, contention increases, which can be particularly problematic in a NUMA
environment. This layout may also lead to more random memory access patterns as CPUs
on different nodes pull from a single queue, resulting in less efficient memory locality.
Default-PERGROUP and default-PERCPU layouts showed improvements over centralized.
The default-PERCPU layout achieved the best performance among the default executions.
Since each CPU has its own dedicated queue, PERCPU minimizes task contention and better
utilizes local memory access, which reduces latency and cross-node memory access for
NUMA systems. By isolating each CPU’s work queue, PERCPU enables workers to maintain
consistent access to local memory, leading to fewer interruptions and more efficient task
execution for a large, distributed sparse matrix. When interleave was applied, all queue
layouts (CENTRALIZED, PERGROUP, and PERCPU) performed similarly, with interleave-
PERCPU showing a slight edge as the best performer. Interleaving spread memory usage
across both NUMA nodes, balancing memory load across nodes and reducing the risk of
any single node’s memory becoming overloaded. The fact that interleave-PERCPU,
interleave-PERGROUP, and interleave-CENTRALIZED achieved similar performance suggests

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 24

that, with memory interleaving, the choice of queue layout has less impact on performance.
The memory demands were effectively distributed across nodes, which reduced contention
and allowed all layouts to achieve near-optimal performance. However, interleave-PERCPU’s
dedicated queues for each CPU likely contributed to its slight advantage by keeping
memory access consistently aligned with each CPU’s work.

Figure 9: Connected Components with different NUMA Layouts

• Dense Matrix Performance: For the dense matrix, default-CENTRALIZED showed the best
performance among the default queue layouts. Dense matrices require more continuous
memory access, and a centralized queue can be beneficial because it simplifies task
scheduling and reduces the complexity of managing tasks across multiple queues. With all
workers pulling from a single queue, memory locality is less fragmented, which likely
contributed to default-CENTRALIZED’s better performance. In contrast, default-PERGROUP
and default-PERCPU showed slightly slower performance, likely due to the increased
overhead of managing multiple queues and more complex memory access patterns as tasks
are distributed more broadly. However, the interleave policy improved performance across
all queue layouts for the dense matrix, with interleave-PERGROUP achieving the best
performance. With interleaving, memory is spread across both NUMA nodes, which reduces
the chance of memory bottlenecks and ensures a balanced memory load. The interleave-
PERGROUP layout, in particular, benefited from this setup by combining the memory load-
balancing of interleaving with task distribution across NUMA nodes. This setup likely

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 25

allowed PERGROUP to minimize latency, as each group of CPUs could access memory
efficiently across nodes without overloading any single node.

2.3.3 Summary of Observations
These experiments provided valuable insights into the impact of NUMA policies and queue
layouts on the performance of the PageRank and Connected Components algorithms within a
QEMU virtualized environment with two NUMA nodes. By testing different NUMA
configurations (default and interleave combined with CENTRALIZED, PERGROUP, and PERCPU
queue layouts) we observed how task distribution and memory access strategies affect
execution times for large sparse and dense matrices.

For both algorithms, default-CENTRALIZED demonstrated the poorest performance in most
cases, highlighting the limitations of a single, centralized work queue when handling large
datasets across multiple NUMA nodes. The CENTRALIZED layout led to higher contention and
cross-node memory access, which contributed to bottlenecks, particularly for sparse matrices
where task and memory demands are more distributed.

PERCPU and PERGROUP layouts, however, generally improved performance in default mode
by reducing task contention and aligningmemory access more closely with the executing CPUs.
Default-PERCPU performed particularly well with sparse matrices, benefiting from dedicated
queues that helped minimize cross-node access and improved locality for tasks within each
CPU.

Interleaving memory across NUMA nodes proved advantageous across all configurations,
balancing memory load and reducing single-node memory congestion. Interleaved
configurations consistently outperformed their default counterparts for both algorithms and
matrix types, with interleave-PERGROUP and interleave-PERCPU showing the best results.
These layouts balanced task distribution effectively while leveraging interleaved memory,
resulting in minimal cross-node latency and enhanced performance.

