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Document Description
This document presents the final DAPHNE compiler prototype. As described in the compiler
design and overview [D3.4], the DAPHNE compiler is based on MLIR [LA+21], a framework for
domain-specific compilers, to facilitate a cost-effective development of our domain-specific
language, reuse of compiler infrastructure, and good extensibility. Along with this document,
we share a snapshot of the final compiler prototype’s source code, which is also a part of the
open-source DAPHNE prototype repository on GitHub. After comments on the artifact access
(Section 1) and environment setup (Section 2), we showcase the final compiler prototype by
means of three demonstration scenarios. The first scenario (Section 3) walks through some of
the most decisive steps of DAPHNE’s optimizing compilation chain. It is mostly based on the
demonstration that accompanied the extended compiler prototype [D3.3], but significantly
expanded in the parts we worked on in the past 1.5 years, i.e., extensibility and MLIR-based
code generation for CPU. The second scenario (Section 4) focuses in more detail on extensibility
and code generation. The third scenario (Section 5) presents our work on sparsity-exploiting
operator fusion. For each scenario, we present experimental results that emphasize the
capabilities of the DAPHNE compiler. After a brief overview of other finished and ongoing work
in the DAPHNE compiler (Section 6), we conclude the document with an overview of the final
compiler prototype’s source code (Section 7).
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1 Artifact Access
The final compiler prototype is publicly accessible as a snapshot of the DAPHNE prototype
under the link https://daphne-eu.know-center.at/index.php/s/t9Q24w8f85Tfia7 (~3.1 MB).

This snapshot is a copy of the DAPHNE open-source repository at https://github.com/daphne-
eu/daphne (commit 741faf4f20b0fbc2515baede3da186146601c644; Nov 26, 2024).

Furthermore, the artifact contains the directories scenario1, scenario2, and scenario3 with
files specific to the three demonstration scenarios in this document, such as the full DaphneIR
outputs shown in shortened form in this document, the scripts for the experiments, and the
raw experimental result.

2 Environment Setup
We recommend using a GNU/Linux system (e.g., Ubuntu 24.04) for following the
demonstration scenarios. After downloading the file daphne-d3.5-v1.1.zip from the link
above, the following commands need to be executed in a terminal from the same directory to
set up the environment for going along with the demonstration scenarios in the next sections.
The commands can be copied separately into the terminal. Commands that span multiple lines
use \ (backslash) at the line endings. Alternatively, the DAPHNE documentation in
doc/GettingStarted.md1 contains instructions for setting up DAPHNE (but for ease of use, it
is recommended to follow the instructions below). As a fallback, this deliverable contains all
outputs and scripts shown in this document in the directories scenario1, scenario2, and
scenario3, such that it can also be understood without running the system.

# Unpack the deliverable artifact and cd into it.

unzip daphne-d3.5-v1.1.zip

cd daphne-d3.5-v1.1

# Pull a container image with pre-built dependencies.

docker pull daphneeu/daphne-dev

# Run bash in the container for an interactive environment.

./containers/run-docker-example.sh

# Build DAPHNE in the container (should take only a few minutes).

./build.sh --no-deps

1 The documentation can also be found only at https://daphne-eu.github.io/daphne/GettingStarted/.
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3 Scenario 1: DAPHNE Compilation Chain / Linear Regression
3.1 Running Example: Linear Regression Model Training
In the first demonstration scenario, we showcase some of the most important (but not all) steps
of the DAPHNE compilation chain. To this end, we make use of DaphneDSL scripts that train a
linear regression model on real data from a CSV file on secondary storage. We have already
used this example for demonstrating the initial and extended compiler prototypes [D3.2, D3.3].
We decided to include this demonstration scenario again to provide a comprehensive and self-
contained view of the final compiler prototype. Consequently, this section is mostly an updated
copy of the demonstration scenario of the extended compiler prototype [D3.3], where we have
significantly expanded on the topics of lowering DaphneIR operations to kernel calls as well as
on the newly introduced MLIR-based code generation backend. DAPHNE still supports two
methods for the task of linear regression model training: The direct solve (DS) method and the
conjugate gradient (CG) method (the initial compiler prototype [D3.2] showed only the DS
method). The DS method solves the task by a closed form computation (typically most efficient
on a small number of features), while the CG method is an iterative numerical algorithm
(typically most efficient on a high number of features). The respective scripts have been
translated to DaphneDSL from SystemDS [BA+20] (https://github.com/apache/systemds) and
can be found in Appendix 1 as well as in the files scripts/algorithms/lmDS_.daph and
scripts/algorithms/lmCG_.daph. Note that each of these scripts defines a single function,
which can be imported into any other DaphneDSL script, thereby offering reusable high-level
building blocks for integrated data analysis pipelines. In the following, we focus on the DS
method, which we invoke via the DaphneDSL script scripts/algorithms/lmDS.daph that
imports this function and calls it with the loaded input data. We will come back to the CG
method in the micro benchmarks in Section 3.4.

Before we can run these DaphneDSL scripts, we need to download the small real-world data
set we want to train the linear regression model on. The data set can be prepared by the
following commands (or by executing scenario1/data.sh from the root directory of the
artifact).

# Download a small real data set and slightly pre-process it, such that DAPHNE can use it.

mkdir data

wget https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv \

-O data/wine.csv

# These sed commands were tested on Ubuntu GNU/Linux. They may not work as expected on

# other platforms. As a fallback, one can apply these changes manually in a text editor.

sed -i '1d' data/wine.csv # remove the first line (header)

sed -i 's/;/,/g' data/wine.csv # replace ; by , (column delimiter)

echo '{"numRows": 4898, "numCols": 12, "valueType": "f64", "numNonZeros": 58776}' \

> data/wine.csv.meta

3.2 Executing Linear Regression Model Training
To execute the DS method on real input data, a user can call DAPHNE as follows (assuming the
present working directory is the root of the daphne/ source tree):

bin/daphne \

scripts/algorithms/lmDS.daph \

XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=true
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This command invokes the DAPHNE command-line interface through the executable
bin/daphne and tells it to execute the script script/algorithms/lmDS.daph. The complete
script can also be found in Appendix 1. The remaining arguments are passed to the DaphneDSL
parser as script arguments: XY is the path to the input file that contains the feature matrix X
and the labels vector y, reg is a regularization constant for L2-regularization and should be set
to non-zero for highly dependent, sparse, or numerous features (we set it to a default value
here); icpt stands for intercept and indicates whether a shifting and scaling of the input
features in X should be performed; finally, the boolean flag verbose indicates whether to print
detailed output during the script execution. As we set verbose to true, the console output
shows a few informative statistics on the calculated model as well as the model itself:

Calling the Direct Solver...

Computing the statistics...

AVG_TOT_Y, 5.877909

STDEV_TOT_Y, 0.885639

AVG_RES_Y, 0.000000

STDEV_RES_Y, 0.751357

DISPERSION, 0.564537

R2, 0.281870

ADJUSTED_R2, 0.280254

R2_NOBIAS, 0.281870

ADJUSTED_R2_NOBIAS, 0.280254

RESULT

DenseMatrix(12x1, double)

0.0655125

-1.86318

0.0220869

0.0814792

-0.247322

0.00373283

-0.000285785

-150.274

0.68631

0.631463

0.193487

150.183

3.3 Steps of DAPHNE’s Optimizing Compiler
Overview. To illustrate what the DAPHNE compiler does to make this script work, we have a
look at selected steps of the compilation chain [D3.4]. To this end, we utilize DAPHNE’s
explanation feature, which prints the DaphneIR at chosen stages. Figure 1 displays an overview
of the DAPHNE compiler in the context of the DAPHNE system architecture and highlights the
steps of the compilation chain that we will have a closer look at in this section. In particular,
these are: (0) the initial DaphneIR after DaphneDSL parsing, (1) initial simplifications (e.g.,
general programming language rewrites), (2) type and property inference, (3) physical operator
selection, (4) the generation of fused operator pipelines for vectorized execution, (5) memory
management, (6) lowering DaphneIR operations (a) to pre-compiled kernels and (b) by code
generation, and (7) lowering to LLVM and JIT-compilation.
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Figure 1: The DAPHNE compiler in the context of the system architecture [D3.4]. The compilation steps shown in this
section are highlighted in red.

Initial DaphneIR after DaphneDSL parsing. The initial, unoptimized IR produced by the
DaphneDSL parser can be inspected by:

bin/daphne --explain parsing \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that we also set verbose to false to avoid some unnecessary output by the script. At this
stage, the IR is rather lengthy (~430 lines) and not very comfortable to look at. The complete
IR obtained by the command above can be found in scenario1/ir_01_parsing.txt.
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Initial simplification. The DAPHNE compiler chain starts by applying a first round of
straightforward simplifications, including general programming language rewrites such as
constant folding, common sub-expression elimination, and a few reorderings (e.g., moving
constants to the top of the IR). The IR after this stage can be viewed by:

bin/daphne --explain parsing_simplified \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete output can be found in scenario1/ir_02_parsing_simplified.txt. Now
the IR has been shortened to ~330 lines, and we can have a first look at it.

IR after parsing and some simplifications:

module {

func.func @"lmDS-1"(%arg0: !daphne.Matrix<?x?xf64>, %arg1: !daphne.Matrix<?x?xf64>, ...) ->

!daphne.Matrix<?x?xf64> {

...

"daphne.return"(%64) : (!daphne.Matrix<?x?xf64>) -> ()

}

func.func @main() {

...

%7 = "daphne.constant"() {value = "data/wine.csv"} : () -> !daphne.String

%8 = "daphne.read"(%7) : (!daphne.String) -> !daphne.Matrix<?x?x!daphne.Unknown>

...

%11 = "daphne.sliceCol"(%8, ...) : (!daphne.Matrix<?x?x!daphne.Unknown>, ...) ->

!daphne.Matrix<?x?x!daphne.Unknown>

...

%14 = "daphne.sliceCol"(%8, ...) : (!daphne.Matrix<?x?x!daphne.Unknown>, ...) ->

!daphne.Matrix<?x?x!daphne.Unknown>

%15 = "daphne.generic_call"(%11, %14, ...) {callee = "lmDS-1"} :

(!daphne.Matrix<?x?x!daphne.Unknown>, !daphne.Matrix<?x?x!daphne.Unknown>, ...) ->

!daphne.Matrix<?x?xf64>

...

}

}

The IR consists of a single module containing two functions. First, the function lmDS-1 is the
imported lmDS function from DaphneDSL. Second, main is the entry point to the program and
collects all DaphneDSL statements that are not part of any DaphneDSL function. The high-level
steps in the main function are: (1) read the file data/wine.csv as a daphne.Matrix, (2) extract
the feature matrix (X in DaphneDSL) and labels vector (y in DaphneDSL) using the
daphne.sliceCol operation, and (3) call the function lmDS-1 with these two. Furthermore, we
can see that at this stage of the IR, information on the value types and shapes (the number of
rows and the number of columns of a matrix or frame) of the matrices is still unknown, indicated
by the type !daphne.Matrix<?x?x!daphne.Unknown>.

Type and property inference. One of the next steps in the compilation chain is the inference
and propagation of data types and value types as well as interesting data properties (such as
the shape, i.e., the number of rows and the number of columns of a matrix or frame). We
interleave the inference with constant folding and other simplification rewrites, which are
expressed as canonicalizations in MLIR. The reason is that type/property inference and constant
propagation cyclically depend on each other: e.g., nrow(X) can only be constant-folded once
the shape of X is known, and the shape of fill(1.0, n, 1) can only be inferred once the
constant n is known. The IR after this stage can be viewed by:
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bin/daphne --explain property_inference --no-ipa-const-propa \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that by --no-ipa-const-propa, we turn off a feature of inter-procedural analysis, to
which we will come back shortly. The complete IR still has a length of ~310 lines and can be
found in scenario1/ir_03_property_inference.txt.

IR after inference:

module {

func.func @"lmDS-1-1"(%arg0: !daphne.Matrix<4898x11xf64>, %arg1: !daphne.Matrix<4898x1xf64>, ...) ->

!daphne.Matrix<?x1xf64> {

...

