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Document Description 

In D1.6, the DAPHNE project team describe the progress made until project month 48 and the 

work done in project year 4 (M37/Dec 2023 – M48/Nov 2024). This report presents an overview 

of the type and purpose of the document, its revision history, the strategic objectives of 

DAPHNE project and the work carried out in the last project period to reach these objectives. 

Then, a more detailed description concerning work done in the last year across all work 

packages (WPs) is provided.  
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1 Introduction and Purpose of this Document   

In D1.6, the DAPHNE project team describes the progress made from project month 37 to 

project month 48, respectively the work done in the last project year (M37/Dec 2023 – 

M48/Nov 2024).   

 

First, this report refers to the structure and purpose of the document. Second, D1.6 outlines 

the main objectives in DAPHNE and what DAPHNE consortium has done to reach those targets. 

In the third section of this final report an overview of achievements across the work packages 

1 to 10 is presented, particularly addressing the work in the last project year 2024. The purpose 

of this document is therefore to provide an overview of DAPHNE project until M48, with an 

emphasis on updates of the last project year.    

 

2 Strategic Objectives  

 

This section shows the strategic objectives and the work of DAPHNE consortium towards 

these objectives in the 4th project year.  

  

2.1. Objective 1 System Architecture, APIs and DSL (WP2-4)  

 

Objective 1 System Architecture, APIs and DSL: Improve the productivity for developing 

integrated data analysis pipelines via appropriate APIs and a domain-specific language, an 

overall system architecture for seamless integration with existing data processing frameworks, 

HPC libraries, and ML systems. A major goal is an open, extensible reference implementation of 

the necessary compiler and runtime infrastructure to simplify the integration of current and future 

state-of-the-art methods. 

While the first years of the DAPHNE project have been used to build up the system 

infrastructure, the progress towards the end has shifted from creation to refinement-oriented. 

This has already been visible in the last report and has been continued in this final project 

report. While the runtime system has seen many new kernels to enrich the functionality or 
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improve the performance, there a lot of bug fixes and convenience features that were 

introduced for developers and users alike. For the general system architecture, the first version 

of the extensibility catalogue has been mainlined. The DAPHNE compiler gained more code 

generation capabilities, optimization and analysis passes. The API was extended continuously 

in our DaphneLib python bindings and our DaphneDSL has seen improvements for productivity 

like better support for indexing into matrix structures and higher level built-in functions, which 

in turn, sparked the development of internal features like the list data type, fostering the 

implementation of algorithms like the decision trees. 

2.2  Objective 2 Hierarchical Scheduling and Task Planning (WP5-WP7) 

Objective 2 Hierarchical Scheduling and Task Planning: Improve the utilization of existing 

computing clusters, multiple heterogeneous hardware devices, and capabilities of modern 

storage and memory technologies through improved scheduling as well as static (compile time) 

task planning. In this context, we also aim to automatically leverage interesting data 

characteristics such as sorting order, degree of redundancy, and matrix/tensor sparsity. 

Besides refinement, the progress in the final project year towards reaching the goals of the 

second strategic objective was also marked by the development of larger features in separate 

branches to not interfere with general development in the main branch while they are not 

mature enough for merging. Relevant changes in this regard were the integration of 

distributed I/O through HDFS and Lustre support or improved memory management to 

support sparse data on GPU, support for the io_uring subsystem, higher dimensional tensor 

data and ongoing work in the computational storage and FPGA kernels. Work on hierarchical 

scheduling and NU-MA aware data placement was carried out to cater to the objective's task 

planning aspects, leading to performance improvements by countering load imbalance. Many 

of the techniques for this objective are based on features that have been introduced or 

improved in the DAPHNE compiler that analyzes workloads, input data and intermediates. 

Based on these outputs, decisions can be made on which methods are best applied to the 

problem at hand. 
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2.3 Objective 3 Use Case Studies and Benchmarking (WP8-WP9) 

Objective 3 Use Cases and Benchmarking: The technological results will be evaluated on a 

variety of real-world use cases and datasets as well as a new benchmark developed as part of the 

DAPHNE project. We aim to improve the accuracy and runtime of real-world use cases combining 

data management, machine learning, and HPC – this exploratory analysis serves as a qualitative 

study on productivity improvements (Objective 1). The variety of real-world use cases will further 

be generalized to a benchmark for integrated data analysis pipelines quantifying the progress 

compared to state-of-the-art (Objective 2). 

 

The progress towards completion of the use case implementations and our benchmarking ef-

forts has been naturally increasing towards the end of the project as DAPHNE becomes more 

and more mature and therefore usable in real world application as well as benchmarking sce-

narios. In collaboration with the technical work packages (WPs 3-7), the work packages for use 

cases (WP8) and benchmarking (WP9) were not only able to reach their final stages, but also 

gave valuable feedback where problems still needed to be solved and improvements to be 

implemented. Through our successful inter-WP collaboration we were able to have most use 

cases produce their results with the UMLAUT benchmarking suite that has been implemented 

alongside the DAPHNE development in a separate code repository. 

3 Status and Progress Update of All Work Packages  

 

This section provides an overview of the progress made in the last project year throughout the 

work packages.  

 

3.1 WP1 Project Management (led by KNOW) [M1-M48] 

 

WP1 Project Management provides a high-quality work environment for research activities to 

thrive, to coordinate across WPs, to keep track of reporting and deliverables and to improve 

communication throughout the consortium, the European Commission and beyond. In this 
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section WP1 Lead KNOW reports about the objectives of WP1 and the work towards those 

objectives in the last project year.   

Regarding the main objectives of this WP (1) to act as the communication interface with the 

European Commission, DAPHNE project management has sought to share information 

effectively via the EU portal, reporting on all relevant continuous reporting items (deliverables, 

milestones, risks, publications, dissemination and communication, patents/IPR, innovation, 

open data, gender, ABS regulation) and communicate with the programme officer (PO) on 

relevant topics such as organizing meetings (i.e. organization of General Assembly and Review 

meetings), aligning on reporting (i.e. workflow for Periodic Report), asking for changes to the 

Grant Agreement and support (Budget Shift Agreement between KNOW and TUB) or reaching 

out for dissemination purposes. 

Concerning WP1 objective (2) to establish means of effective communication and collaboration 

within the consortium, DAPHNE project management has reported on these means in D1.1 

Project and Risk Management Plan [1]. In line with this plan, we have kept our basic 4-level 

project structure, used the, in D1.1 [1] described, mailing lists and tools, e.g., Daphne cloud and 

GitLab, as well as file storages for communication and collaboration purposes. We have 

migrated the development from a private GitLab instance to GitHub and maintained our 

DAPHNE registration procedure to ensure a smooth transition into (and out of) the project 

communication platforms and channels. Complementary to these channels and platforms we 

use regular WP-specific meetings, bilateral meetings, as well as monthly All-hands meetings 

across the entire consortium to ensure accurate and high-quality communication.  