In summary, these experiments underscore the importance of aligning NUMAmemory policies
and queue layouts to the algorithm’s memory access patterns and the data type. Interleaving
provided significant improvements by distributing memory evenly across nodes, and
PERGROUP and PERCPU layouts proved most effective overall. These findings indicate that, in
NUMA environments, a combination of interleaving and task-distributed queue layouts can
optimize performance for large-scale, memory-intensive computations in systems where data
spans multiple nodes.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 26

2.4 Other Runtime Enhancements
Additional features added in the runtime during this reporting period are the following:

• Time measurement of individual kernel calls to find the most time-consuming kernels
in a DaphneDSL script execution (--statistics flag).

• More systematic and consistent error messages. Kernels are mapped to their source
code location in a DaphneDSL script and can thus generate much more useful error
messages (in cooperation with WP3).

• Efficient (zero-copy) data exchange between DaphneLib and popular Python libraries
(numpy, pandas, TensorFlow and PyTorch).

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 27

3 Final DAPHNE Runtime Prototype

3.1 Artifact Access and Use
3.1.1 Introduction
The DAPHNE DSL runtime prototype described in this deliverable is publicly accessible as a
snapshot of the DAPHNE development repository (created on November 9th, 2024) under the
following link: https://daphne-eu.know-center.at/index.php/s/Wcc2KCG2gG9jKsE

Note that the DAPHNE development repository is publicly available at
https://github.com/daphne-eu/daphne under Apache License v2.0.

In [D4.2] and [D4.3] we provided detailed guidelines on how to build DAPHNE, run a simple
DSL script and execute pipelines using the distributed runtime with different distributed
backends. The same steps can be repeated to build the latest version of DAPHNE provided in
the current artifact. HDFS is fully integrated and can now be used with DAPHNE; however it is
not installed by default. First, we need to install the required dependencies on the system.
These are listed in the Getting Started10 Guide on GitHub. Regarding HDFS, libhdfs3 requires
these additional dependencies:

• boost (tested on 1.53+) http://www.boost.org/
• google protobuf http://code.google.com/p/protobuf/
• libxml2 http://www.xmlsoft.org/
• kerberos http://web.mit.edu/kerberos/
• libuuid http://sourceforge.net/projects/libuuid/
• libgsasl http://www.gnu.org/software/gsasl/

Note that the DAPHNE container images already ship with all these dependencies installed.
Finally, we need to re-build DAPHNE and provide the HDFS flag:

$./build.sh --hdfs

The DAPHNE docker containers contain all the necessary HDFS dependencies and make it
easier to run or re-build DAPHNE.

In order for DAPHNE to utilize the HDFS file system, certain command line arguments need to
be passed (or included in the configuration file).

• --enable-hdfs: A flag to enable hdfs.

• --hdfs-address=<IP:PORT>: The IP and port HDFS listens to.

10https://github.com/daphne-eu/daphne/blob/main/doc/GettingStarted.md

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 28

• --hdfs-username=<username>: The username used to connect to HDFS.

3.1.2 Reading from HDFS
In order to read a file from the HDFS, some pre-processing must be done. Assuming the file is
named FILE_NAME, a user needs to upload the file into HDFS. DAPHNE expects the file to be
located inside a directory with some specific naming conventions. The path can be any path
under HDFS, however the file must be named with the following convention:

/path/to/hdfs/file/FILE_NAME.FILE_TYPE/FILE_NAME.FILE_TYPE_segment_1

FILE_TYPE is either .csv or .dbdf (DAPHNE binary data format) followed by .hdfs, e.g.
myfile.csv.hdfs.

The suffix _segment_1 is necessary, since we support multiple writers at once (see more below),
the writers need to write into different files (different segments). In this case where the user
pre-uploads the file, it needs to be in the same format, but just one segment.

Each segment must also have its own .meta file within the HDFS. This is a JSON file containing
information about the size of the segment as well as the type. For example
myfile.csv.hdfs_segment_1.meta:

{
"numCols": 10,
"numRows": 10,
"valueType": "f64"

}

We also need to create a .meta file containing information about the file, within the local file
system (from where DAPHNE is invoked). Similar to any other file which will be read by
DAPHNE, we need to create a .meta file, which is in JSON format, containing information about
where the file is, information about the rows/cols etc. The file should be named:
FILE_NAME.FILE_TYPE.meta, e.g. myfile.csv.hdfs.meta. The meta file should contain all the
regular information any DAPHNEmeta file contains, but in addition, it also contains information
about whether this is an HDFS file and where it is located within HDFS:

{
"hdfs": {

"HDFSFilename": "/path/to/hdfs/file/FILE_NAME.FILE_TYPE",
"isHDFS": true

},
"numCols": 10,
"numRows": 10,
"valueType": "f64"

}

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 29

Example:

Assume we have a dataset called training_data.csv which we want to upload to HDFS and use
it with DAPHNE.