%46 = scf.if %44 -> (!daphne.Matrix<4898x?xf64>) {

%69 = "daphne.colBind"(%arg0, %38) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<4898x12xf64>

%70 = "daphne.cast"(%69) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<4898x?xf64>

scf.yield %70 : !daphne.Matrix<4898x?xf64>

} else {

%69 = "daphne.cast"(%arg0) : (!daphne.Matrix<4898x11xf64>) -> !daphne.Matrix<4898x?xf64>

scf.yield %69 : !daphne.Matrix<4898x?xf64>

}

...

"daphne.return"(%68) : (!daphne.Matrix<?x1xf64>) -> ()

}

func.func @main() {

...

%9 = "daphne.constant"() {value = "data/wine.csv"} : () -> !daphne.String

%10 = "daphne.read"(%9) : (!daphne.String) -> !daphne.Matrix<4898x12xf64:sp[1.000000e+00]>

%11 = "daphne.sliceCol"(%10, %7, %1) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, si64, si64) -

> !daphne.Matrix<4898x11xf64>

%12 = "daphne.sliceCol"(%10, %1, %0) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, si64, si64) -

> !daphne.Matrix<4898x1xf64>

%13 = "daphne.generic_call"(%11, %12, ...) {callee = "lmDS-1-1"} : (!daphne.Matrix<4898x11xf64>,

!daphne.Matrix<4898x1xf64>, ...) -> !daphne.Matrix<?x?xf64>

...

}

}

In this step, we apply both intra-procedural and inter-procedural analyses. In terms of intra-
procedural analysis, the value types and shapes inside the main function have now become
known by propagating the known value types and shapes of the input data over the involved
operations. That way, the shapes of the inputs to the lmDS-1 function have become known,
too. This knowledge enables inter-procedural analyses. In particular, the lmDS-1 function has
been specialized for the given input shapes. This is visible in the slightly changed function name
(lmDS-1-1) and in the fact that the shapes of the parameters are known now. Note that, being
unused, the original lmDS-1 function has been removed. Inside of the lmDS-1-1 function, the
DAPHNE compiler performs intra-procedural analysis again. Thus, properties like shapes are
known inside this function as well. Nevertheless, especially in the presence of conditional
control flow, the shape of a data object might not be unambiguously known. As an example,
consider the intercept mode of lmDS. In lmDS_.daph, line 56ff, a column of ones is appended
to the feature matrix if the intercept mode is 1 or 2, but not if the intercept mode is 0. The
number of columns after this if-statement is either 11 or 12 with the given input data. In such
a case of disagreement, the DAPHNE compiler conservatively assumes the number of columns
to be unknown after the branching. Therefore, the shape of the result of the scf.if operation
is 4898x?. To illustrate this situation, we explicitly added the DAPHNE compiler flag --no-ipa-
const-propa above.
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However, by default, DAPHNE also propagates compile-time constants into functions. To see
the effect, we next invoke DAPHNE by:

bin/daphne --explain property_inference \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that we omitted the flag --no-ipa-const-propa. The complete IR can be found in
scenario1/ir_04_property_inference_alternative.txt, as well as in Appendix 2. Now,
the constant arguments icpt (1) and verbose (false) have been inserted while specializing the
lmDS-1 function to obtain the lmDS-1-1 function. In combination with constant folding, the
knowledge of the constants unlocked a range of traditional compiler optimizations DAPHNE
directly inherits fromMLIR, most importantly (in this case) branch removal. We can see that the
entire body of the lmDS-1-1 function is now a purely sequential program since all conditional
control flow depending on the intercept and verbosity level has been resolved at compile-time.
This does not only make the IR more human-readable at ~60 lines but can also make the
program execution more efficient by unlocking further optimization opportunities as we will
see later. As a result of the full intra- and inter-procedural analysis, the shape of the output of
the lmDS-1-1 function is now also known to be 12x1 (for the intercept 1).

IR after inference:

module {

func.func @"lmDS-1-1"(%arg0: !daphne.Matrix<4898x11xf64>, %arg1: !daphne.Matrix<4898x1xf64>, ...) ->

!daphne.Matrix<12x1xf64> {

...

"daphne.return"(%38) : (!daphne.Matrix<12x1xf64>) -> ()

}

func.func @main() {

...

%10 = "daphne.read"(%9) : (...) -> !daphne.Matrix<4898x12xf64:...>

%11 = "daphne.sliceCol"(%10, %7, %1) : (!daphne.Matrix<4898x12xf64:...>, si64, si64) ->

!daphne.Matrix<4898x11xf64>

%12 = "daphne.sliceCol"(%10, %1, %0) : (!daphne.Matrix<4898x12xf64:...>, si64, si64) ->

!daphne.Matrix<4898x1xf64>

%13 = "daphne.generic_call"(%11, %12, ...) {callee = "lmDS-1-1"} : (!daphne.Matrix<4898x11xf64>,

!daphne.Matrix<4898x1xf64>, ...) -> !daphne.Matrix<12x1xf64>

...

}

}

Physical operator selection. After type and property inference have yielded more information
on the intermediate results and simplification rewrites have simplified the IR, the DAPHNE
compiler moves on to physical steps. Depending on the properties of the input data, some
DaphneIR operations can be executed by specific physical operators for better efficiency than
a default operator. The result of this operator selection can be viewed by:

bin/daphne --explain phy_op_selection \

scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false
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The complete IR can be found in scenario1/ir_05_phy_op_selection.txt. Compared to
the previous step, there are two decisive changes: The bulk of the work in lmDS is done by two
matrix multiplications (denoted by the @-operator) A = t(X) @ X; and b = t(X) @ y; in
lmDS_.daph. Interestingly, for both there are more specialized physical operators available:
t(X) @ X can be executed by a symmetric rank-k operation, and t(X) @ y does not require
a matrix-matrix multiplication, but just a less expensive matrix-vector multiplication. The
DAPHNE compiler successfully selects these physical operators.

IR after inference:

...

%19 = "daphne.colBind"(%arg0, %16) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<4898x12xf64>

...

%33 = "daphne.transpose"(%19) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<12x4898xf64>

%34 = "daphne.matMul"(%33, %19, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x12xf64>,

i1, i1) -> !daphne.Matrix<12x12xf64>

%29 = "daphne.matMul"(%33, %arg1, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x1xf64>,

i1, i1) -> !daphne.Matrix<12x1xf64>

IR after selecting physical operators:

...

%18 = "daphne.colBind"(%arg0, %15) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<4898x12xf64>

...

%31 = "daphne.ewMul"(%24, %6) : (!daphne.Matrix<12x1xf64>, f64) -> !daphne.Matrix<12x1xf64>

%32 = "daphne.syrk"(%18) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<12x12xf64>

%33 = "daphne.gemv"(%18, %arg1) : (!daphne.Matrix<4898x12xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<12x1xf64>

While such decisions could also be made by the MatMul-kernel at runtime in certain cases,
doing it already at the compiler-level allows further optimization, e.g., w.r.t. the access pattern
in vectorized execution, which we illustrate next and see again in Section 3.4.

Generation of fused operator pipelines for vectorized execution. As one of the next steps,
DAPHNE routinely identifies sequences of DaphneIR operations for fine-grained operator
fusion and vectorized/tiled execution in so-called vectorized pipelines. For this purpose,
DaphneIR operations supporting vectorized execution implement a DAPHNE-custom MLIR
interface to provide information on how each argument can be split and how each result can
be combined. In a special vectorization pass, the DAPHNE compiler identifies these operations
through their interface as well as producer-consumer-relationships between them through
MLIR's means for querying the def-use-chains of values in the IR. In the beginning, each
vectorizable operation constitutes a separate pipeline. Then, pipelines are greedily fused
together if there is a consumer-producer-relationship between them and the result of the
producing pipeline is combined along the same axis as the argument of the consuming
pipeline is split. The output of this step can be viewed by:

bin/daphne --vec --explain vectorized \

scripts/algorithms/lmDS.daph \

XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false
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Note that we added the --vec flag to turn on vectorization. The resulting IR can be found in
scenario1/ir_06_vectorized.txt. Inside the body of the function lmDS-1-1 we now find
three daphne.vectorizedPipeline operations, the most interesting of which is shown below.

IR after vectorization:

...

func.func @"lmDS-1-1"(...) -> ... {

...

%31:2 = "daphne.vectorizedPipeline"(%arg0, %15, %arg1, ...) ({

^bb0(%arg5: !daphne.Matrix<?x11xf64>, %arg6: !daphne.Matrix<?x1xf64>, %arg7:

!daphne.Matrix<?x1xf64>):

%37 = "daphne.colBind"(%arg5, %arg6) : (!daphne.Matrix<?x11xf64>, !daphne.Matrix<?x1xf64>) ->

!daphne.Matrix<?x?xf64>

%38 = "daphne.gemv"(%37, %arg7) : (!daphne.Matrix<?x?xf64>, !daphne.Matrix<?x1xf64>) ->

!daphne.Matrix<?x?xf64>

%39 = "daphne.syrk"(%37) : (!daphne.Matrix<?x?xf64>) -> !daphne.Matrix<?x?xf64>

"daphne.return"(%38, %39) : (!daphne.Matrix<?x?xf64>, !daphne.Matrix<?x?xf64>) -> ()

}, {

}) {combines = [3, 3], ..., splits = [1, 1, 1]} : (...) -> (!daphne.Matrix<12x1xf64>,

!daphne.Matrix<12x12xf64>)

}

Here, the concatenation (colBind) of the feature matrix and the intercept vector, the
symmetric rank-k operation (syrk), and the general matrix-vector multiplication (gemv) have
been fused together into one pipeline, since each of them can be vectorized by splitting the
arguments into row segments and by combining the results through row segment
concatenation. This pipeline scans over the large feature matrix once and processes cache-
conscious chunks in parallel. The creation of vectorized pipelines constitutes one of the most
important connection points between the DAPHNE compiler (WP3) and the runtime (WP4).
Moreover, inside a pipeline, the shapes of the data objects may be unknown since they are
subject to efficient runtime scheduling (WP5).

At this point, we briefly come back to inter-procedural constant propagation again, as
promised above. If we turn off this feature, the control flow cannot fully be resolved at compile-
time, which limits the fusion opportunities. Indeed, the three operations colBind, syrk, and
gemv end up in separate pipelines, which the interested reader can verify by running the
following command or by viewing the complete IR, which can be found in the file
scenario1/ir_07_vectorized.txt.

bin/daphne --vec --no-ipa-const-propa --explain vectorized \

scripts/algorithms/lmDS.daph \

XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Memorymanagement. In close collaboration of WP3 andWP4, DAPHNEmanages its memory
usage and makes sure all allocations thereof are ultimately freed. DAPHNE's memory
management concerns two levels: On the one hand, DAPHNE data objects like DenseMatrix,
CSRMatrix, and Frame are shallow objects containing meta data and pointers to the underlying
data buffers. On the other hand, the underlying data buffers contain the actual data. The data



D3.3 Final Compiler Prototype

DAPHNE – 957407 14

buffers (or ranges thereof) can reside on the host memory and/or the memories of hardware
accelerators and remote nodes in a distributed setup. The existence of data buffers is always
tied to a data object holding C++ std::shared_ptr’s to them, whereby one data buffer can
be shared by multiple data objects (e.g., a Frame that was created from multiple DenseMatrix’s
for its columns or a zero-copy view into a DenseMatrix). While the level of the data buffers is
managed entirely by the DAPHNE runtime, the level of the data objects needs assistance from
the DAPHNE compiler. Each data object has a reference counter that is initially one. The decisive
challenge is to identify the point when a data object is no longer needed and can safely be freed.
For this purpose, the DAPHNE compiler exploits its global view on the program to insert
operations to increase the reference counter (incRef) each time an object is passed to a new
scope (e.g., in a function call), and to decrease the reference counter (decRef) after the last use
of a data object in each scope. Once the reference counter becomes zero, the object is freed.
Since the extended compiler prototype [D3.3], we have also introduced reference counters for
string scalars as these would otherwise cause memory leaks that can hurt long-running
DaphneDSL scripts. The IR after this step can be viewed by:

bin/daphne --explain obj_ref_mgnt \

scripts/algorithms/lmDS.daph \

XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that, for better readability, we omit the --vec flag again. The complete IR can be found
in scenario1/ir_08_obj_ref_mgnt.txt. In the main function, we can see that the matrix
read from the CSV file is freed right after the two sliceCol operations which separate features
from labels. As the feature matrix and labels are passed to the function lmDS-1-1, their
references are increased to avoid double-frees, since the runtime objects also get memory-
managed inside that function. Afterwards, their references are decreased to free them. The
result of the function call is freed only after it has been printed to the console.