Resulting in WP1 objective (3) the organization of calls and meetings of the consortium, we 

hold our All-hands meetings monthly. In these consortium meetings, we discuss administrative 

and team updates, WP/technical updates, reporting and deliverable tracking such as news on 

for example publications and conferences; every month there are updates from all WP leads. 

The meeting serves the purpose of bringing together all consortium members, providing 

relevant information in a structured way, asking for support and alignment if required and 

giving everyone the chance to clarify questions that are preferred to be discussed orally within 

the whole consortium.  

In addition to these regular general meetings, project consortium has met for the general 

assembly meeting once a year. The purpose and general outline of this meeting format have 
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been elaborated in various documents such as the Proposal, the Grant Agreement or the 

Project Plan (D1.1) [1]. Updates are that now, as we are at the end of the final project year, 

multiple demo presentations complement the WPs and UCs presentations and give more 

variety to the meeting. Moreover, in this last project year we continued to meet personally for 

the General Assembly Meeting. We experienced a boost in motivation based on this personal 

encounter.   

WP1 Project Management reinforces the communication structure devised in D1.1 Project and 

risk management plan [1] and reminds the entire consortium to be aware of the objectives and 

the related deliverables. Specific internal project management tracking tools are the deliverable 

and reviewer tracker, the exploitation tracker and the financial tracking; their results are filtered 

and – depending on confidentiality-level - reported further within the EU portal and/or our 

project website [2] as well as to communication experts. Moreover, this objective seeks to 

ensure strategic realignment in case of unforeseen circumstances. Strategic realignment in the 

last project year was necessary in terms of the budget shift agreement between TUB and KNOW 

and the involvement of the legal departments and finance departments.    

Objective (5) addresses the coordination and quality assurance of reporting efforts. The 

submitted reports and deliverables that were submitted until the end of the first project period 

have been accepted. With the constructive feedback received, we have started to include more 

reporting details, complementing our cross-referencing, and improve our prototype 

documentation efforts in the second project period and particularly in this last project year. 

Moreover, we should highlight that all consortium partners are collaborating on the DAPHNE 

system and that this intense collaboration is the essence of our project. Financial controlling, 

budget and effort reporting have been carried out, depicting deviations from the original 

budget plan, and giving the consortium partners the chance to compensate for these 

deviations in the upcoming project periods. The current DAPHNE website https://DAPHNE-

eu.eu [2] shows those reports that are available to the public in the section Publications.  

The central project management endeavors to maintain a general project overview across all 

WPs and the budget, to relate the actual work being done to the original project plan and to 

ensure effective communication have been carried out in this third project year - with many 

lessons learned, such as the importance of clear and motivating communication, including the 

setting of boundaries, decent conflict management skills, a professional team, as well as high 

https://daphne-eu.eu/
https://daphne-eu.eu/
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responsiveness. Moreover, we found that for project management to thrive 

administrative/organizational and classic project management, communication, as well as 

technical skills need to be comprised in the consortium. These complementing skills result in a 

focus on the right priorities.  

Eventually, a lesson learned is that as manager you need to observe and reflect on the project, 

the stakeholders/organizations, and the processes, and gain an overview, re-focusing on the 

higher European objectives, which are well thought-through, and set priorities. Here, patience 

and acting ethical, helpful, and constructive are key. In the last project year, it is important to 

demonstrate that we have met the promises made in the Grant Agreement, our project plan, 

and have made progress accordingly.  

 

3.2 WP2 System Architecture (KNOW) [M1-M21] 

 

The open system architecture that fosters extensibility and caters to the needs of data analysis 

and data processing in the fields of machine learning (ML) and high-performance computing 

(HPC), which was documented in deliverable D2.1 [3]. In addition, D2.2 [4] refers to the refined 

overall architecture and key design decisions of the DAPHNE system infrastructure as an open 

and extensible system for IDA pipelines, comprising query processing, ML, and HPC. WP 2 

System Architecture was active until M21. The reporting period for this report D1.6 does 

therefore not cover WP2 activities.   

 

3.3 WP3 Abstractions and Compilation (TUB) [M1-M48] 

 

We continued the work on DAPHNE’s DSL abstractions, mainly to facilitate user productivity, 

as well as the DAPHNE compiler, mainly to achieve extensibility and system efficiency. We 

summarize our key contributions in project year 4 below. 

DSL Abstractions. We have already described the design of DAPHNE’s language abstractions 

in detail in deliverable D3.1 [5] and implemented most of this design in project years 1-3. Thus, 

our contributions in project year 4 mainly serve to further improve the existing implementation 
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and to ensure smoother and more productive use of the system. To that end, our main 

contributions in project year 4 are: 

(1) We significantly improved the error handling capabilities of DAPHNE. Errors can occur due 

to invalid user inputs (script errors or invalid data) and due to system failures (especially the 

hardware like accelerators or networking). We improved error handling in DAPHNE at two 

levels. First, at the system-level, DAPHNE already adopted a fail-fast behavior, i.e., errors are 

detected (e.g., by means of the validation of inputs) and the DAPHNE program execution is 

terminated gracefully. However, as our use-case partners increasingly use the DAPHNE system 

and write increasingly complex DaphneDSL/DaphneLib scripts, the need for more helpful error 

messages arose. Thus, we ensured that error messages presented to users are consistent and 

actionable. As a result, all error messages now include the responsible DaphneDSL source code 

location (file, line, column) as well as details on the error and the component it originated from. 

To this end, we make use of (a) MLIR’s built-in location tracking features and (b) a new DAPHNE 

system component at the boundary of the compiler and the runtime (WP4) that associates 

each kernel call to a DaphneDSL location. Overall, these improved error messages simplify 

writing and debugging complex DaphneDSL scripts significantly and, therefore, facilitate user 

productivity. Second, at the user script-level, we added a new stop() built-in function to 

DaphneDSL. This function can be employed by DaphneDSL users to terminate the script 

execution, if their own application-specific error conditions are violated. For instance, a user’s 

custom training algorithm may require the input data to be encoded in a certain way, such as 

categorical features recoded as non-negative integers. 