First, we need to upload the file under directory “datasets” and create the segment .meta file.
HDFS should look like this:

$ hdfs dfs -ls /

/datasets/training_data.csv.hdfs/training_data.csv.hdfs_segment_1

/datasets/training_data.csv.hdfs/training_data.csv.hdfs_segment_1.meta

$ hdfs dfs -cat \

/datasets/training_data.csv.hdfs/training_data.csv.hdfs_segment_1.meta

{"numCols":10,"numRows":10,"valueType":"f64"}

We also create the local .meta file:

$ cat ./training_data.csv.hdfs.meta

{"hdfs":{"HDFSFilename":"/datasets/training_data.csv.hdfs","isHDFS":
true},"numCols":10,"numRows":10,"valueType":"f64"}

Example DAPHNE script (code.daph):

X = readMatrix("training_data.csv.hdfs");

print(X);

Finally, we run DAPHNE providing the needed command line arguments:

./bin/daphne --enable-hdfs --hdfs-ip=<IP:PORT> --hdfs-username=ubuntu
code.daph

3.1.3 Writing to HDFS
In order to write to HDFS we just need to use the writeMatrix function like we would for any
other file type and specify the hdfs suffix. For example:

1. DAPHNE script:

X = rand(10, 10, 0.0, 1.0, 1.0, 1);

writeMatrix(X, "randomSet.csv.hdfs");

2. Run DAPHNE:

./bin/daphne --enable-hdfs --hdfs-ip=<IP:PORT> --hdfs-username=ubuntu
code.daph

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 30

This will create the following files inside HDFS:

$ hdfs dfs -ls /

/randomSet.csv.hdfs/randomSet.csv.hdfs_segment_1

/randomSet.csv.hdfs/randomSet.csv.hdfs_segment_1.meta

$ hdfs dfs -cat /randomSet.csv.hdfs/randomSet.csv.hdfs_segment_1.meta

{"numCols":10,"numRows":10,"valueType":"f64"}

And also the .meta file within the local file system named randomSet.csv.hdfs.meta:

{
"hdfs": {

"HDFSFilename": "/randomSet.csv.hdfs",
"isHDFS": true

},
"numCols": 10,
"numRows": 10,
"valueType": "f64"

}

3.1.4 Distributed Runtime and HDFS
Both read and write operations are supported by the distributed runtime.

3.1.4.1Read
The exact same preprocessing must be performed, creating one file inside the HDFS with the
appropriate naming conventions. Users can then run DAPHNE using the distributed runtime
and depending on the generated pipeline, DAPHNE's distributed workers will read their
corresponding part of the data speeding up IO significantly. Instead of the coordinator reading
the data and then transmitting it to the distributed workers, each distributed node reads the
specific part of the data it needs, based on the pipeline generated by the coordinator. Note
that DAPHNE's compiler can be extended further to generate these pipelines optimally,
assigning tasks depending on where data resides. For example:

DAPHNE script:

X = readMatrix("training_data.csv.hdfs");

print(X+X);

Run DAPHNE

$ export DISTRIBUTED_WORKERS=worker-1:<PORT>:worker-2:<PORT>

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 31

$./bin/daphne --distributed --dist_backend=sync-gRPC --enable-hdfs -
-hdfs-ip=<IP:PORT> --hdfs-username=ubuntu code.daph

3.1.4.2Write
Similar to read, users just need to run DAPHNE using the distributed runtime flags. Notice that
since we have multiple workers/writers, more than one segments are generated inside HDFS.
The number of segments generated is always equal to the number of distributed workers used.
Since we want to have a parallel write operation, different files (segments) need to be created
so that each node can write to HDFS independently in parallel.