IR after managing object references:

...

func.func @main() {

...

%15 = "daphne.read"(...) : (...) -> ...

"daphne.decRef"(%0) : (...) -> ()

%16 = "daphne.sliceCol"(%15, ...) : (...) -> ...

%17 = "daphne.sliceCol"(%15, ...) : (...) -> ...

"daphne.decRef"(%15) : (...) -> ()

"daphne.incRef"(%16) : (...) -> ()

"daphne.incRef"(%17) : (...) -> ()

%18 = "daphne.generic_call"(%16, %17, ...) {callee = "lmDS-1-1"} : (...) -> ...

"daphne.decRef"(%17) : (...) -> ()

"daphne.decRef"(%16) : (...) -> ()

...

"daphne.print"(%18, ...) : (...) -> ()

"daphne.decRef"(%18) : (...>) -> ()

...

}
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Lowering DaphneIR operations to pre-compiled kernels. By default, DAPHNE lowers all
domain-specific operations (e.g., from linear algebra and relational algebra) to calls to pre-
compiled kernel functions written in C++. This is done as one of the last steps of the compilation
chain. The lowering to kernel calls is one of the most decisive connections to the DAPHNE
runtime and WP4 [D4.4]. The IR after this step can be viewed by:

bin/daphne --explain kernels \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete IR can be found in scenario1/ir_09_kernels.txt. As an example, the
daphne.syrk operation has been lowered as follows:

IR after kernel lowering:

...

%37 = "daphne.call_kernel"(%23, %c54_i32, %19) {callee =

"_syrk__DenseMatrix_double__DenseMatrix_double"} : (!daphne.Matrix<4898x12xf64>, i32,

!daphne.DaphneContext) -> !daphne.Matrix<12x12xf64>

...

Here, _syrk__DenseMatrix_double__DenseMatrix_double is a specific kernel function that
internally calls a BLAS routine. Since the extended compiler prototype [D3.3], we have added a
unique id that we pass to each kernel call (%c54_i32 in this example). This id is generated by
the DAPHNE compiler and used by the DAPHNE runtime to map a kernel back to a DaphneDSL
source code location. This information is used for expressive error messages (see Section 6).
Moreover, the mapping from an DaphneIR operation to the name of the kernel function to call
was still established through a naming convention for kernel functions. Meanwhile, we
introduced a kernel extension catalog [D3.4], a DAPHNE-compiler-internal data structure that
establishes an explicit mapping from DaphneIR operations and their argument/result types to
the names of pre-compiled kernel functions. The kernel catalog is populated from JSON files
of a specific format at DAPHNE start-up. In fact, even DAPHNE’s built-in kernels are integrated
through its extensibility mechanisms. The catalog file of the built-in kernels can be found in
lib/catalog.json (after DAPHNE has been built once). The entry required to map the
daphne.syrk operation above is the following:

[
...
{
"opMnemonic": "syrk",
"kernelFuncName": "_syrk__DenseMatrix_double__DenseMatrix_double",
"resTypes": ["DenseMatrix<double>"],
"argTypes": ["DenseMatrix<double>"],
"backend": "CPP",
"libPath": "libAllKernels.so"

},
...

]

The DAPHNE compiler performs a n:1 mapping (ignoring shapes and other data properties
beyond the data/value type) of the argument/result types between MLIR types (such as
!daphne.Matrix<4898x12xf64>, first argument of the daphne.syrk operation after physical
operator selection above) to C++ types (such as DenseMatrix<double>, as specified in the
catalog entry above). Besides the kernel function name, the entry also informs the DAPHNE
compiler to link the program with the shared library libAllKernels.so (the library containing
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DAPHNE’s built-in kernels for CPU) during just-in-time compilation. We will see an example of
adding a custom kernel in Section 4.

Lowering DaphneIR operations by low-level code generation. We described the design of
code generation in general and MLIR-based code generation in particular in the compiler
design and overview [D3.4]. As an alternative to lowering to calls to pre-compiled C++ kernels,
code generation creates the low-level instructions necessary to perform a DaphneIR operation
at compile-time. This approach can have numerous advantages, which we explained in detail
in the DAPHNE compiler design and overview [D3.4]. Since the extended compiler prototype
[D3.3], we have added an MLIR-based code generation backend, targeting CPU execution, to
the DAPHNE compiler. At the time of writing, DAPHNE can generate code for an important
subset of DaphneIR operations including elementwise binary operations (matrix-matrix, matrix-
vector, and matrix-scalar for various op codes, e.g., addition, multiplication, etc.), full/row-
wise/column-wise aggregation (for several op codes, e.g., sum, min/max, etc.), matrix
multiplication, transpose, and map() (elementwise application of a scalar function) on dense
matrices (see also Section 4) as well as selected examples of sparsity-exploiting code
generation (see also Section 5).

DAPHNE’s MLIR-based code generation backend tightly integrates with existing MLIR
components and is comprised of multiple compiler passes, which can be grouped into two
phases. In the first phase, DAPHNE-specific compiler passes lower DaphneIR operations to low-
level MLIR operations from existing MLIR dialects like linalg, affine, arith, memref, etc. The
IR after this step can be viewed by:

bin/daphne --mlir-codegen --explain mlir_codegen_daphneir_to_mlir \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete IR can be seen in scenario1/ir_10_mlir_codegen_daphneir_to_mlir.txt.

IR after MLIR codegen (DaphneIR to MLIR):

#map = affine_map<(d0, d1) -> (d0, d1)>

...

func.func @"lmDS-1-1"(...) -> ... {

...

%6 = "daphne.constant"() {...} : () -> f64

...

%24 = ... : (...) -> !daphne.Matrix<12x1xf64>

...

%31 = "daphne.convertDenseMatrixToMemRef"(%24) : (!daphne.Matrix<12x1xf64>) -> memref<12x1xf64>

%alloc = memref.alloc() : memref<12x1xf64>

%intptr = memref.extract_aligned_pointer_as_index %alloc : memref<12x1xf64> -> index

%32 = "daphne.convertMemRefToDenseMatrix"(%intptr, ...) : (index, ...) -> !daphne.Matrix<12x1xf64>

linalg.generic {indexing_maps = [#map, #map], ...} ins(%31 ...) outs(%alloc : ...) {

^bb0(%in: f64, %out: f64):

%42 = arith.mulf %in, %6 : f64

linalg.yield %42 : f64

}

%33 = "daphne.syrk"(%18) : (...) -> ...

%34 = "daphne.gemv"(%18, %arg1) : (...) -> ...

...

For instance, above, in the IR after physical operator selection, we can see a daphne.ewMul

operation right before the daphne.syrk operation. daphne.ewMul is an elementwise
multiplication of two values, and this particular occurrence multiplies all elements of a 12x1
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matrix of f64 values by an f64 scalar. This daphne.ewMul operation is now lowered to a
linalg.generic operation from the linalg MLIR dialect. linalg.generic can express a
wide range of linear algebra operations using affine maps to specify how to iterate over the
arguments and results, while the operation’s body contains the operations performed on the
individual elements. In this case, the operation performs an arith.mulf operation on an
element %in of the input matrix and the given scalar value %6.

As both pre-compiled kernels and code generation have their own advantages, the DAPHNE
compiler can combine both alternatives in one IR. This creates a unique challenge of
interoperability between the C++-backed runtime data objects (i.e., matrices and frames)
produced and consumed by DAPHNE’s pre-compiled kernels and the data produced and
consumed by MLIR operations from dialects like linalg (so-called memrefs). To solve these
issues, we introduced dedicated DaphneIR operations for converting between DAPHNE data
objects and MLIR memrefs at run-time, e.g., the operation
daphne.convertDenseMatrixToMemRef applied to the argument matrix %24 and the
operation daphne.convertMemRefToDenseMatrix applied to the allocated output memref of
the linalg.generic operation.

Lowering DaphneIR operations to MLIR’s linalg dialect enables us to benefit from all existing
MLIR lowering passes and optimization on and below the linalg dialect. Thus, to further lower
the generated code in the second phase, we rely solely on existing MLIR passes. The IR after
these additional lowering steps can be viewed by:

bin/daphne --mlir-codegen --explain mlir_codegen_mlir_specific \
scripts/algorithms/lmDS.daph \
XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete IR can be found in scenario1/ir_11_mlir_codegen_mlir_specific.txt. At
this level, we see the actual for-loops that iterate over the input matrix (scf.for operation) as
well as the memref.load and memref.store operations that load/store the elements.

IR after MLIR codegen (MLIR-specific):

...

%31 = "daphne.convertDenseMatrixToMemRef"(%24) : (!daphne.Matrix<12x1xf64>) -> memref<12x1xf64>

%alloc = memref.alloc() : memref<12x1xf64>

%intptr = memref.extract_aligned_pointer_as_index %alloc : memref<12x1xf64> -> index

%32 = "daphne.convertMemRefToDenseMatrix"(%intptr, ...) : (index, ...) -> !daphne.Matrix<12x1xf64>

scf.for %arg5 = %c0 to %c12 step %c1 {

scf.for %arg6 = %c0 to %c1 step %c1 {

%42 = memref.load %31[%arg5, %arg6] : memref<12x1xf64>

%43 = arith.mulf %42, %6 : f64

memref.store %43, %alloc[%arg5, %arg6] : memref<12x1xf64>

}

}

%33 = "daphne.syrk"(%18) : (...) -> ...

%34 = "daphne.gemv"(%18, %arg1) : (...) -> ...

We will see more examples of DAPHNE’s MLIR-based code generation in Sections 4 and 5.
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Lowering to LLVM and JIT-compilation. The last step of DAPHNE’s compilation chain is the
lowering to MLIR’s llvm dialect. The IR after this step can be viewed by:

bin/daphne --vec --explain llvm \

scripts/algorithms/lmDS.daph \

XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that we reinserted the --vec flag to show some interesting aspects. The complete IR can
be found in scenario1/ir_10_llvm.txt. The lowering is largely done by existing MLIR
conversion patterns. Nevertheless, some DaphneIR operations require special treatment. For
instance, the body of a daphne.vectorizedPipeline is turned into an llvm.func and a
pointer to this function is passed to the vectorizedPipeline kernel of the DAPHNE runtime.
This can only be done at such a low level as the llvm dialect. As an example, consider the
pipeline consisting of colBind, syrk, and gemv mentioned above.

IR after llvm lowering:

module {

...

llvm.func @_vect2(%arg0: !llvm.ptr<ptr<ptr<i1>>>, %arg1: !llvm.ptr<ptr<i1>>, %arg2: !llvm.ptr<i1>) {

...

llvm.call @_colBind__DenseMatrix_double__DenseMatrix_double__DenseMatrix_double(...) : (...) -> ()

...

llvm.call @_gemv__DenseMatrix_double__DenseMatrix_double__DenseMatrix_double(...) : (...) -> ()

...

llvm.call @_syrk__DenseMatrix_double__DenseMatrix_double(...) : (...) -> ()

...

}

...

llvm.func @"lmDS-1-1"(...) -> ... attributes {...} {

...

%224 = llvm.mlir.addressof @_vect2 : ...

...

%260 = llvm.bitcast %224 : ... to ...

llvm.store %260, %50 : ...

...

llvm.call

@_vectorizedPipeline__DenseMatrix_double_variadic__size_t__bool__Structure_variadic__size_t__int64_t__i

nt64_t__int64_t__int64_t__size_t__void_variadic(...) : (...) -> ()

...

}

...

llvm.func @main() attributes {...} {

...

}

...

}

The body of this pipeline now became the _vect2 function and a pointer to this function is
obtained and passed to the _vectorizedPipeline__… kernel inside the function lmDS-1-1.

Summary. In this section we have taken a tour through some of the most important steps of
DAPHNE’s compilation chain from the initial DaphneIR after parsing a DaphneDSL script over
various lowering and optimization steps down to the lowering to pre-compiled kernels or
MLIR-based code generation and, ultimately, to the lowering to LLVM IR and JIT compilation.
While the ideas behind these steps have been explained in detail in the DAPHNE compiler
design and overview [D3.4], we have now seen concrete examples of the DaphneIR that reveal
the effect of the individual compilation steps.
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3.4 Experimental Results
To illustrate the impact of the compiler passes presented above on the compilation and
execution time of DAPHNE, we conducted a series of micro benchmarks comparing the DS and
CG method of linear regression model training on two double-precision input data sets with 1
million rows and either 100 (800 MB) or 1000 (8 GB) columns. These data sets are randomly
generated at run-time, such that all experiments happen entirely in main memory and
secondary storage is never accessed during the experiments. We experiment with all three
options for the intercept.