(2) We introduced a new list data type to DaphneDSL. DaphneDSL lists are containers that can 

store an arbitrary number of matrices of homogeneous type, but heterogeneous shape. Lists 

can be accessed through operations like append() and remove() and are useful for 

maintaining the state of certain iterative data analysis algorithms, such as the training algorithm 

of decision trees, effectively (from a user’s point of view) and efficiently (from the system’s 

point of view). We already mentioned the idea of a list data type in deliverable D3.1 [5]. 

Besides these larger contributions to DAPHNE’s DSL abstraction, we also added numerous 

smaller features, especially in close coordination with our use-case partners from WP8. These 

additional features include: (a) improvements of the syntax of DaphneDSL and DaphneLib (e.g., 

support for element expressions inside matrix literals, left/right indexing in DaphneLib through 
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Python’s []-operator), (b) additional built-in functions (e.g., isNan(), typeOf(), stop()), and 

(c) additional reusable high-level data science primitives implemented in DaphneDSL (e.g., 

PageRank, k-Means, multinomial logistic regression). These smaller additions also facilitate the 

productivity of DAPHNE users. 

Compilation. We have already described the DAPHNE compiler design in deliverables D3.1 [5] 

and D3.4 [9] and provided initial prototypes in deliverables D3.2 [6] and D3.3 [7]. Based upon 

this work in project years 1-3, we further improved the DAPHNE compiler in project year 4. 

These improvements are described in detail in deliverable D3.5 [8]. In the following, we only 

summarize the most important contributions, which are: 

(1) We implemented the kernel extension catalog described in deliverable D3.4 [9] as a new 

component of the DAPHNE compiler. This catalog stores essential information about all 

available pre-compiled kernels, such that the DAPHNE compiler can lower DaphneIR 

operations to suitable kernels. Internally, we refactored the DAPHNE compiler to rely only on 

the extension catalog for this lowering step, even for built-in kernels. At the same time, expert 

users can now extend DAPHNE by custom kernels following the three-step approach illustrated 

in the figure below by (1) implementing their custom kernels against a clearly defined interface 

in a stand-alone code base and compiling it as a shared library, (2) registering their extension 

with DAPHNE’s extension catalog at run-time, i.e., without the need to re-build DAPHNE, and 

(3) using their extension kernels, which can happen either automatically based on the argument 

and result types of an operation or manually through optional kernel hints in DaphneDSL, 

which are respected by the DAPHNE compiler. Besides kernel extensibility, we also started the 

work on extensibility with respect to new data types and value types. For instance, we 

refactored decisive parts of the code base to support non-numeric value types. Based on this 

work, we added two different string representations as new value types to DAPHNE. In total, 

extensibility is at the heart of DAPHNE and simplifies embracing specialization in terms of new 

hardware devices, data and value types, and algorithms. 



D1.6 Final Project Report  

 

DAPHNE – 957407  11 

 

Figure 1: Kernel extension catalog 

(2) We further extended the MLIR-based CPU code generation backend. On the one hand, we 

added code generation support for additional operations, such as matrix multiplication as well 

as full, row-wise, and column-wise aggregation. On the other hand, we explored the use of 

existing MLIR dialects and features for the code generation in DAPHNE. Generating low-level 

code for DaphneIR operations, rather than lowering them to calls to pre-compiled C++ kernels, 

can improve the runtime performance of a single operation, e.g., by exploiting DaphneDSL 

compile-time knowledge that is not available during C++ kernel compilation, and of a chain of 

operations, e.g., through operator fusion. 

(3) We started to enhance DAPHNE’s existing operator fusion capabilities with additional 

options for the data partitioning. As described in deliverable D2.2 [4], DAPHNE fuses operators 

into pipelines. These pipelines are executed by DAPHNE’s vectorized execution engine, which 

pushes partitions of the input data through the pipeline in parallel. So far, operator fusion 

assumed that the data must be partitioned along the row axis. However, given that matrices 

have two dimensions, some operations may also support or even prefer partitioning along the 

column axis. We started implementing alternative operator fusion algorithms that make such 

options explicit to the DAPHNE compiler. The goal is to utilize more of the fusion potential in 

a DaphneDSL script and, thereby, to create longer fused pipelines for increased runtime 

performance. In that context, the choice of the physical representation of the pipeline’s 

intermediate results is important, e.g., a sparse matrix represented in CSR (compressed sparse 

row) can be more efficiently accessed by row, while a sparse matrix represented in CSC 

(compressed sparse column) can be more efficiently accessed by column, even though both 

representations have a similar physical size in many cases. 

Besides these three larger contributions that primarily concern the DAPHNE compiler itself, 

most of our work on the DSL abstractions mentioned above (e.g., error handling, list data type) 
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also required substantial additions to the DAPHNE compiler. Furthermore, we made various 

smaller improvements to the compiler, including: (a) a significant extension of the compiler’s 

sparsity estimation support by adding naive meta data estimators for most DaphneIR 

operations and (b) improvements to the inter-procedural analyses (e.g., removal of unused 

functions, removal of (near) duplicate functions after specialization of untyped functions and 

constant propagation). 

 

3.4 WP4 DSL Runtime and Integration (ICCS) [M1-M48]  

 

We outline the updates and enhancements in the design and implementation of the DAPHNE 

Runtime system (work within WP4, detailed in Deliverable D4.4) in the final project year. We 

can categorize progress made in this period along the following axes: a) Daphne Runtime 

integration with File Systems, b) NUMA-aware data placement and c) Filetype support. 

HDFS Integration  

The integration of DAPHNE with the Hadoop Distributed File System (HDFS) provides 

significant benefits in big data and machine learning contexts by leveraging HDFS's scalability, 

ecosystem compatibility, data locality, fault tolerance, and high throughput. HDFS is designed 

for efficient storage and processing of large datasets, which makes it ideal for big data 

applications. It seamlessly integrates with tools like Hadoop, Spark, and Hive, creating a stable 

environment for machine learning applications that require access to diverse big data tools. 

Data locality within HDFS further enhances efficiency by reducing network latency through 

computations near the data's storage location. HDFS's fault tolerance is achieved through data 

replication, ensuring high availability and stability even in cases of hardware failure. 

Additionally, HDFS supports high throughput access, making it well-suited for managing large-

scale data in big data and machine learning applications.  

HDFS operates using a coordinator-worker architecture, with a central NameNode managing 

metadata and DataNodes storing data blocks. Files are split into 128 MB blocks by default, 

which are distributed across DataNodes to facilitate parallel processing and efficient load 

management. To maintain fault tolerance, each data block is replicated across several 
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DataNodes. This setup allows for quick access to data and easy recovery in the event of node 

failures.  