DAPHNE script:

X = rand(10, 10, 0.0, 1.0, 1.0, 1);

writeMatrix(X, "randomSet.csv.hdfs");

Run DAPHNE:

$ export DISTRIBUTED_WORKERS=worker-1:<PORT>:worker-2:<PORT>

$./bin/daphne --distributed --dist_backend=sync-gRPC --enable-hdfs -
-hdfs-ip=<IP:PORT> --hdfs-username=ubuntu code.daph

Assuming 2 distributed workers:

$ hdfs dfs -ls /

/randomSet.csv.hdfs/randomSet.csv.hdfs_segment_1 #1st part of matrix

/randomSet.csv.hdfs/randomSet.csv.hdfs_segment_1.meta

/randomSet.csv.hdfs/randomSet.csv.hdfs_segment_2 #2nd part of matrix

/randomSet.csv.hdfs/randomSet.csv.hdfs_segment_2.meta

$ hdfs dfs -cat /randomSet.csv.hdfs/randomSet.csv.hdfs_segment_1.meta

{"numCols":10,"numRows":5,"valueType":"f64"}

$ hdfs dfs -cat /randomSet.csv.hdfs/randomSet.csv.hdfs_segment_2.meta

{"numCols":10,"numRows":5,"valueType":"f64"}

And also the .meta file within the local file system named randomSet.csv.hdfs.meta.

3.1.5 Limitations
There are certain limitations when using HDFS with DAPHNE:

• Writing to a specific directory, through DAPHNE, within HDFS is not supported.
DAPHNE will always try to write under the root HDFS directory /<name>.<type>.hdfs.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 32

• Only synchronous gRPC is supported as the distributed backend for HDFS distributed
read and write operations.

3.2 Evaluation Results
3.2.1 HDFS Integration
3.2.1.1 Setup
We deployed HDFS on our cluster, which consists of one coordinator and eight worker nodes,
each equipped with 8 CPUs. The system was tested with both read and write operations to
HDFS using multiple CSVs files, ranging from 86M, up to 2.6G in size. Each set of tests was
repeated twice, comparing the impact of the replication factor from three to one. To ensure
accuracy, each test was conducted five times, and the numbers presented in the plots below
represent the average of these five trials. The results showed that read performance
consistently improves when utilizing HDFS, taking full advantage of its distributed architecture
for efficient data access. Additionally, write performance improves as more nodes are added
to the system, demonstrating the scalability of HDFS when handling large datasets in
distributed environments.

The results can be reproduced by following two steps:

1. Generate the CSV files: We used DAPHNE’s randMatrix operation to generate the datasets
presented in the result section:

A = rand($R, $C, 0.0, 1.0, 1.0, -1);
writeMatrix(A, $G);

2. Measure HDFS performance: We used the following DAPHNE code to measure the time it
takes to read and write these CSV files both in the local FS and HDFS, using the setups
described above:

t1 = now();
a = readMatrix($G);
t2 = now();
t3 = now();
// print(sum(a));
writeMatrix(a, $G);
t4=now();
// Print elapsed times in seconds.
print("read time[s]: ", 0, 0);
print((t2 - t1)*10.0^(-9));
print("write time[s]: ", 0, 0);
print((t4 - t3)*10.0^(-9));

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 33

3.2.1.2Results
In the following Figures, we plot the time in seconds it takes for a Read & Write operation
using:

a) The local filesystem (before HDFS integration),
b) a single-node HDFS, and
c) two to eight HDFS worker nodes,

for varying file sizes. In each line, we show two Figures with the performance of Read and Write
operation over the same size CSV.

Figure 10: Read –Write HDFS performance for a 10K x 1K CSV file

Figure 11: Read –Write HDFS performance for a 20K x 1K CSV file

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 34

Figure 12: Read –Write HDFS performance for a 50K x 1K CSV file

Figure 13: Read –Write HDFS performance for a 10K x 10K CSV file

Figure 14: Read –Write HDFS performance for a 30K x 10K CSV file

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 35

The final Figure (Figure 15) demonstrates the effect of file size (for the largest cluster size of 8
workers) over the performance of our implemented Read and Write operations. The results
confirm the following facts:

• HDFS scales gracefully as data size increases.
• Writing imposes bigger overhead that read operations.
• The replication factor has a minimal effect in case of VM co-location.

Figure 15: Read –Write HDFS performance vs. File size (8 worker nodes)

3.2.1.3Discussion on Results
The results demonstrate a consistent improvement with the addition of more nodes. As the
number of nodes increases from 2 to 8, both read and write times generally decrease, especially
for larger matrix sizes. This indicates improved parallelization and resource utilization in a
distributed environment, where more nodes allow for better distribution of tasks.