The experiments were conducted on a server equipped with an Intel Xeon Gold 6338 CPU
clocked at 2 GHz. This processor has two sockets with 32 physical cores each, resulting in 128
logical cores due to hyper-threading. The L1 data, L1 instruction, L2, and L3 caches have a total
size of 3 MiB (32 KiB per core), 2 MiB (48 KiB per core), 80 MiB (1.25 MiB per core), and 96 MiB.
The system is further equipped with 1 TiB of DDR4 memory, and during the experiments, all
data resides in main memory. The operating system is Ubuntu 24.04.1 LTS GNU/Linux with
kernel 6.8.0-48-generic. We compiled DAPHNE with g++ version 13.2.0. We repeated all time
measurements 5 times and report the arithmetic means of all repetitions.

We use the default scheduling configuration for DAPHNE’s vectorized engine, i.e., static task
partitioning, one centralized queue, and a sequential victim selection (work stealing from the
next adjacent worker). We refer the interested reader to deliverable D5.4 [D5.4] for further
information on scheduling in DAPHNE. All experiments run purely locally, i.e., DAPHNE’s
distributed runtime was not used.

The experiments presented in the following can be reproduced using the scripts
scenario1/exp.sh and scenario1/dia.py. The original results can be found in
scenario1/res.csv. While we have already shown these experiments for the extended
compiler prototype [D3.3], we re-ran them for the final compiler prototype, whereby the
conclusions are largely the same.

Non-vectorized vs. vectorized execution. In the first experiment, we compare the execution
time of the non-vectorized execution to the vectorized execution. We report only the execution
times of the lmDS and lmCG functions here, i.e., the time for DaphneDSL parsing (negligible),
compilation, and the random data generation are not included. The results are shown in Figure
2. With non-vectorized processing (blue bars), we can see that for 100 columns (upper row of
diagrams), DS performs significantly better than CG, while for 1000 columns (lower row of
diagrams) the advantage of DS is not as pronounced, which is expected. Vectorized processing
is always faster than non-vectorized processing for the same method and data size. However,
there is still room for improvement in terms of speed up, which can partly be attributed to the
DAPHNE compiler and partly to the DAPHNE runtime. Indeed, DS benefits more from
vectorization than CG at the moment.
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Figure 2:

Figure 2: Linear regression model training: Execution time for non-vectorized vs. vectorized execution.

Figure 3 shows the compilation times, including all optimizations and lowering performed by
the DAPHNE compiler as well as the LLVM just-in-time compilation. The compilation times are
far lower than the execution times. Even more importantly, the compilation time does not
depend on the input data size. Finally, vectorization does not have a significant impact on the
compilation time; indeed, any additional cost is outweighed by the improvements in execution
time, given non-trivial data sizes.

Figure 3: Linear regression model training: Compilation time for non-vectorized vs. vectorized execution.

Impact of compiler flags. In the second experiment, we revisit some remarks made in Section
3.3. For this purpose, we execute DAPHNE with different compiler flags. The results for the
execution time of the lmDS and lmCG functions are shown in Figure 4. More precisely, we
compare the default vectorized processing (blue bars) to two cases where we explicitly turned
off decisive features of the DAPHNE compiler, namely inter-procedural constant propagation
(orange bars, --no-ipa-const-propa, we mentioned before that this can result in less
pipeline fusion opportunities) and physical operator selection (green bars, --no-phy-op-
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selection, we mentioned before that this can result in suboptimal access patterns in
vectorized processing). The figure below shows that turning off these compiler features can
indeed cause a significantly worse performance, especially for the DS method.

Figure 4: Linear regression model training: Execution time with different DAPHNE compiler flags.

Next, we also show the impact of these compiler flags on the compilation time. The results are
shown in Figure 5. Omitting inter-procedural constant-propagation leads to an increased
compilation time, since the IR stays unnecessarily verbose that way, thereby causing more
effort for subsequent compiler passes. Omitting physical operator selection can slightly
improve the compilation time; nevertheless, the extra effort is by far outweighed by the
improvements in execution time.

Figure 5: Linear regression model training: Compilation time with different DAPHNE compiler flags.
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4 Scenario 2: Extensibility and Codegen / Data Preprocessing
4.1 Running Example: Shift-and-Scale (Data Preprocessing)
In the second demonstration scenario, we focus on a data preprocessing step frequently
applied before training an MLmodel: shifting and scaling all values in a feature matrix to ensure
a mean of zero and a standard deviation of one for each feature (column). This preprocessing
step was also an optional part of the linear regression model training (Section 3.1), which was
performed when the parameter intercept was set to 2. The DaphneDSL script looks as follows
and can be found in scenario2/shift-and-scale_nohints.daphne. Note that we print the
sum of the result matrix Xshiftscale in the end to prevent the DAPHNE compiler from
optimizing away all computations (we do not print the entire matrix to avoid excessive output).

# Generate some random data.

X = rand($r, $c, 0.0, 100.0, 1, $seed);

# Pre-process the data: subtract the column-mean and divide by the column stddev.

colMeans = sum(X, 1) / nrow(X);

Xshift = X - colMeans;

colSDs = sqrt(sum(Xshift * Xshift, 1) / nrow(X));

Xshiftscale = Xshift / colSDs;

# For checking the result.

print("Done.");

print(sum(Xshiftscale));

We use this example to demonstrate two points: (1) expert users can use their own kernels in
a DaphneDSL script through DAPHNE’s extensibility mechanisms, and (2) DAPHNE’s MLIR-
based code generation backend can benefit the execution time of a DaphneDSL script.

4.2 Adding a Custom Kernel
Expert users can add their own custom kernels to DAPHNE and run them in the context of a
full integrated data analysis pipeline. To that end, DAPHNE offers a three-step extensibility
process [D3.4, DB23]. In the following, we demonstrate this process using a concrete example.
Modern server-grade and desktop processors are usually equipped with instruction set
extensions for SIMD (single instruction multiple data) instructions that process multiple data
elements at once by using so-called vector registers. Examples of SIMD extensions include Intel
SSE, AVX, and AVX-512 as well as ARM Neon and SVE. For our example, we will try to speed
up the costliest operations in the shift-and-scale preprocessing (elementwise binary
subtraction/multiplication/division and columnar sum) by explicitly employing AVX2
instructions, which operate on 256-bit vector registers, i.e., four double-precision floating-point
elements at a time.

Step 1: Implementing the Extension. In the first step, the expert user implements their
kernel(s) in a stand-alone code base, but against a clearly defined interface. In the simplest
case, a single C++ source file can be sufficient for that. The AVX2-based kernels for our example
can be implemented as follows (the complete source code can be found in
scenario2/SIMDKernels/SIMDKernels.cpp).
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#include <runtime/local/datastructures/DenseMatrix.h>

class DaphneContext;

#include <iostream.h>

#include <immintrin.h>

#include <cstdlib>

extern "C" {

void SIMDSumCol(DenseMatrix<double> **res, const DenseMatrix<double> *arg, DaphneContext *ctx) {

std::cout << "Hello from SIMDSumCol!" << std::endl;

// Validation.

const size_t numRows = arg->getNumRows();

const size_t numCols = arg->getNumCols();

if (numCols % 4)

throw std::runtime_error("for simplicity, the number of columns must be a multiple of 4");

// Create output matrix.

if (*res == nullptr)

*res = DataObjectFactory::create<DenseMatrix<double>>(1, numCols, true);

// SIMD accumulation per column (4x f64).

const double *valuesArg = arg->getValues();

double *valuesRes = (*res)->getValues();

for (size_t r = 0; r < numRows; r++) {

for (size_t c = 0; c < numCols; c += 4) {

_mm256_storeu_pd(valuesRes + c, _mm256_add_pd(_mm256_loadu_pd(valuesArg + c),

_mm256_loadu_pd(valuesRes + c)));

}

valuesArg += numCols;

}

}

void SIMDSub(DenseMatrix<double> ** res, const DenseMatrix<double> * lhs,

const DenseMatrix<double> * rhs, int kId, DaphneContext *ctx) {...}

void SIMDDiv(DenseMatrix<double> ** res, const DenseMatrix<double> * lhs,

const DenseMatrix<double> * rhs, int kId, DaphneContext *ctx) {...}

void SIMDMul(DenseMatrix<double> ** res, const DenseMatrix<double> * lhs,

const DenseMatrix<double> * rhs, int kId, DaphneContext *ctx) {...}

}

At the top of the file, a few necessary headers from DAPHNE, such as the DenseMatrix, are
included. Each of the four kernels we want to accelerate through SIMD instructions needs to
be implemented as an individual C++ function. The functions are surrounded by an extern

"C" block to ensure the right linkage such that the kernels can be called from the just-in-time-
compiled DaphneDSL code later. The function names are arbitrary, and we call them
SIMDSumCol, SIMDSub, SIMDDiv, and SIMDMul here. These functions consume and produce
DAPHNE data objects (DenseMatrix, in this case), just like DAPHNE’s built-in kernels. For a
simple example, we show the code of the SIMDSumCol kernel here, which calculates the sum
along each column of a given matrix arg and returns a row-vector res. In the first line, the
kernel prints a hello-message to standard output, just so that we can easily see that the kernel
actually runs in this demonstration. More importantly, the kernel makes use of SIMD intrinsics
from the immintrin.h header: _mm256_loadu_pd (which loads a vector of four double-
precision values from memory into a vector register), _mm256_add_pd (which adds the
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corresponding elements of two vector registers), and _mm256_storeu_pd (which stores a
vector register to memory)2.

The custom kernels must be compiled as a shared library. To this end, we provide the following
Makefile. The full file can be found in scenario2/SIMDKernels/Makefile.

libSIMDKernels.so: SIMDKernels.o

g++ -shared SIMDKernels.o -o libSIMDKernels.so

SIMDKernels.o: SIMDKernels.cpp

g++ -c -fPIC SIMDKernels.cpp -I../../src -std=c++17 -O3 -mavx2 -o SIMDKernels.o

To build the extension library, we simply execute make in the directory
scenario3/SIMDKernels/, which gives the following output and produces the file
libSIMDKernels.so.

g++ -c -fPIC SIMDKernels.cpp -I../../src -std=c++17 -O3 -mavx2 -o SIMDKernels.o

g++ -shared SIMDKernels.o -o libSIMDKernels.so

Step 2: Registering the Extension with DAPHNE. To inform DAPHNE of the existence of the
SIMDKernels extension and to provide essential information on the new kernels to the DAPHNE
compiler, we require a simple JSON catalog file containing this information. An excerpt of this
file can be seen below, while the full file can be found as part of the artifact in
scenario2/SIMDKernels/SIMDKernels.json.

[

{

"opMnemonic": "sumCol",

"kernelFuncName": "SIMDSumCol",

"resTypes": ["DenseMatrix<double>"],

"argTypes": ["DenseMatrix<double>"],

"backend": "CPP",

"libPath": "libSIMDKernels.so"

},

...

]

This file has the same format as the kernel catalog file we have seen in Section 3.3. However,
in this case, the catalog entry contains the C++ function name of our custom kernel from
SIMDKernels.cpp as well as the name of our extension’s shared library libSIMDKernels.so.

A kernel extension can be registered with the DAPHNE system at start-up, i.e., DAPHNE does
not need to be built anew. To that end, the --kernel-ext command line argument is passed
to the daphne executable, as we will see in the next step.

2For a full reference of Intel’s SIMD intrinsics, please see the Intel Instrinsics Guide at
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html.



D3.3 Final Compiler Prototype

DAPHNE – 957407 25

Step 3: Using the Extension. To make use of a kernel extension, users can employ kernel hints
in DaphneDSL. While hints circumvent the idea of automatic decisions made by the DAPHNE
compiler and runtime, they are an invaluable tool for experimentation. For instance, hints can
be used to find out how a DaphneDSL script behaves if a certain kernel is employed, even if
the DAPHNE compiler does not choose the kernel on its own. In the future, we also plan to
device automatic strategies for selecting among multiple registered kernels for the same
DaphneIR operation and argument/result types, e.g., based on cost models. The shift-and-scale
script from above can be augmented with kernel hints by adding the kernel name after a
DaphneDSL built-in function or operator symbol, separated by double colon. The full script can
be found in scenario2/shift-and-scale_hints.daphne.