The C++ API, facilitated by the libhdfs3 library, provides efficient access to HDFS from C/C++ 

applications without relying on Java dependencies. Libhdfs3 offers asynchronous I/O, allowing 

non-blocking data operations and improved interactivity in high-performance applications, 

ideal for intensive data processing.  

The integration between DAPHNE and HDFS is designed to support seamless handling of large 

datasets and distributed computing tasks. In terms of the workflow specification, the 

integration facilitates data upload in both the DAPHNE binary format and the widely used CSV 

file format. This flexibility ensures compatibility with different data sources. Moreover, it 

provides distributed read and write capabilities, allowing for efficient management of large 

datasets across multiple nodes.  

DAPHNE is a system employed for distributed data processing and machine learning tasks, 

optimized for high performance on big data workloads through its distributed computing 

architecture. After data processing is complete, the data save functionality enables users to  

store the processed results in either DAPHNE binary format or CSV format, depending on their 

requirements. It also supports distributed write operations, offering users the ability to specify 

output destinations, whether that be HDFS or local storage.  

The implemented methods underpin this integration. The system supports reading and writing 

in DAPHNE's native binary format with optimized efficiency. Similarly, it handles CSV file 

formats for input and output operations, maintaining compatibility with standard data formats. 

The integration also includes distributed read/write operations for both DAPHNE binary and 

CSV formats, ensuring scalable performance for large datasets in distributed environments. 

This combination of features makes the DAPHNE-HDFS integration highly effective for big data 

processing tasks.  

We deployed HDFS on a private cluster of one coordinator and eight worker nodes, each 

equipped with 8 CPUs. The system was tested with both read and write operations to HDFS 

using a CSV matrix file of 430MB in size. The results, shown in Figure 1 showed that read 

performance consistently improves when utilizing HDFS, taking full advantage of its distributed 

architecture for efficient data access. Additionally, write performance improves as more nodes 
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are added to the system, demonstrating the scalability of HDFS when handling large datasets 

in distributed environments. More HDFS benchmarking results can be found in D4.4.  

 

 

 

 

 

 

 

 

 

Lustre Integration 

Lustre1 is a high-performance, open-source parallel distributed file system designed primarily 

for large-scale computing environments. It is widely used for applications requiring extensive 

data processing, such as scientific research, AI, and big data analytics. Lustre is renowned for 

its scalability, with the ability to handle petabytes of data and thousands of clients, making it 

suitable for high-performance computing (HPC) clusters and supercomputing environments. 

The Lustre filesystem is built on a client-server architecture, split into specialized components 

that manage metadata and storage for high efficiency and scalability. Key components are: 

• Metadata Server (MDS): Manages metadata operations (e.g., directory structure, 

permissions). 

• Object Storage Server (OSS): Handles the actual file data, storing it across one or more 

Object Storage Targets (OSTs). 

• Management Server (MGS): Central repository for configuration data, which is shared 

among all Lustre clients. 

 
1 https://www.lustre.org/  

Figure 2: Read and Write Performance utilizing HDFS  

https://www.lustre.org/


D1.6 Final Project Report  

 

DAPHNE – 957407  15 

• Clients: Endpoints that mount the Lustre filesystem, appearing as a POSIX-compliant 

mount point on the client OS. 

These are pictorially described in Figure  : 

 

Figure 3: Lustre FS System Architecture 

Lustre achieves performance through data striping, where files are divided across multiple 

Object Storage Targets (OSTs) in chunks called stripes based on parameters like 

stripe_count and stripe_size. The stripe count determines how many OSTs will be used 

to store the file data, while the stripe size determines how much data will be written to an OST 

before moving to the next OST in the layout. As an example, consider the file layouts shown in 

Figure 2 for a simple file system with 3 OSTs residing on 3 different OSS nodes.  

 
2 https://wiki.lustre.org/Understanding_Lustre_Internals  

https://wiki.lustre.org/Understanding_Lustre_Internals
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Figure 4: Normal file striping in Lustre 

For integration with Daphne, a Lustre client is mounted and a Daphne container deployed on 

top, allowing Daphne kernels to interact with Lustre without embedding Lustre client 

dependencies directly into the container. The liblustreapi C API facilitates communication, 

allowing Read and Write operations on CSV files and serialized Daphne objects for both local 

and distributed runtime environments. However, CSV files require padding due to distributed 

operations, while serialized objects do not. 

The prototype also allows parallel processing by assigning file segments to different workers 

based on calculated offsets, supporting synchronous gRPC as the backend for distributed 

operations. Ongoing experiments will attempt to measure performance across different Lustre 

configurations, comparing Lustre and HDFS performance. Additionally, the effect of aligning 

Lustre’s stripe configuration with worker segments will be explored in order to investigate if 

positioning Daphne containers on OSTs improves performance. 

 

3.4.1 NUMA-Aware Data Placement 

NUMA-aware data placement is an optimization technique used in systems with Non-Uniform 

Memory Access (NUMA) architectures. In NUMA systems, memory is divided among different 

nodes (typically CPUs or CPU cores), and each node has its own local memory. Accessing local 

memory is faster for a CPU than accessing memory located on a different node, which incurs 

higher latency and lower bandwidth. NUMA-aware data placement thus organizes data in 

memory so that it is located as close as possible to the CPU or thread that will use it. This 

minimizes remote memory accesses, improving data access speed and overall system 
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performance. In terms of how memory is allocated (i.e., Memory Allocation Policies) we can 

briefly define the following NUMA policies: 

• Preferred Node: Memory is allocated from a preferred node, but if that node’s memory 

is exhausted, other nodes are used. 

• Interleaved Allocation: Memory is spread evenly across nodes, balancing memory load 

and bandwidth but potentially increasing access latency. 

• Local Allocation: Memory is allocated on the same node as the CPU that requested it, 

which helps minimize remote memory access. 

 

We have taken advantage of the fact that many operating systems, like Linux, provide options 

to control memory allocation policies to make applications NUMA-aware. Our study examines 

DAPHNE’s matrix processing capabilities in NUMA systems, focusing on performance across 

matrix types and configurations on two systems: an Intel(R) Xeon(R) Gold and a QEMU 

virtualized environment, both over an AMD EPYC server. Through various NUMA policies and 

memory placements, experiments were conducted using Linux NUMA tools, such as numactl 

and numastat, to observe performance behaviors in dense and sparse matrices, within multi-

node NUMA environments. This setup allows insights into how memory allocation and CPU 

locality interact in NUMA-aware systems. 