However, when examining the HDFS performance without distribution (HDFS filesystem on the
coordinator node only), it is evident that execution times are consistently higher than those in
the distributed HDFS setup. This highlights the clear benefits of leveraging a distributed
computing approach.

That said, the results also reveal diminishing returns with higher node counts. While adding
more nodes (up to 4 nodes) results in significant performance gains, the benefits start to taper
off with 6 and 8 nodes for certain matrix sizes. This suggests that communication overhead or
other factors, such as synchronization costs, might limit scalability beyond a certain point.

A notable observation is that write operations are slower than read operations across all tests.
This is especially true for larger matrix sizes, such as 20000x1000 or larger. The difference in
performance between read and write operations becomes even more pronounced in the

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 36

distributed environment, indicating that write operations may face additional challenges in
such setups.

Additionally, matrix size significantly impacts performance. Larger matrices, such as
50000x1000, exhibit more noticeable improvements in performance with distributed HDFS
compared to smaller matrices. This suggests that larger workloads benefit more from the
increased distribution and parallelization provided by additional nodes.

We also observe that the replication factor has minimal impact on performance overall, except
when handling large datasets. For these larger CSV files, using a replication factor of one
slightly improves write performance, as expected, since less data needs to be replicated across
the cluster. Although read operations would typically benefit from a higher replication factor—
due to the increased likelihood of local data availability for each node—in our setup, this
advantage is diminished. Our cluster is composed of virtual machines hosted on a very small
number of large physical servers which means that data locality is achieved regardless of the
replication configuration.

Finally, a comparison between the local filesystem and distributed HDFS shows that, while the
local filesystem performs adequately for smaller matrices, HDFS significantly outperforms it for
larger matrices. This performance gap grows as more nodes are added.

3.2.2 Lustre Integration
3.2.2.1 Setup
Our experiments are conducted on an AWS-commissioned cluster, consisting of 9 t3.xlarge
VMs. Each VM has 16GBs of RAM, 4 VCPUs, 2 EBS gp3 volumes: a 45GB one for the OS
filesystem and an additional of 5GB for the Lustre filesystem (e.g., mounting OSTs). One VM
plays the role of the DAPHNE coordinator and the Lustre MGS/MDT. The other eight VMs are
DAPHNE workers and Lustre OSTs. All the VMs have to be Lustre clients to be able to access
the Lustre filesystem.

The Lustre stripe size in all the experiments is 64 KB, which is the minimum value. For context,
each system call via the Lustre kernels attempts to read/write up to 1048 KB. This means that
system calls to the Lustre file system would include objects from all the OSTs. There is definitely
room for experimentation here, as we expect the stripe size to be an important factor for the
performance of the Lustre kernels. That being said, we keep the stripe size set in our
experiments to reduce the number of variables.

When handling CSV files, our kernels need to pad the values to a fixed length. That length is
currently hardcoded to be 17 characters. The actual values for the datatypes used can be
represented accurately with a smaller number of characters (eight to be precise – generating

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 37

equal sizes with the local filesystem). The difference in size between the files handled by Lustre
and local kernels with two different padding sizes is displayed in Table 1. In the following
experiments, we use the 17-characters-per-cell padding.

Table 1: Matrices and their respective sizes in Lustre experiments

Matrix
Dimensions

Local FS kernel
size (‘.csv’)

Lustre kernel size
(‘.csv.lustre’)

17 chars per cell

Lustre kernel size
(‘.csv.lustre’)
8 chars per cell

1000x5000 43 MB 43 MB 86 MB

1000x10000 86 MB 86 MB 172 MB

1000x20000 172 MB 172 MB 344 MB

1000x30000 258 MB 258 MB 515 MB

1000x40000 344 MB 344 MB 687 MB

1000x50000 430 MB 430 MB 859 MB

10000x10000 859 MB 859 MB 1,7 GB

10000x20000 1,7 GB 1,7 GB 3,4 GB

10000x30000 2,6 GB 2,6 GB 5,1 GB

3.2.2.2Results
We perform the following simple experiment as a baseline and a proof of concept for the
current Lustre kernels: A random matrix is generated and written to disk with varying size
(number of rows and columns). The resulting file is read and written back to disk, using the
corresponding kernel. The time for each operation is measured from within the DAPHNE script.