# Generate some random data.

X = rand($r, $c, 0.0, 100.0, 1, -1);

# Pre-process the data: subtract the column-mean and divide by the column stddev.

colMeans = sum::SIMDSumCol(X, 1) / nrow(X);

Xshift = X -::SIMDSub colMeans;

colSDs = sqrt(sum::SIMDSumCol(Xshift *::SIMDMul Xshift, 1) /::SIMDDiv nrow(X));

Xshiftscale = Xshift / colSDs;

# For checking the result.

print("Done.")

print(sum(Xshiftscale));

Kernel hints are respected by the DAPHNE compiler, i.e., they remain untouched in early
compiler passes. During the lowering of DaphneIR operations to calls to pre-compiled kernels
(Section 3.3), these kernel hints override the look-up of a suitable kernel in the DAPHNE
compiler’s kernel catalog. Instead, the DAPHNE compiler merely checks if the given kernel hint
is the name of a valid kernel function registered for the DaphneIR operation at hand and its
argument/result types. We can double-check the effect of DaphneDSL kernel hints on the
DAPHNE compilation chain through DAPHNE’s explanation feature (note how we use the
--kernel-ext argument to inform DAPHNE of the extension). The full IR and output can be
found in scenario2/ir_hints.txt.

bin/daphne --kernel-ext scenario2/SIMDKernels/SIMDKernels.json \

--explain parsing_simplified,kernels \

scenario2/shift-and-scale_hints.daphne \

r=1000 c=100 seed=12345
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IR after parsing and some simplifications:

module {

func.func @main() {

...

%9 = "daphne.randMatrix"(...) : (...) -> ...

%10 = "daphne.sumCol"(%9) {kernel_hint = "SIMDSumCol"} : (...) -> ...

%11 = "daphne.numRows"(%9) : (...) -> index

%12 = "daphne.ewDiv"(%10, %11) : (...) -> ...

%13 = "daphne.ewSub"(%9, %12) {kernel_hint = "SIMDSub"} : (...) -> ...

...

}

}IR after kernel lowering:

module {

func.func @main() {

...

%15 = "daphne.call_kernel"(...) {callee =

"_randMatrix__DenseMatrix_double__size_t__size_t__double__double__double__int64_t"} : (...) -> ...

%c3_i32 = arith.constant 3 : i32

%16 = "daphne.call_kernel"(%15, ...) {callee = "SIMDSumCol"} : (...) -> ...

%c4_i32 = arith.constant 4 : i32

%17 = "daphne.call_kernel"(...) {callee = "_ewDiv__DenseMatrix_double__DenseMatrix_double__double"}

: (...) -> ...

%c5_i32 = arith.constant 5 : i32

"daphne.call_kernel"(%16, %c5_i32, %14) {callee = "_decRef__Structure"} : (...) -> ()

%c6_i32 = arith.constant 6 : i32

%18 = "daphne.call_kernel"(%15, %17, %c6_i32, %14) {callee = "SIMDSub"} : (...) -> ...

...

}

}

Hello from SIMDSumCol!

Hello from SIMDSub!

Hello from SIMDMul!

Hello from SIMDSumCol!

Hello from SIMDDiv!

Done.

-8.35376e-12

In the very early IR after parsing and some initial simplifications, we see that the expected
DaphneIR operations have the kernel hint in the form of a custom MLIR attributed
kernel_hint attached to them. After lowering to kernel calls, these are exactly the kernel
functions that will be called, while the operations we did not provide with a hint, such as
daphne.rand and the daphne.ewDiv by a scalar, are still backed by built-in kernels.
Furthermore, in the output of the DaphneDSL script, we see the messages printed by our
custom SIMD-based kernels.

4.3 MLIR-based Code Generation
We can also use DAPHNE’s MLIR-based code generation backend for the shift-and-scale script.
In fact, DAPHNE can generate low-level MLIR code for all operations required for the
calculation. We can double-check this through DAPHNE’s explain feature.

bin/daphne --mlir-codegen --explain mlir_codegen_mlir_specific \

scenario2/shift-and-scale_nohints.daphne \
r=1000 c=100 seed=12345
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IR after MLIR codegen (MLIR-specific):

module {

func.func @main() {

...

%10 = "daphne.randMatrix"(...) : (...) -> !daphne.Matrix<1000x100xf64:sp[1.000000e+00]>

%11 = "daphne.convertDenseMatrixToMemRef"(%10) : (...) -> memref<1000x100xf64>

%alloc = memref.alloc() : memref<1x100xf64>

...

scf.for %arg0 = %c0 to %c999 step %c1 {

scf.for %arg1 = %c0 to %c100 step %c1 {

%14 = arith.addi %arg0, %c1 : index

%15 = memref.load %11[%14, %arg1] : memref<1000x100xf64>

%16 = memref.load %alloc[%c0, %arg1] : memref<1x100xf64>

%17 = arith.addf %16, %15 : f64

memref.store %17, %alloc[%c0, %arg1] : memref<1x100xf64>

}

}

%alloc_0 = memref.alloc() : memref<1x100xf64>

scf.for %arg0 = %c0 to %c1 step %c1 {

scf.for %arg1 = %c0 to %c100 step %c1 {

%14 = memref.load %alloc[%arg0, %arg1] : memref<1x100xf64>

%15 = arith.divf %14, %0 : f64

memref.store %15, %alloc_0[%arg0, %arg1] : memref<1x100xf64>

}

}

%alloc_1 = memref.alloc() : memref<1000x100xf64>

scf.for %arg0 = %c0 to %c1000 step %c1 {

scf.for %arg1 = %c0 to %c100 step %c1 {

%14 = memref.load %11[%arg0, %arg1] : memref<1000x100xf64>

%15 = memref.load %alloc_0[%c0, %arg1] : memref<1x100xf64>

%16 = arith.subf %14, %15 : f64

memref.store %16, %alloc_1[%arg0, %arg1] : memref<1000x100xf64>

}

}

...

}

}

For brevity, we show only the first three operations from the DaphneDSL script, i.e., the
columnar sum and the elementwise division involved in calculating the DaphneDSL variable
colMeans, and the elementwise subtraction calculating Xshift. The full IR can be found in
scenario2/ir_codegen.txt. The loops and scalar operations involved in them, like
arith.addf, arith.divf, and arith.subf, can clearly be seen in the IR.

4.4 Experimental Results
After we have discussed different variants for compiling the shift-and-scale data preprocessing
script in DAPHNE, we evaluate which impact the two discussed variants, i.e., (1) using a custom
kernel extension of SIMD-based kernels and (2) using DAPHNE’s MLIR-based code generation
backend, have on the execution time of the algorithm. To this end, we randomly generated a
dense matrix of double-precision floating-point values with 1 million rows and 1000 columns
for the input data X, which implies a physical size of 8 GB. The data generation happens at run-
time and fully in-memory, such that the secondary storage is never accessed.

The experiments were conducted on a server equipped with an AMD EPYC 7443P CPU with a
base frequency of 2.85 GHz. This processor supports the AVX2 SIMD extension and has a single
socket with 24 physical cores each, resulting in 48 logical cores due to hyper-threading. The L1
data, L1 instruction, L2, and L3 caches have a total size of 768 KiB (32 KiB per core), 768 KiB (32
KiB per core),12 MiB (512 KiB per core), and 128 MiB. The system is further equipped with 256
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GiB of DDR4 memory, and during the experiments, all data resides in main memory. The
operating system is Ubuntu 24.04.1 LTS GNU/Linux with kernel 6.8.0-48-generic. We compiled
DAPHNE with g++ version 13.2.0. We measure only the time required for the shift-and-scale
calculation itself, not the time required for the random number generation. We repeated all
measurements 10 times and report only the mean.

The experiment ran purely in DAPHNE’s local runtime and can be repeated using the scripts
scenario2/experiment.sh and scenario2/dia.py. The original results can be found in
scenario2/res.csv and scenario2/dia.pdf.

Figure 6: Shift-and-scale execution time with built-in kernels, extension kernels, and MLIR-based code generation.

The results are presented in Figure 6. When using DAPHNE’s built-in pre-compiled kernels, the
execution takes approximately 15 seconds. By using the custom SIMD-based kernels presented
in Section 4.2, the execution can be accelerated to approximately 12 seconds. Likewise,
compiling the DaphneDSL script with DAPHNE’s MLIR-based code generation backend
presented in Section 4.3 achieves a runtime of approximately 12 seconds. These results show
that (a) employing custom kernels for the concrete hardware architecture can improve
performance, and (b) DAPHNE’s MLIR-based code generation backend is effective. However,
our intension is not to make any claims about the suitability of SIMD-based kernels versus code
generation; and in fact, all three variants could be further optimized. Instead, the main takeaway
is that DAPHNE, as an open and extensible infrastructure for integrated data analysis pipelines,
(1) does support different routes through the compilation chain (e.g., lowering to pre-compiled
kernels or low-level code generation) and (2) enables expert users (e.g., researchers) to very
easily employ their custom hardware-specific kernels in the context of an entire integrated data
analysis pipeline, while benefitting from the surrounding compiler and runtime infrastructure.
This overall setup makes DAPHNE a brilliant host system for further research on the efficient
compilation and execution of integrated data analysis pipelines.
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5 Scenario 3: Sparsity-exploiting Operator-Fusion / PNMF
5.1 Running Example: Poisson Nonnegative Matrix Factorization (PNMF)
In the third demonstration scenario, we consider Poisson Nonnegative Matrix Factorization
(PNMF). This algorithm tries to represent a typically very sparse input matrix X by two factors
W and H of a lower rank [BRH+18]. These factors are initialized with random numbers. Then, the
algorithm works iteratively. In each iteration, the factors W and H are updated to better
approximate X. The algorithm runs until either a maximum number of iterations has been
performed or until the approximation is close enough. In the latter case, the quality of the
approximation is typically evaluated by the cross entropy loss obj = sum(X * log(W @ t(H))

+ eps). In the following, we focus specifically on this sub-expression, as it offers optimization
potential for sparsity-exploiting operator fusion, a feature we prototypically integrated into the
DAPHNE compiler. The overall DaphneDSL script we consider in this section looks as follows
and can also be found in scenario3/cross-entropy-loss.daphne.

# Generate random data with the specified dimensions and sparsity.

X = rand($n, $n, 0.0, 1.0, $sp, $seed);

U = rand($n, $k, 0.0, 1.0, 1, $seed);

V = rand($n, $k, 0.0, 1.0, 1, $seed);

# Calculate cross-entropy loss.

res = sum(X * ln(U @ t(V)));

# For checking the result.

print(res);

5.2 MLIR Code Generation for Sparsity-exploiting Operator Fusion
By default, the DAPHNE compiler lowers DaphneIR operations to calls to pre-compiled kernels
for dense or sparse data. Alternatively, the low-level instructions for the DaphneIR operations
can be generated on-the-fly, as we have seen in Section 4. Calculating the cross entropy loss
this way results in the materialization of large dense intermediate results U @ t(V), U @ t(V)

+ eps, and log(U @ t(V) + eps) in memory. However, most of the involved calculations are
redundant, as the elementwise multiplication with X, which is performed last, effectively uses
only a small subset of the elements of log(U @ t(V) + eps). This redundancy can be avoided
through a sparsity-exploiting operator fusion: The DAPHNE compiler automatically detects this
pattern of operations and generates custom low-level MLIR operations for the entire pattern,
rather than the individual operations. In particular, the code iterates only over the non-zero
elements in X, for each such element, it calculates the dot product of the respective row in U

and column in t(V) and applies the logarithm. That way, only the actually required elements
are calculated and the large dense intermediates are completely avoided, as illustrated by
Figure 7.
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Figure 7: Illustration of the cross entropy loss calculation with a sparse input matrix X. Extracted from
https://mboehm7.github.io/teaching/ss24_amls/04_AdvancedCompilation.pdf.

Sparsity-exploiting operator fusion is implemented as a separated pass in the DAPHNE
compiler that runs by default as a part of DAPHNE’s MLIR-based code generation backend.
The effect of this pass on the IR can be examined using the DAPHNE compiler’s explanation
features.