 

On the Intel Gold server (memory allocation fitted within a single NUMA node), tests with 

sparse matrices, particularly for the PageRank algorithm, showed that performance remained 

largely consistent across NUMA configurations when data was confined to a single NUMA 

node. The default Linux policy provided optimal or near-optimal results, with only marginal 

improvements under the `--interleave=all` and `-m0` policies. This consistency 

suggests that PageRank on sparse matrices is relatively unaffected by NUMA policies as long 

as the data fits within a single NUMA node. 

 

For dense matrices on the Intel Gold server, however, performance significantly improved 

under specific NUMA configurations. The `-m0` policy, which aligns memory allocation with 

the local CPU, led to notable gains by reducing access latency and enhancing locality, making 

it ideal for dense data where frequent memory accesses benefit from minimized latency. Similar 

observations were made with the connected components algorithm. Here, the `-N0 -m0` 
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policy, which coordinates both memory allocation (`-m0`) and thread execution (`-N0`) 

within the same NUMA node, achieved a 15% performance improvement. This setup maximizes 

memory-thread locality, particularly important for dense matrix computations where latency-

sensitive operations are common. 

 

In the QEMU virtualized environment, which required memory spanning across two NUMA 

nodes, different policies yielded varied results. For sparse matrices running the PageRank 

algorithm, the `--interleave=all` policy provided improvements, achieving 

approximately 8% better performance by reducing NUMA misses. This configuration, which 

distributes memory across nodes, minimized contention issues that would otherwise degrade 

performance when data is forced across multiple nodes. Conversely, executing in a single node 

in QEMU led to performance drops due to memory contention, underscoring the importance 

of interleaving for sparse matrices in multi-node setups. 

 

Dense matrices also benefited from `--interleave=all` in QEMU, as this policy helped 

distribute memory load evenly across nodes, reducing contention and improving runtime. The 

connected components algorithm showed that dense data in particular benefited from 

interleaving, with a 10% performance gain over the default policy. The findings indicate that in 

environments where memory must span multiple NUMA nodes, interleaving policies can 

mitigate NUMA overhead effectively, enhancing performance for dense matrices where cross-

node memory access is more frequent. 

 

Overall, results show that sparse matrices generally exhibit stability across NUMA 

configurations, especially when contained within a single NUMA node, and tend to benefit 

minimally from NUMA policies. Dense matrices, however, show greater sensitivity to NUMA-

aware optimizations. In case of ample memory compared to the data size, aligning memory 

and thread locality with `-N0 -m0` optimized dense matrix performance, while in a more 

memory-constrained environment, interleaving policies were particularly effective in reducing 

latency for dense workloads. 

 

These findings underscore the importance of NUMA-aware configurations tailored to the type 

of matrix and the specific memory topology of the environment. While interleaving improves 
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performance in dense, multi-node cases, default NUMA policies are often sufficient for sparse 

matrices, particularly for algorithms like connected components on QEMU, where additional 

interleaving may add unnecessary overhead. 

 

3.4.2 Filetype Support 

The Coordinate List (COO) sparse matrix representation was integrated into the DAPHNE 

runtime, enhancing its ability to handle sparse matrices efficiently. The COO format, unlike 

traditional dense or CSR (Compressed Sparse Row) formats, is especially suited for ultra-sparse 

matrices by storing only the non-zero values along with their row and column indices, thus 

optimizing memory usage. The implementation involved creating a COOMatrix class with 

attributes to manage matrix values, row, and column indices. Key methods include: 

• Getters and Setters: For accessing and modifying matrix elements. 

• Aggregation Kernels: New aggregation methods to handle operations across rows, 

columns, or the entire matrix. 

• Element-wise Operations: Support for unary and binary element-wise operations on 

COO matrices. 

• Random Matrix Generation and Transposition: For efficiently generating random COO 

matrices and performing transpositions. 

The TDMS (Technical Data Management Streaming) file format was also integrated into the 

DAPHNE project, enhancing its data processing capabilities. TDMS is widely used in 

engineering and manufacturing for high-performance data acquisition, often handling large-

scale datasets. This supports DAPHNE's goal of robust data processing, enabling it to handle 

more complex, large-scale datasets efficiently, particularly in technical and engineering 

domains. 

TDMS files are organized in a three-level hierarchy (file, group, and channel) to manage large 

datasets effectively. Each file contains groups, which contain channels where the actual data is 

stored. Channels store the raw data, while metadata provides structure. TDMS files are 

composed of segments with three parts—Lead In, Metadata, and Raw Data. This layout allows 

for efficient data storage and access. Segments store metadata on the file structure and 

indexing, enabling quick retrieval of specific data segments. 
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For implementing TDMS reader methods, we utilized a C++ library to read TDMS files into 

DAPHNE’s structures (DenseMatrix and Frame). This involved parsing TDMS data and mapping 

it to DAPHNE matrices or frames, organizing data by group and channel. 

For TDMS writer methods: The writers convert DAPHNE matrices and frames into TDMS files 

by assigning a single group with multiple channels (one for each matrix column). Each data 

column is assigned a unique channel to facilitate structured data storage. 

3.4.3 DAPHNE Runtime Prototype 

Finally, we provide access to the Final DAPHNE Runtime prototype, publicly available in the 

DAPHNE development repository. Guidelines for building and running DAPHNE are included 

in this period’s deliverable (D4.4), along with examples of using different storage backends 

when executing Daphne scripts. 

 

3.5 WP5 Scheduling and Resource Sharing (UNIBAS) [M1-M48] 

 

A key component of vectorized execution in local and distributed runtime environments is 

hierarchical scheduling across multiple nodes, heterogeneous hardware devices, and threads 

per device. The related design and decisions are closely related to WPs 3 and 4, with a specific 

focus on deployment environments and workloads (IDA pipelines, task-parallel loops and 

operator pipelines), task partitioning, queue management, and scheduling algorithms, as well 

as data and task placement for data-parallel processing of fused operator pipelines and kernels.  

Initial work laid the foundation of common terminology, devised, and materialized the 

scheduler design in deliverable D5.1 [10], as well as developed and integrated a library of 

alternative scheduling primitives (e.g., static and self-scheduling) for exploratory experiments 

into the vectorized execution engine, described in deliverables D5.2 — Initial Scheduling 

Prototype and D5.3 — Improved Scheduling Prototype.  

 

Sparsity exploitation is a major trend across the software/hardware stack from ML algorithms, 

over ML systems, to the underlying hardware. Sparse data and operations in turn have 

challenging runtime characteristics due to irregular structures and skew. For that reason, 

hierarchical scheduling and task planning is a strategic objective because advanced scheduling 
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algorithms can yield significant performance improvements by mitigating the resulting load 

imbalance across workers and worker hierarchies. Additional work outside the prototype also 

investigated additional distribution primitives, collective operations (e.g., MPI, gRPC), 

parameter servers, and similar distribution strategies. All these topics are brought together 

under holistic hierarchical scheduling in deliverable D5.4.  