The DAPHNE script used to generate a csv file with R rows and C columns at location G is:

A = rand($R, $C, 0.0, 1.0, 1.0, -1);
writeMatrix(A, $G);

The DAPHNE script that reads the csv file from location G, writes it to location D and measures
the elapsed time is:

t1 = now();
a = readMatrix($G);
t2 = now();
t3 = now();

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 38

writeMatrix(a, $D);
t4=now();
print("read time[s]: ", 0, 0);
print((t2 - t1)*10.0^(-9));
print("write time[s]: ", 0, 0);
print((t4 - t3)*10.0^(-9));

The measurements reported below are the average values of three executions. Finally, in the
following figures, we refer to existing kernels for the local filesystem as ‘Local FS’ to differentiate
from our Lustre kernels. Results are depicted in Figure 16 and Figure 17:

Figure 16: Read time vs. number of worker nodes and matrix size (.csv files)

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 39

Figure 17: Write time vs. number of worker nodes and matrix size (.csv files)

We observe that, for both read and write operations, the Lustre kernels are at least as fast as
the local kernels across all configurations. The difference in performance becomes apparent as
the number of workers and the file size increase. This makes sense, as the increased number of
workers means better utilization of the parallel attributes of Lustre as well as better utilization
of the OSTs.

We also investigate the effect of the number of Lustre stripes on performance by reducing
them. This effectively reduces the number of OSTs a file is striped across, making them fewer
than the potential workers. For this experiment, each Lustre file is now striped across 4 OSTs
compared to 8 OSTs before. Figure 18 and Figure 19 depict the results:

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 40

Figure 18: Read time vs. number of worker nodes and matrix size for 4/8 OSTs

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 41

Figure 19: Write time vs. number of worker nodes and matrix size for 4/8 OSTs

As mentioned, the stripe size of 64KB means that all system calls need to access objects from
all the OSTs. In that case, the perceived read/write performance is very similar, meaning that
increasing the number of OSTs that need to be queried does not affect the overall performance.

To conclude, we observe that apart from the general benefits of a Lustre integration (e.g.,
widely used in HPC systems), the Lustre kernels are also more performant than local ones. This
is true even for naïve/standard configurations currently deployed. In the future, we plan to
compare this prototype with the HDFS kernels. Additionally, we would like to investigate
whether the system calls can be aligned to require objects from a single OST. This cannot be
done without first implementing a more advanced logic for choosing Lustre parameters (mainly

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 42

the stripe size). This would also enable us to evaluate whether running a DAPHNE worker on
top of the Lustre OST can be beneficial by taking into consideration potential data locality.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 43

4 Conclusions
This deliverable demonstrates the progress and enhancements achieved in the DAPHNE DSL
Runtime, advancing its capability for large-scale data management, HPC, and machine learning
applications. The DAPHNE runtime now integrates key systems like HDFS and Lustre,
optimizing data access, distribution, and fault tolerance for both local and distributed setups.
Significant improvements in NUMA-aware scheduling and data locality underscore DAPHNE's
focus on performance optimization in memory-intensive tasks.

Experiments with varied NUMA policies and task queue layouts revealed critical insights,
confirming that memory interleaving combined with localized task distribution enhances
performance across multiple nodes, particularly for dense datasets. The evaluation of HDFS
integration highlighted the scalability of DAPHNE's distributed I/O, with substantial
performance gains as cluster nodes increase.

This prototype delivers a robust foundation for further development and optimization,
supporting DAPHNE's goal of delivering a comprehensive, extensible infrastructure for diverse
data analysis needs in complex computational environments.

D4.4 Final DSL Runtime Prototype

DAPHNE – 957407 44

References
[D2.1] DAPHNE: D2.1 Initial System Architecture, EU Project Deliverable, 08/2021.

[D2.2] DAPHNE: D2.2 Refined System Architecture, EU Project Deliverable, 08/2022.

[D4.1] DAPHNE: D4.1 DSL Runtime Design, EU Project Deliverable, 11/2021.

[D4.2] DAPHNE: D4.2 DSL Runtime Prototype, 11/2022.

[D4.3] DAPHNE: D4.3 Improved DSL Runtime Prototype and Overview, 11/2023