To get familiar with the IR before sparsity-exploiting operator fusion, a decisive step to look at
is the selection of physical data representations. We can view the IR at this point by the
following command. The full IR can be found in scenario3/ir_select_matrix_repr.txt.

bin/daphne --select-matrix-repr --explain select_matrix_repr \

scenario3/cross-entropy-loss.daphne n=20000 k=100 sp=0.0001 seed=12345

IR after selecting matrix representations:

module {

func.func @main() {

...

%13 = "daphne.matMul"(...) : (!daphne.Matrix<20000x100xf64:...>, !daphne.Matrix<20000x100xf64:...>,

...) -> !daphne.Matrix<20000x20000xf64:...>

%14 = "daphne.ewLn"(%13) : (!daphne.Matrix<20000x20000xf64:...>) -> !daphne.Matrix<20000x20000xf64>

%15 = "daphne.ewMul"(%9, %14) : (!daphne.Matrix<20000x20000xf64:sp[1.000000e-04]:rep[sparse]>,

!daphne.Matrix<20000x20000xf64>) -> !daphne.Matrix<20000x20000xf64:sp[1.000000e-04]:rep[sparse]>

%16 = "daphne.sumAll"(%15) : (!daphne.Matrix<20000x20000xf64:sp[1.000000e-04]:rep[sparse]>) -> f64

...

}

}

The four decisive operations matMul, ewLn, ewMul, and sumAll are clearly visible (we omit the
addition by eps here for brevity). Moreover, the first operand of ewMul (X in the DaphneDSL
script) is represented in the sparse format Compressed Sparse Row (CSR). The same holds for
the result of ewMul, which is also the input to sumAll. The large dense intermediate results are
%13 and %14.

If we further lower these operations to kernel calls, the overall pattern of operations cannot be
considered, and the large dense intermediates will still exist. We can verify this situation by
printing the IR after lowering to kernel calls. The IR after this pass can be viewed by the
following command. The full IR can be found in scenario3/ir_kernels.txt.

bin/daphne --select-matrix-repr --explain kernels \
scenario3/cross-entropy-loss.daphne n=20000 k=100 sp=0.0001 seed=12345
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IR after kernel lowering:

module {

func.func @main() {

...

%18 = "daphne.call_kernel"(...) {callee =

"_matMul__DenseMatrix_double__DenseMatrix_double__DenseMatrix_double__bool__bool"} : (...) -> ...

...

%19 = "daphne.call_kernel"(...) {callee = "_ewLn__DenseMatrix_double__DenseMatrix_double"} : (...)

-> ...

...

%20 = "daphne.call_kernel"(...) {callee =

"_ewMul__CSRMatrix_double__CSRMatrix_double__DenseMatrix_double"} : (...) -> ...

...

%21 = "daphne.call_kernel"(...) {callee = "_sumAll__double__CSRMatrix_double"} : (...) -> f64

...

}

}

We can see that the four operations result in individual kernel calls, whereby ewMul and sumAll
were lowered to calls to kernels for sparse (CSR) matrices. The large dense intermediates, now
called %18 and %19, still exist.

Alternatively, we can view the IR after sparsity exploiting operator fusion by the following
command. The full IR is also in scenario3/ir_sparsity_exploiting_op_fusion.txt.

bin/daphne --select-matrix-repr --mlir-codegen \

--explain mlir_codegen_sparsity_exploiting_op_fusion \

scenario3/cross-entropy-loss.daphne n=20000 k=100 sp=0.0001 seed=12345

IR after MLIR codegen (sparsity-exploiting operator fusion):

module {

func.func @main() {

...

%13 = "daphne.convertDenseMatrixToMemRef"(%10) : (!daphne.Matrix<20000x100xf64:sp[1.000000e+00]>) -

> memref<20000x100xf64>

%14 = "daphne.convertDenseMatrixToMemRef"(%11) : (!daphne.Matrix<20000x100xf64:sp[1.000000e+00]>) -

> memref<20000x100xf64>

%15 = "daphne.convertCSRMatrixToValuesMemRef"(%9) : (!daphne.Matrix<20000x20000xf64:sp[1.000000e-

04]:rep[sparse]>) -> memref<?xf64>

%16 = "daphne.convertCSRMatrixToColIdxsMemRef"(%9) : (!daphne.Matrix<20000x20000xf64:sp[1.000000e-

04]:rep[sparse]>) -> memref<?xindex>

%17 = "daphne.convertCSRMatrixToRowOffsetsMemRef"(%9) :

(!daphne.Matrix<20000x20000xf64:sp[1.000000e-04]:rep[sparse]>) -> memref<20001xindex>

%18 = affine.parallel (%arg0) = (0) to (20000) reduce ("addf") -> (f64) {

%25 = affine.load %17[%arg0] : memref<20001xindex>

%26 = affine.load %17[%arg0 + 1] : memref<20001xindex>

%27 = scf.for %arg1 = %25 to %26 step %c1 iter_args(%arg2 = %cst) -> (f64) {

%28 = memref.load %16[%arg1] : memref<?xindex>

%29 = scf.for %arg3 = %c0 to %c100 step %c1 iter_args(%arg4 = %cst) -> (f64) {

%33 = memref.load %13[%arg0, %arg3] : memref<20000x100xf64>

%34 = memref.load %14[%28, %arg3] : memref<20000x100xf64>

%35 = math.fma %33, %34, %arg4 : f64

scf.yield %35 : f64

}

%30 = math.log %29 : f64

%31 = memref.load %15[%arg1] : memref<?xf64>

%32 = math.fma %31, %30, %arg2 : f64

scf.yield %32 : f64

}

affine.yield %27 : f64

}

...

}

}
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Now, the entire DAG of operations was replaced by a construct of nested loops that efficiently
calculates the overall result. The outermost loop (represented by an affine.parallel

operation to exploit parallelism in the future) iterates over the rows of the CSR matrix X. The
outer scf.for loop iterates over the non-zero elements in the current row. For each of those,
the innermost scf.for loop calculates the dot product of the respective vectors in U and t(V),
whereby fused-multiply-add (math.fma) operations are employed for efficiency (%35). Then,
the logarithm of each such dot product is calculated by a math.log operation (%30). The
logarithms are multiplied by the current element in X and added to the global accumulator of
what was originally the sumAll operation by another fused-multiply-add operation (%32). Note
that the large dense intermediates are never materialized.

The interoperability of the generated MLIR code with DAPHNE runtime data objects is again
achieved through zero-copy conversion operations. We have already seen
convertDenseMatrixToMemRef in Sections 3.3 and 4.3. The CSR matrix representation is
integrated in an analogous way. As CSR matrices consist of three arrays (row offsets, column
indexes, values), we introduce three auxiliary conversion operations, namely
convertCSRMatrixToRowOffsetsMemRef, convertCSRMatrixToColIdxsMemRef, and
convertCSRMatrixToValuesMemRef.

5.3 Experimental Results
After we have seen the effect of sparsity-exploiting operator fusion on the IR, we evaluate its
impact on runtime performance of the cross entropy loss calculation. We compare three
variants: (1) using dense data representations and kernels only, (2) using sparse representations
(CSR) and kernels where beneficial, and (3) employing sparsity-exploiting operator fusion. We
randomly generate the input data. We set X to a shape of 20k rows by 20k columns with a
sparsity ranging from 1.0 (fully dense) to 10-7 (1 non-zero in 10 million values). We set U and V

to a shape of 20k rows by 200 columns each.

The experiments were conducted on a server equipped with an AMD EPYC 7443P CPU with a
base frequency of 2.85 GHz. This processor has a single socket with 24 physical cores each,
resulting in 48 logical cores due to hyper-threading. The L1 data, L1 instruction, L2, and L3
caches have a total size of 768 KiB (32 KiB per core), 768 KiB (32 KiB per core),12 MiB (512 KiB
per core), and 128 MiB. The system is further equipped with 256 GiB of DDR4 memory, and
during the experiments, all data resides in main memory. The operating system is Ubuntu
24.04.1 LTS GNU/Linux with kernel 6.8.0-48-generic. We compiled DAPHNE with g++ version
13.2.0. We measure only the time required for the cross-entropy loss calculation itself, not the
time required for the random number generation. We repeated all measurements 10 times and
report only the mean. The experiment ran purely in DAPHNE’s local runtime and can be
repeated using the scripts scenario3/experiment.sh and scenario3/dia.py. The original
results can be found in scenario3/res.csv and scenario3/dia.pdf.
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Figure 8: Cross entropy loss execution time for all dense operations, sparse operations, and sparsity-exploiting code
generation.

The results are shown in Figure 8. When using only dense data representations and kernels,
the runtime performance is constant, i.e., does not depend on the sparsity of X. When DAPHNE
selects sparse data representations and kernels where beneficial, but still uses individual
kernels, we can observe a significant performance improvement compared to the all-dense
approach for sparsities smaller than 0.01 (note the logarithmic vertical axis). However, the
greatest improvements are achieved by sparsity-exploiting operator fusion. While this
approach is not beneficial for rather dense X (sparsity of 1.0 and 0.1), it clearly outpaces even
the approach of using individual sparse kernels. In fact, we can see that sparsity-exploiting
operator fusion leads to improved asymptotic behavior of the cross-entropy calculation.

Besides these concrete results for the cross-entropy calculation, this experiment shows that
compiler optimizations like sparsity-exploiting operator fusion are possible in the DAPHNE
compiler. In the future, we plan to support sparsity-exploiting operator fusion for additional
frequently occurring patterns of operations over sparse data, following the ideas in [BRH+18].
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6 Other Completed and Ongoing Work in the Compiler
The three demonstration scenarios presented in Sections 3-5 focused on our work regarding
extensibility and MLIR-based code generation, as these are our major contributions since the
extended compiler prototype [D3.3]. However, besides these contributions, we have worked
on various individual aspects of the DAPHNE compiler, some of which have already been
merged into the main branch of the DAPHNE prototype and some of which are still ongoing
work.

Completed work:

• Improved error handling and more consistent and actionable error messages. This
generally increases the ease of use of the DAPHNE prototype as it facilitates the
implementation and debugging of complex DaphneDSL scripts. Errors could be caused
by invalid user inputs (DaphneDSL scripts or input data) and could happen at all stages
of DAPHNE but are presented in a consistent way. Below, we present two examples of
error messages that can be provoked by introducing subtle bugs into the shift-and-
scale script from Section 4 (these modified scripts can be found in scenario2/shift-
and-scale_error1.daphne and scenario2/shift-and-scale_error2.daphne):

[error]: While parsing: DSLVisitor failed with the following message [ variable `Y` referenced

before assignment ]

| Source file -> "/daphne/./scenario2/shift-and-scale_nohints.daphne":6:9

|

6 | Xshift = Y - colMeans;

| ^~~

[error]: Execution error: The kernel-function _ewSqrt__DenseMatrix_double__DenseMatrix_double

failed during runtime with the following message [ invalid argument '-831.744' passed to unary

func SQRT with domain [-0, inf] ]

| Source file -> "/daphne/./scenario2/shift-and-scale_nohints.daphne":7:9

|

7 | colSDs = sqrt(-sum(Xshift * Xshift, 1) / nrow(X));

| ^~~

• Compiler support for a DaphneDSL str (string) value type to be used with matrices and
frames. This string value type can be backed by an std::string or our own
FixedStr16 type at run-time (we plan to investigate more string representations in the
future). This enables DAPHNE to be used in more realistic settings where data sets often
contain string columns that are transformed to numeric representations early on.

• Various little improvements and bug fixes, especially related to memory management.

Ongoing work:

• Sparsity estimation for virtually all DaphneIR operations based on naïve meta data
estimators. This allows for a more effective use of sparse data representations and
sparse kernels throughout complex data analysis pipelines and will serve as a baseline
for more advanced sparsity estimators in the future.

• Recompilation of individual blocks of a DaphneIR program at run-time to effectively
deal with compile-time unknown data characteristics. This will make DAPHNE more
efficient on algorithms that dynamically change the characteristics of the processed
data.
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• Improvements and extensions to the vectorized pipeline fusion pass by exploiting
multiple dimensions for splitting/combining the data as well as aligning data layout
decisions with split/combine decisions. This will lead to larger and more efficient
vectorized pipelines.

• Automatic loop vectorization that rewrites DaphneDSL loops operating on elements of
matrix or frame to the respective coarse-grained matrix/frame operations in DaphneIR;
mainly to compensate inefficient DaphneDSL code by users.