 

3.6 WP6 Computational Storage (ITU) [M1-M48]  

 

The integration of computational storage in DAPHNE requires the availability of devices 

supporting code offload, from the hosts where DAPHNE is run. We thus consider a form of 

data staging, where data is moved from archival services or object storage to the HPC cluster 

or cloud instance where integrated data pipelines are run. We consider that this data staging 

is orthogonal to DAPHNE’s integrated data pipelines. We review existing tools for managing 

this form of data placement and discuss how encrypted data is handled. 

WP6 started with a review of the state of the art and of the gaps that exist in the area of 

computational storage (deliverable D6.1 [11]). The NVME standard, the standard protocol for 

modern storage, was extended with a computational storage command set in January 2024. 

This standard relies on a protocol for downloading and executing functions on computational 

storage.  

The Delilah prototype we described in D6.2 [12] proposed a similar protocol. We have thus 

been able to analyze the benefits and pitfalls of the standard based on the lessons we learned 

with our Delilah prototype. More generally, our end-to-end experiments with the Delilah 

prototype enabled us to discuss the nature of downloadable computational storage functions 

in the context of integrated data pipelines, also in comparison with other accelerators like GPUs 

and FPGAs explored in WP7. 
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3.7 WP7 HW Accelerator Integration (TUD) [M1-M48] 

 

The integration of hardware accelerators into DAPHNE, as originally discussed in D7.1 [13], was 

further advanced and the design refined as well as initial operations were accelerated using 

GPU and FPGA as described in D7.2. [14] In the domain of GPU processors, the supported 

operations range from common unary and binary arithmetic over linear algebra to machine 

learning specific kernels commonly applied in neural networks. Additionally, supporting a 

certain type of hardware accelerator brings along the need for kernels that deal with context 

creation and device initialization, to keep track of the handles to their API and other specifics.  

The memory management aspects of these devices are wrapped inside their respective classes 

and data handles and details of its representation is organized in so-called meta data object. 

This structure enables fine grained data placement decisions. For GPU computing, we rely on 

the CUDA API and the hardware that supports it to a large extent. However, an initial 

integration of OneAPI from Intel has been done to further extend the list of supported devices 

in this category and not solely rely on the products of a single vendor. This initial integration 

also drives the documentation efforts of extensibility to guide potential third parties in the 

endeavor of adding functionality to DAPHNE.  

The second major family of hardware accelerators, namely FPGA, has also seen the successful 

development of important operations like quantization or general matrix multiply (GEMM) and 

an initial integration of an Intel Stratix based accelerator. Further efforts of more specialized 

work dealing with SIMD exploitation through a SIMD abstraction library, performance models 

and code generation has been conducted and documented in D7.2 [14] and D7.3. In particular, 

the further development of the SIMD abstraction library (virtual vector library), which not only 

maps to various SIMD extensions of general-purpose CPUs but also to Intel FPGA cards using 

OneAPI, should be emphasized. More details are reported in D7.3, which mainly summarizes 

our achieved results for code generation.  

In order to simultaneously exploit these heterogeneous devices, we started to add the 

functionality of running fused pipelines through our vectorized execution engine on them. This 

integration not only enables us to further exploit available resources but also gives us the 

opportunity to add tuning knobs for scheduling and load balancing where extra care needs to 

be taken to cater to every device’s needs. Regarding input and output, as the utilization of 
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accelerators usually implies a certain cost of pushing the task to the compute units and pulling 

the result back to main memory.  

Finally, the fourth report D7.4 summarizes our work and achieved results with regard to multi-

device operations and data placement on multiple homogeneous and heterogeneous devices. 

In particular, we discuss three different scenarios, each focusing on a different kind of multi-

device setting. The first scenario focuses on accelerating relational data processing with the 

combined usage of thread-level and data-level parallelism (SIMD) on general-purpose CPU. 

Here, we introduce a novel, unified memory access pattern and evaluate the combined usage 

on different data layouts. In the second scenario, we investigate the co-processing capabilities 

of CPU and GPU using OneAPI for the relational data processing, while the third scenario 

investigates matrix operations in a multi-GPU environment. The achieved results for the multi-

device setting are promising and developed concepts should be further pursued. 

 

3.8 WP8 Use Case Studies (KAI) [M1-M48] 

 

DLR Use Case: 

DLR worked at developing a framework for large scale processing of satellite data with appli-

cations in planet scale LCZ classification. The developed tools allow the user to specify arbitrar-

ily large geographical areas and process them patch-wise. Arbitrary pipelines for processing 

are supported. The pipelines are executed on a patch level. For example, the LCZ pipeline works 

by retrieving all Sentinel-2 data that overlaps with a given patch over the user specified time 

period, constructing a cloud free composite image based on the algorithm that is described in 

the next paragraph and then running a deep learning inference model on the composite image 

which returns LCZ classification for the given patch. We then reconstitute the LCZ classified 

patches into the LCZ classification of the whole user specified area. The framework is fault 

tolerant in the sense that if at any stage a pipeline or the software handling the execution of 

pipelines fails, it can be resumed from the failed step (after fixing the source of failure), the 

already completed work being preserved.  

A critical part of the LCZ classification pipeline is the cloud removal algorithm. Cloud removal 

is important since cloud cover makes it impossible to determine that LCZ class of the area 



D1.6 Final Project Report  

 

DAPHNE – 957407  24 

underneath the cloud. It works by identifying cloud free pixels in a time series of images and 

then computing a statistic called the medoid (a multi-dimensional generalization of the  

median) over all cloud free pixels in the time series. Pixels here are 12 dimensional vectors 

instead of the more familiar R,G,B pixels of computer graphics. Hence the medoid is computed 

in 12 dimensions. The advantage of this method is that medoid represents a real pixel that is 

actually present in one of the images in the time series. Whereas if we were to use a statistic 

such as the mean, the values of the 12 bands present in the pixel would be averages that don't 

exist in the actual recorded data. This can lead to issues since the deep learning model that 

does LCZ classification is trained on real (non-averaged) data. We have used DAPHNE in an 

attempt to accelerate the medoid calculations which are slow due to the fact that they involve 

measuring the distances in twelve dimensional spaces for each pixel in the image to the corre-

sponding pixel in every other image in the time series. Hence this operation scales quadratically 

with regards to the number of images involved. And we want as many images as possible to 

increase chances of cloud free data. We have converted the NumPy implementation to an im-

plementation using DAPHNE matrix operations. We have also measured and compared the 

performance and presented the results in deliverable 8.2. Eventually, in D8.3 we recap on all 

use cases, give detailed information about the benchmarking setup and report on the bench-

marking results of the various use cases for the DAPHNE system infrastructure. 