• Lowering of DaphneIR frame operations from relational algebra to columnar operations
suitable for processing analytical database queries more efficiently.

• Using MLIR’s tensor dialect with the code generated for DaphneIR operations. This will
enable us to benefit from an even larger part of the MLIR framework for low-level
optimizations such as lowering to GPU operations.

• Improved inter-procedural analyses, e.g., removal of near-similar specialized user-
defined functions to keep the IR simple and reduce the time spent in subsequent
compiler passes.

7 Overview of the Final Compiler Prototype Source Code
A general overview of the DAPHNE code base has already been provided in deliverable D3.2
[D3.2]. Here, we focus on the source code relevant to the DAPHNE compiler, which can be
found in the following directories of the DAPHNE repository:

• src/ir/daphneir/: This directory contains the source code of the DaphneIR. Most
interestingly, all DaphneIR operations are defined in DaphneOps.td in LLVM TableGen
notation. Furthermore, specific parts of the type and property inference can be found
in the files DaphneInfer*.td/h/cpp, such as DaphneInferShapeOpInterface.cpp.
DaphneIR is the basis for both, the DaphneDSL parser and the DAPHNE compiler.

• src/compiler/: This directory contains all compiler passes of the DAPHNE compiler
(except for the standard MLIR passes we reuse). Most interestingly,
execution/DaphneIrExecutor.cpp defines the overall DAPHNE compilation chain,
lowering/ contains all passes for lowering and optimizations, inference/ contains
passes related to type and property inference, and catalog/ contains the kernel
extension catalog data structure.

• src/parser/catalog/: This directory contains the parser for the kernel catalog JSON
files and builds up the kernel extension catalog at DAPHNE start-up.

• src/parser/daphnedsl/: This directory contains the source code of the DaphneDSL
parser, which creates the initial, unoptimized DaphneIR representation of the given
DaphneDSL script. This initial IR is the starting point for the DAPHNE compiler.

• test/api/cli/: This directory contains numerous script-level test cases for all kinds
of features of DaphneDSL, many of which are designed to trigger and test specific cases
in the DAPHNE compiler.

• test/codegen/: This directory contains unit test cases related to theMLIR-based code
generation backend.
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Appendix 1: DaphneDSL Scripts
In the following, we present the complete DaphneDSL scripts used for linear regression model
training in the demonstration scenario. These files can also be found in the DAPHNE repository
in the directory scripts/algorithms/. We omit the license headers to save some space.

File lmDS_.daph
# This script has been manually translated from Apache SystemDS.

# The lmDC function solves linear regression using the direct solve method

#
# INPUT:

# --------------------------------------------------------------------------------------

# X Matrix of feature vectors.
# y 1-column matrix of response values.

# icpt Intercept presence, shifting and rescaling the columns of X

# reg Regularization constant (lambda) for L2-regularization. set to nonzero
# for highly dependant/sparse/numerous features

# verbose If TRUE print messages are activated

# --------------------------------------------------------------------------------------
#

# OUTPUT:
# ---------------------------------------------------------------------------------------------

# B The model fit

# ---------------------------------------------------------------------------------------------

def lmDS(X:matrix<f64>, y:matrix<f64>, icpt:si64, reg:f64,

verbose:bool) -> matrix<f64> {
intercept_status = icpt;

regularization = reg;

n = nrow (X);

m = ncol (X);

ones_n = fill (1.0, n, 1);

zero_cell = [0.0];

# Introduce the intercept, shift and rescale the columns of X if needed

m_ext = m;
if (intercept_status == 1 || intercept_status == 2) # add the intercept column

{
X = cbind (X, ones_n);

m_ext = ncol (X);

}

scale_lambda = fill (1.0, m_ext, 1);

if (intercept_status == 1 || intercept_status == 2)
{

scale_lambda [m_ext - 1, 0] = [0.0];

}

scale_X = [0.0]; # TODO this should not be necessary

shift_X = [0.0]; # TODO this should not be necessary
if (intercept_status == 2) # scale-&-shift X columns to mean 0, variance 1

{ # Important assumption: X [, m_ext - 1] = ones_n

avg_X_cols = t(sum(X, 1)) / n;
var_X_cols = (t(sum (X ^ 2.0, 1)) - n * (avg_X_cols ^ 2.0)) / (n - 1);

is_unsafe = (var_X_cols <= 0);
scale_X = 1.0 / sqrt (var_X_cols * (1 - is_unsafe) + is_unsafe);

scale_X [m_ext - 1, 0] = [1.0];

# TODO unary minus
shift_X = (0 - avg_X_cols) * scale_X;

shift_X [m_ext - 1, 0] = [0.0];

} else {
scale_X = fill (1.0, m_ext, 1);

shift_X = fill (0.0, m_ext, 1);

}

# Henceforth, if intercept_status == 2, we use "X @ (SHIFT/SCALE TRANSFORM)"

# instead of "X". However, in order to preserve the sparsity of X,
# we apply the transform associatively to some other part of the expression

# in which it occurs. To avoid materializing a large matrix, we rewrite it:

#
# ssX_A = (SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:

# ssX_A = diagMatrix (scale_X) @ A;

# ssX_A [m_ext - 1, ] = ssX_A [m_ext - 1, ] + t(shift_X) @ A;
#

# tssX_A = t(SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:
# tssX_A = diagMatrix (scale_X) @ A + shift_X @ A [m_ext - 1, ];

lambda = scale_lambda * regularization;
# BEGIN THE DIRECT SOLVE ALGORITHM (EXTERNAL CALL)

A = t(X) @ X;

b = t(X) @ y;
if (intercept_status == 2) {

A = t(diagMatrix (scale_X) @ A + shift_X @ A [m_ext - 1, ]);

A = diagMatrix (scale_X) @ A + shift_X @ A [m_ext - 1, ];
b = diagMatrix (scale_X) @ b + shift_X @ b [m_ext - 1, ];

}

A = A + diagMatrix (lambda);
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if (verbose)

print ("Calling the Direct Solver...");

beta_unscaled = solve (A, b);

# END THE DIRECT SOLVE ALGORITHM

beta = [0.0]; # TODO this should not be necessary

if (intercept_status == 2) {
beta = scale_X * beta_unscaled;

beta [m_ext - 1, ] = beta [m_ext - 1, ] + t(shift_X) @ beta_unscaled;

} else {
beta = beta_unscaled;

}

if (verbose) {

print ("Computing the statistics...");
avg_tot = sum (y) / n;

ss_tot = sum (y ^ 2);

ss_avg_tot = ss_tot - n * avg_tot ^ 2;
var_tot = ss_avg_tot / (n - 1);

y_residual = y - X @ beta;

avg_res = sum (y_residual) / n;
ss_res = sum (y_residual ^ 2);

ss_avg_res = ss_res - n * avg_res ^ 2;

R2 = 1 - ss_res / ss_avg_tot;

dispersion = (n > m_ext) ? (ss_res / (n - m_ext)) : nan;

adjusted_R2 = (n > m_ext) ? (1 - dispersion / (ss_avg_tot / (n - 1))) : nan;

R2_nobias = 1 - ss_avg_res / ss_avg_tot;

deg_freedom = n - m - 1;
var_res = 0.0; # TODO this should not be necessary

adjusted_R2_nobias = 0.0; # TODO this should not be necessary
if (deg_freedom > 0) {

var_res = ss_avg_res / deg_freedom;

adjusted_R2_nobias = 1 - var_res / (ss_avg_tot / (n - 1));
} else {

var_res = nan;

adjusted_R2_nobias = nan;
print ("Warning: zero or negative number of degrees of freedom.");

}

R2_vs_0 = 1 - ss_res / ss_tot;

adjusted_R2_vs_0 = (n > m) ? (1 - (ss_res / (n - m)) / (ss_tot / n)) : nan;

print ("AVG_TOT_Y, " + avg_tot + # Average of the response value Y

"\nSTDEV_TOT_Y, " + sqrt (var_tot) + # Standard Deviation of the response value Y

"\nAVG_RES_Y, " + avg_res + # Average of the residual Y - pred(Y|X), i.e. residual bias
"\nSTDEV_RES_Y, " + sqrt (var_res) + # Standard Deviation of the residual Y - pred(Y|X)

"\nDISPERSION, " + dispersion + # GLM-style dispersion, i.e. residual sum of squares / # d.f.

"\nR2, " + R2 + # R^2 of residual with bias included vs. total average
"\nADJUSTED_R2, " + adjusted_R2 + # Adjusted R^2 of residual with bias included vs. total average

"\nR2_NOBIAS, " + R2_nobias + # R^2 of residual with bias subtracted vs. total average<Paste>
"\nADJUSTED_R2_NOBIAS, " + adjusted_R2_nobias); # Adjusted R^2 of residual with bias subtracted vs. total average

if (intercept_status == 0) {

print ("R2_VS_0, " + R2_vs_0 + # R^2 of residual with bias included vs. zero constant
"\nADJUSTED_R2_VS_0, " + adjusted_R2_vs_0); # Adjusted R^2 of residual with bias included vs. zero constant

}

}

B = beta;

return B;
}

File lmDS.daph
import "lmDS_.daph";

# Command-line arguments:

# XY ... file name of the input file
# icpt ... intercept, must be in [0, 1, 2]

# reg ... regularization, recommended: 0.0000001

# verbose ... whether to print verbose output, must be in [false, true]

XY = readMatrix($XY);

X = XY[, :(ncol(XY) - 1)];
y = XY[, ncol(XY) - 1];

b = lmDS_.lmDS(X, y, $icpt, $reg, $verbose);

print("");

print("RESULT");
print(b);

File lmCG_.daph
# This script has been manually translated from Apache SystemDS.

# The lmCG function solves linear regression using the conjugate gradient algorithm
#

# INPUT:

# --------------------------------------------------------------------------------------
# X Matrix of feature vectors.

# y 1-column matrix of response values.

# icpt Intercept presence, shifting and rescaling the columns of X
# reg Regularization constant (lambda) for L2-regularization. set to nonzero

# for highly dependant/sparse/numerous features

# tol Tolerance (epsilon); conjugate gradient procedure terminates early if L2
# norm of the beta-residual is less than tolerance * its initial norm

# maxi Maximum number of conjugate gradient iterations. 0 = no maximum

# verbose If TRUE print messages are activated
# --------------------------------------------------------------------------------------

#

# OUTPUT:
# ---------------------------------------------------------------------------------------------

# B The model fit
# ---------------------------------------------------------------------------------------------

def lmCG(X:matrix<f64>, y:matrix<f64>, icpt:si64, reg:f64, tol:f64,
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maxi:si64, verbose:bool) -> matrix<f64> {

intercept_status = icpt;

regularization = reg;
tolerance = tol;

max_iteration = maxi;

n = nrow (X);

m = ncol (X);

ones_n = fill (1.0, n, 1);
zero_cell = [0.0];

# Introduce the intercept, shift and rescale the columns of X if needed

m_ext = m;

if (intercept_status == 1 || intercept_status == 2) # add the intercept column
{

X = cbind (X, ones_n);
m_ext = ncol (X);

}

scale_lambda = fill (1.0, m_ext, 1);

if (intercept_status == 1 || intercept_status == 2)

{
scale_lambda [m_ext - 1, 0] = [0.0];

}

scale_X = [0.0]; # TODO this should not be necessary

shift_X = [0.0]; # TODO this should not be necessary

if (intercept_status == 2) # scale-&-shift X columns to mean 0, variance 1
{ # Important assumption: X [, m_ext - 1] = ones_n

avg_X_cols = t(sum(X, 1)) / n;

var_X_cols = (t(sum (X ^ 2.0, 1)) - n * (avg_X_cols ^ 2.0)) / (n - 1);
is_unsafe = (var_X_cols <= 0.0);

scale_X = 1.0 / sqrt (var_X_cols * (1.0 - is_unsafe) + is_unsafe);
scale_X [m_ext - 1, 0] = [1.0];

shift_X = (0 - avg_X_cols) * scale_X;

shift_X [m_ext - 1, 0] = [0.0];
} else {

scale_X = fill (1.0, m_ext, 1);

shift_X = fill (0.0, m_ext, 1);
}

# Henceforth, if intercept_status == 2, we use "X @ (SHIFT/SCALE TRANSFORM)"
# instead of "X". However, in order to preserve the sparsity of X,