IFAT Use Case: 

The semiconductor manufacturing case study primarily focuses on enhancing productivity and 

minimizing downtime in ion implantation processes. The researchers developed a novel sched-

uling approach that integrates equipment condition-derived constraints to mitigate setup 

costs, resulting in a significant reduction of equipment downtime by over 100 hours annually. 

In terms of data engineering and preprocessing, the study adapted methods to create an anon-

ymized dataset, which was published on the Zenodo research repository. This dataset aids in 

developing predictive models aimed at reducing downtime associated with unsuccessful set-

ups. The modeling and evaluation phase involved expert-guided feature selection and physics-

based feature engineering, alongside the analysis of various metrics like confusion matrix, F1 

score, precision, and recall. A supervised learning pipeline was established using built-in sen-

sors and process target data to predict setup costs. These predictions are incorporated into 

scheduling systems as additional constraints to enhance equipment stability and utilization 

https://zenodo.org/records/10571936
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through proactive dispatching adaptations. The models are regularized to minimize frequent 

shifts in predictions, thereby reducing re-scheduling efforts. 

The study also integrated Machine Learning Operations (MLOps) principles, emphasizing con-

tainerization and orchestration for stable operation, which involved splitting preprocessing, 

modeling, and postprocessing into separate microservices. 

Performance benchmarking compared the DAPHNE stack's runtime efficiencies and accuracy 

enhancements against a Python implementation. Although DaphneDSL uses less CPU and 

memory than Python, it has a longer runtime. Ongoing optimizations are expected to improve 

DaphneDSL’s performance significantly. 

Looking ahead, the researchers plan to finish deploying the productive solution in the real-

world manufacturing environment and verify the anticipated improvements in uptime and 

runtime in DaphneDSL’s decision tree implementation. 

 

KAI Use Case: 

In the fourth and final project year of DAPHNE, we were able to completely migrate our use-

case pipeline to the DAPHNE system implementation. The required technical work is 

documented in D8.3: we have been able to read our measurements (180 csv-files holding about 

17 GiB of data) into the DAPHNE system, perform necessary preprocessing steps and applied 

our line simplification algorithm. The result data is written to file afterwards. 

We then compare the DAPHNE implementation to the base implementation in Python (which 

is using numpy-arrays) in terms of runtime and memory utilization:  

• Runtime of DAPHNE is about 3.16 times faster than the Python implementation 

• Memory usage of DAPHNE is stable (no memory leaks) and below the memory usage 

of Python 
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Figure 5: DAPHNE Memory Usage  

 

Furthermore, in the 4th year of the project, we have also continued to work on the 2nd KAI 

pipeline: “Remaining Useful Lifetime Prediction”. The initial work has been prepared within a 

Master thesis project by Mohamed Ghoneim. We have followed up the topic and a second 

Master thesis has been carried out by Alpertunga Ertin. Within this project, we modeled and 

trained a RUL prediction pipeline using PyTorch and inferred the learned model parameters to 

the above-mentioned dataset using DAPHNE. In this use-case however, the performance of 

the DAPHNE system takes about 1.45 times the runtime of the Python base implementation. 

AVL Use Cases: 

Within the Automotive Vehicle Development Case Study “Ejector geometry optimization for 

fuel cells”, the focus was directed towards the design of experiments (DoE) workflow. Daphne 

Library (DaphneLib) has been integrated into the Python Machine Learning workflow at the 

prediction function stage. A benchmarking configuration has been set up and benchmarking 

results have been collected. The evaluation addresses the performance comparison between 

the stand-alone python implementation and the DaphneLib supported workflow. Details can 

be found in D8.3. 

In the second case study “Virtual Prototype Development”, a demonstrator (which can create 

artificial training data and running a Gaussian process regression) has been created, analyzed 

and its bottlenecks have been identified. The pipeline has been substantially reworked, im-

proved and fully automated so that no manual input is further necessary.  The revised pipeline 

creates realistic synthetic training data autonomously, without manual intervention during 

pipeline execution. A benchmarking setup that focuses on three elements of the pipeline 

(crossover, post-processing and visualization) has been set up.  Relying on this setup, the  
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DaphneLib utilization and its effect of pipeline performance have been analyzed.  Results can 

be found in D8.3. 

WP8 created common terminology and a joint understanding of requirements via regular joint 

meetings for in-depth discussions of the individual use cases (including knowledge sharing 

between partners), the use case descriptions, and ML pipeline implementations. A major 

outcome of these discussions is the use case pipelines documented in D8.1 [15], which serve 

as example top-down use cases for the DAPHNE system infrastructure and real-world 

benchmarks. During these discussions, we already identified future work for improvements of 

the individual pipelines and relevant measurements to quantify the use case improvements 

achieved through DAPHNE (in terms of development productivity and runtime performance 

for training and scoring).  

 

3.9 WP9 Benchmarking and Analysis (HPI) [M1-M48] 

 

Throughout the DAPHNE project (M1-M48) we surveyed existing DM, HPC, and ML System 

benchmarks (M1-M12), defined the DAPHNEBench Benchmark (M9-M30), and developed an 

internal benchmarking and profiling toolkit (M19-M48). We discussed our progress on these 

tasks and coordinated our collaboration with the other project partners remotely in regular 

work package meetings and all-hands meetings, as well as, in person in general assembly and 

dedicated use case meetings.  

To report our progress to the EU we summarized our work in the review meetings and 

submitted deliverables 9.1 to 9.4. In the following, we give an overview of our progress 

throughout the four years of working on the DAPHNE project by summarizing our work on the 

four deliverables.  

D9.1 - A Survey of Benchmarks from DM, HPC, and ML Systems [M12] 

In our survey on Big Data, HPC, and ML benchmarking frameworks [16], we have identified a 

need for a benchmarking framework that will encompass and measure the performance of 

Integrated Data Analysis (IDA) pipelines as defined in Figure . The findings in deliverable 9.1 

were based on the lack of convergence in DM, HPC, and ML benchmarking frameworks. We 



D1.6 Final Project Report  

 

DAPHNE – 957407  28 

proposed a framework that combines metrics and measurement aspects from the three 

domains. 