# we apply the transform associatively to some other part of the expression

# in which it occurs. To avoid materializing a large matrix, we rewrite it:
#

# ssX_A = (SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:

# ssX_A = diagMatrix (scale_X) @ A;
# ssX_A [m_ext - 1, ] = ssX_A [m_ext - 1, ] + t(shift_X) @ A;

#

# tssX_A = t(SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:
# tssX_A = diag (scale_X) @ A + shift_X @ A [m_ext - 1, ];

lambda = scale_lambda * regularization;

beta_unscaled = fill (0.0, m_ext, 1);

if (max_iteration == 0) {

max_iteration = as.si64(m_ext);

}
i = 0;

# BEGIN THE CONJUGATE GRADIENT ALGORITHM
if (verbose) print ("Running the CG algorithm...");

r = (0.0 - t(X)) @ y;

if (intercept_status == 2) {

r = scale_X * r + shift_X @ r [m_ext - 1, ];
}

p = 0.0 - r;

norm_r2 = sum (r ^ 2.0);

norm_r2_initial = norm_r2;
norm_r2_target = norm_r2_initial * tolerance ^ 2.0;

if (verbose) print ("||r|| initial value = " + sqrt (norm_r2_initial) + ", target value = " + sqrt (norm_r2_target));

while (i < max_iteration && norm_r2 > norm_r2_target)

{

ssX_p = [0.0]; # TODO this should not be necessary
if (intercept_status == 2) {

ssX_p = scale_X * p;

ssX_p [m_ext - 1, ] = ssX_p [m_ext - 1, ] + t(shift_X) @ p;
} else {

ssX_p = p;

}

q = t(X) @ (X @ ssX_p);

if (intercept_status == 2) {

q = scale_X * q + shift_X @ q [m_ext - 1, ];
}

q = q + lambda * p;
a = norm_r2 / sum (p * q);

beta_unscaled = beta_unscaled + a * p;

r = r + a * q;
old_norm_r2 = norm_r2;

norm_r2 = sum (r ^ 2);

p = (0.0 - r) + (norm_r2 / old_norm_r2) * p;
i = i + 1;

if (verbose) print ("Iteration " + i + ": ||r|| / ||r init|| = " + sqrt (norm_r2 / norm_r2_initial));

}

if (i >= max_iteration) {

if (verbose) print ("Warning: the maximum number of iterations has been reached.");
}

# END THE CONJUGATE GRADIENT ALGORITHM
beta = [0.0]; # TODO this should not be necessary

if (intercept_status == 2) {
beta = scale_X * beta_unscaled;
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beta [m_ext - 1, ] = beta [m_ext - 1, ] + t(shift_X) @ beta_unscaled;

} else {

beta = beta_unscaled;
}

if (verbose) {
print ("Computing the statistics...");

avg_tot = sum (y) / n;
ss_tot = sum (y ^ 2);

ss_avg_tot = ss_tot - n * avg_tot ^ 2;

var_tot = ss_avg_tot / (n - 1);
y_residual = y - X @ beta;

avg_res = sum (y_residual) / n;

ss_res = sum (y_residual ^ 2);
ss_avg_res = ss_res - n * avg_res ^ 2;

R2 = 1 - ss_res / ss_avg_tot;

dispersion = (n > m_ext) ? (ss_res / (n - m_ext)) : nan;

adjusted_R2 = (n > m_ext) ? (1 - dispersion / (ss_avg_tot / (n - 1))) : nan;

R2_nobias = 1 - ss_avg_res / ss_avg_tot;

deg_freedom = n - m - 1;
var_res = 0.0; # TODO this should not be necessary

adjusted_R2_nobias = 0.0; # TODO this should not be necessary

if (deg_freedom > 0) {
var_res = ss_avg_res / deg_freedom;

adjusted_R2_nobias = 1 - var_res / (ss_avg_tot / (n - 1));

} else {
var_res = nan;

adjusted_R2_nobias = nan;

print ("Warning: zero or negative number of degrees of freedom.");
}

R2_vs_0 = 1 - ss_res / ss_tot;

adjusted_R2_vs_0 = (n > m) ? (1 - (ss_res / (n - m)) / (ss_tot / n)) : nan;

print ("AVG_TOT_Y, " + avg_tot + # Average of the response value Y

"\nSTDEV_TOT_Y, " + sqrt (var_tot) + # Standard Deviation of the response value Y
"\nAVG_RES_Y, " + avg_res + # Average of the residual Y - pred(Y|X), i.e. residual bias

"\nSTDEV_RES_Y, " + sqrt (var_res) + # Standard Deviation of the residual Y - pred(Y|X)

"\nDISPERSION, " + dispersion + # GLM-style dispersion, i.e. residual sum of squares / # d.f.
"\nR2, " + R2 + # R^2 of residual with bias included vs. total average

"\nADJUSTED_R2, " + adjusted_R2 + # Adjusted R^2 of residual with bias included vs. total average

"\nR2_NOBIAS, " + R2_nobias + # R^2 of residual with bias subtracted vs. total average<Paste>
"\nADJUSTED_R2_NOBIAS, " + adjusted_R2_nobias); # Adjusted R^2 of residual with bias subtracted vs. total average

if (intercept_status == 0) {

print ("R2_VS_0, " + R2_vs_0 + # R^2 of residual with bias included vs. zero constant
"\nADJUSTED_R2_VS_0, " + adjusted_R2_vs_0); # Adjusted R^2 of residual with bias included vs. zero constant

}

}

B = beta;
return B;

}

File lmCG.daph
import "lmCG_.daph";
# Command-line arguments:

# XY ... file name of the input file

# icpt ... intercept, must be in [0, 1, 2]
# reg ... regularization, recommended: 0.0000001

# tol ... tolerance, recommended: 0.0000001

# maxi ... maximim number of iterations, recommended: 0 (no maximum)
# verbose ... whether to print verbose output, must be in [false, true]

XY = readMatrix($XY);
X = XY[, :(ncol(XY) - 1)];

y = XY[, ncol(XY) - 1];

b = lmCG_.lmCG(X, y, $icpt, $reg, $tol, $maxi, $verbose);

print("");

print("RESULT");
print(b);



D3.3 Final Compiler Prototype

DAPHNE – 957407 41

Appendix 2: Example of a Complete DaphneIR
Here, we provide the complete DaphneIR after type/property inference in Section 3.3 as an
example.
IR after inference:
module {

func.func @"lmDS-1-1"(%arg0: !daphne.Matrix<4898x11xf64>, %arg1: !daphne.Matrix<4898x1xf64>, %arg2: si64, %arg3: f64, %arg4: i1) -> !daphne.Matrix<12x1xf64> {

%0 = "daphne.constant"() {value = false} : () -> i1
%1 = "daphne.constant"() {value = 11 : index} : () -> index

%2 = "daphne.constant"() {value = 12 : index} : () -> index

%3 = "daphne.constant"() {value = 4898 : index} : () -> index
%4 = "daphne.constant"() {value = 9.9999999999999995E-8 : f64} : () -> f64

%5 = "daphne.constant"() {value = 0 : index} : () -> index
%6 = "daphne.constant"() {value = 1 : index} : () -> index

%7 = "daphne.constant"() {value = 93916474695824 : ui64} : () -> ui64

%8 = "daphne.constant"() {value = 93916474637328 : ui64} : () -> ui64
%9 = "daphne.constant"() {value = 93916474631232 : ui64} : () -> ui64

%10 = "daphne.constant"() {value = 93916474611760 : ui64} : () -> ui64

%11 = "daphne.constant"() {value = 93916474428544 : ui64} : () -> ui64
%12 = "daphne.constant"() {value = 0.000000e+00 : f64} : () -> f64

%13 = "daphne.constant"() {value = 1.000000e+00 : f64} : () -> f64

%14 = "daphne.fill"(%13, %3, %6) : (f64, index, index) -> !daphne.Matrix<4898x1xf64>
%15 = "daphne.matrixConstant"(%11) : (ui64) -> !daphne.Matrix<1x1xf64>

%16 = "daphne.colBind"(%arg0, %14) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) -> !daphne.Matrix<4898x12xf64>

%17 = "daphne.fill"(%13, %2, %6) : (f64, index, index) -> !daphne.Matrix<12x1xf64>
%18 = "daphne.matrixConstant"(%10) : (ui64) -> !daphne.Matrix<1x1xf64>

%19 = "daphne.sliceRow"(%17, %1, %2) : (!daphne.Matrix<12x1xf64>, index, index) -> !daphne.Matrix<1x1xf64>

%20 = "daphne.insertCol"(%19, %18, %5, %6) : (!daphne.Matrix<1x1xf64>, !daphne.Matrix<1x1xf64>, index, index) -> !daphne.Matrix<1x1xf64>
%21 = "daphne.insertRow"(%17, %20, %1, %2) : (!daphne.Matrix<12x1xf64>, !daphne.Matrix<1x1xf64>, index, index) -> !daphne.Matrix<12x1xf64>

%22 = "daphne.matrixConstant"(%9) : (ui64) -> !daphne.Matrix<1x1xf64>
%23 = "daphne.matrixConstant"(%8) : (ui64) -> !daphne.Matrix<1x1xf64>

%24 = "daphne.fill"(%13, %2, %6) : (f64, index, index) -> !daphne.Matrix<12x1xf64>

%25 = "daphne.fill"(%12, %2, %6) : (f64, index, index) -> !daphne.Matrix<12x1xf64>
%26 = "daphne.ewMul"(%21, %4) : (!daphne.Matrix<12x1xf64>, f64) -> !daphne.Matrix<12x1xf64>

%27 = "daphne.transpose"(%16) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<12x4898xf64>

%28 = "daphne.matMul"(%27, %16, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x12xf64>, i1, i1) -> !daphne.Matrix<12x12xf64>
%29 = "daphne.matMul"(%27, %arg1, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x1xf64>, i1, i1) -> !daphne.Matrix<12x1xf64>

%30 = "daphne.diagMatrix"(%26) : (!daphne.Matrix<12x1xf64>) -> !daphne.Matrix<12x12xf64:sp[0.083333333333333329]>

%31 = "daphne.ewAdd"(%28, %30) : (!daphne.Matrix<12x12xf64>, !daphne.Matrix<12x12xf64:sp[0.083333333333333329]>) -> !daphne.Matrix<12x12xf64>
%32 = "daphne.solve"(%31, %29) : (!daphne.Matrix<12x12xf64>, !daphne.Matrix<12x1xf64>) -> !daphne.Matrix<12x1xf64>

%33 = "daphne.matrixConstant"(%7) : (ui64) -> !daphne.Matrix<1x1xf64>

"daphne.return"(%32) : (!daphne.Matrix<12x1xf64>) -> ()
}

func.func @main() {

%0 = "daphne.constant"() {value = 11 : index} : () -> index
%1 = "daphne.constant"() {value = 12 : index} : () -> index

%2 = "daphne.constant"() {value = 0 : index} : () -> index

%3 = "daphne.constant"() {value = "RESULT"} : () -> !daphne.String
%4 = "daphne.constant"() {value = true} : () -> i1

%5 = "daphne.constant"() {value = ""} : () -> !daphne.String
%6 = "daphne.constant"() {value = false} : () -> i1

%7 = "daphne.constant"() {value = 9.9999999999999995E-8 : f64} : () -> f64

%8 = "daphne.constant"() {value = 1 : si64} : () -> si64
%9 = "daphne.constant"() {value = "data/wine.csv"} : () -> !daphne.String

%10 = "daphne.read"(%9) : (!daphne.String) -> !daphne.Matrix<4898x12xf64:sp[1.000000e+00]>

%11 = "daphne.sliceCol"(%10, %2, %0) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, index, index) -> !daphne.Matrix<4898x11xf64>
%12 = "daphne.sliceCol"(%10, %0, %1) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, index, index) -> !daphne.Matrix<4898x1xf64>

%13 = "daphne.generic_call"(%11, %12, %8, %7, %6) {callee = "lmDS-1-1"} : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>, si64, f64, i1) ->

!daphne.Matrix<12x1xf64>
"daphne.print"(%5, %4, %6) : (!daphne.String, i1, i1) -> ()

"daphne.print"(%3, %4, %6) : (!daphne.String, i1, i1) -> ()

"daphne.print"(%13, %4, %6) : (!daphne.Matrix<12x1xf64>, i1, i1) -> ()
"daphne.return"() : () -> ()

}
}