 

Figure 6: Integrated Data Analysis (IDA) Pipeline 

In this deliverable, we discussed the state-of-the-art of BD, HPC, and ML benchmarks. We 

summarized a representative selection of some of the most used benchmarks and classified 

them under the light of a feature space composed of purpose, stage, metric, and convergence, 

as well as from the perspective of a proposed Integrated Data Analysis architecture. In Table 1, 

Table 2, and Fehler! Verweisquelle konnte nicht gefunden werden., we show the three groups of 

benchmarking frameworks, the evaluated system aspects, as well as the quality metrics.  

 

Aspect Benchmarks Metrics 

Data collection BigBench, Graphalytics throughput, latency 

Data analysis HiBench, BigBench, 

BigDataBench, Graphalytics 

resource consumption (CPU, 

memory, I/O), execution time 

Data storage BigBench, YCSB throughput, latency 

Table 1: Big Data Benchmarks 
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Aspect Benchmarks Metrics 

Compute NPB, HPCG, SPEC  

 

speedup, throughput, node 

communication latency, data 

access latency 

Data NPB, CORAL-2 

Network NPB, SPEC 

Memory CORAL-2, UEABS, HPCC 

I/O NPB, CORAL-2 

Table 2: HPC Benchmarks 

Aspect Benchmarks Metrics 

Data Preparation & 

Cleaning 

CleanML execution time, resource consumption 

(CPU, GPU, memory), difference in model 

performance 

Model Training CleanML, MLPerf, 

DeepBench, LEAF, 

Fathom 

execution time, resource consumption 

(CPU, GPU, memory), model performance, 

time-to-accuracy 

Model Inference MLPerf, DeepBench execution time, resource consumption 

(CPU, GPU, memory), inference 

performance 

Table 3: ML Benchmarks 

We observed that the evaluated benchmarking frameworks cover a wide range of purposes 

and stages of BD, HPC, and ML systems. However, even if modern hybrid-systems become 
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more common, benchmarking systems are still not fully capable of targeting those data 

analytics systems and can impact only small parts of the IDA pipelines. 

D9.2 - Initial Benchmark Concept and Definition [M24] 

In Deliverable 9.2, we outlined a set of requirements necessary to define an initial concept of 

the benchmarking framework (see Figure ). The focus of the proposed framework is to capture 

the complete pipeline lifecycle, covering multiple benchmarking aspects and abstraction levels 

of IDA pipelines. To evaluate the complete pipeline lifecycle, we defined metrics for tracking 

the end-to-end performance, as well as metrics that cover different runtime aspects. The list of 

supervised and valued metrics is shown in Table 4.  

 

Figure 7: An Outline of a Benchmarking Framework 

 

We defined the system under test to provide different levels of abstraction. In the 

benchmarking framework definition, we cover scenarios in which the SuT can be a single 

method call, a single pipeline stage, as well as a complete pipeline. We capture the diversity in 

IDA pipelines by implementing diverse workloads based on DAPHNE use cases, as well as 

open-source workloads. Specifically, we used the workloads developed in DAPHNE Use Case 1 

- Earth Observation, and Anomaly Analysis Use Case provided by hardware manufacturer 

Backblaze [4]. 
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Supervised metrics Time, Memory, Energy, CPU consumption, Latency, Throughput 

Valued metrics Confusion matrix, Hyperparameter influence, Epochs to 

accuracy, Epochs to loss 

Table 4: Benchmarking Metrics 

 

We defined a data model that supports evaluating the heterogeneity of IDA pipelines. The data 

model allows us to capture performance and runtime characteristics in the several pipeline 

dimensions. We have summarized the definition of the benchmarking toolkit in deliverable 9.2 

[17]. 

 

 

Figure 8: Data Model for Monitoring of Experiments 

 

D9.3 - Initial Benchmarking Prototype [M30] 

In deliverable 9.3, we implemented an internal benchmarking toolkit that is able to cover a 

wide variety of metrics. To easily integrate the measurement of any metric without significant 

change to the original pipeline used for benchmarking we follow a decorator-based design. 
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Figure 9: Visualization of the Command Line Interface 

 

To measure all metrics of interest we integrated widely used libraries and tooling such as the 

Python time library [5] to use Python’s performance counter for time-based metrics, psutil 

(python system and process utilities) [6] for memory and CPU metrics, and the pyRAPL library 

to measure energy and power [7]. All measurements are logged into a database backend and 

are interactively accessible via an easy-to-use command line interface that automatically 

provides plots for easy analysis of measurements shown in Figure 9: Visualization of the Command 

Line Interface 

To automate benchmarking results for some real workloads as easily as possible, we started 

implementing first versions of scripts that automatically run real-life use cases provided by our 

project partners. For now, we focused on the Earth Observation use case and the Back-blaze 

Anomaly Analysis use cases. 

 

 

Figure 10: Visualizing CPU and Memory Usage for a Single Pipeline 
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In this deliverable, we demonstrated and discussed our benchmarking toolkit with work 

package partners at the DAPHNE use case meeting in Graz where we also showed some initial 

results of bench-marking the DAPHNE workloads written in DAPHNE’s domain-specific 

language (DSL) as well as in DAPHNE’s proprietary version of its Python interface DaphneLib. 

Some of the initial measurements are shown in Figure 10: Visualizing CPU and Memory Usage for 

a Single Pipeline 

D9.4 - Final Prototype of the Benchmarking Framework [M48] 

In D9.4 we present the finalized version of our internal benchmarking and profiling toolkit 

UMLAUT. Through communication with the industrial use case partners and the rest of the 

DAPHNE consortium, we defined a set of improvements for the initial prototype. These 

included additional features, metrics, as well as improvements to the overall user experience 

regarding installation, usability, and visualization.  

To quantify the resource overhead of incorporating UMLAUT in a new environment, we 

implemented the three simple benchmarking use cases of sleeping, sorting, and matrix 

multiplication with UMLAUT and added them to our repository. Since all use cases have 

predictable benchmarking results, they allow users to validate UMLAUT’s functionality and give 

insights on setup-specific benchmarking overheads. 

To limit the installation overhead when using UMLAUT, we provide three docker containers. 

One UMLAUT-only container with all UMLAUT dependencies installed to run and benchmark 

Python scripts, a second container that has UMLAUT and DAPHNE installed to benchmark 

DAPHNE DSL and DaphneLib scripts, and a third container that has UMLAUT, DPAHNE, and 

GPU drivers installed to benchmark GPU accelerated workloads. Using these containers allows 

us to easily run and benchmark all Python, DaphneDSL, and DaphneLib pipelines provided by 

the use case partners.  

We extended the set of supervised metrics by the four GPU-specific metrics listed in Table 5 

and implemented them using the NVIDIA Management Library (NVML). Using these metrics 

allows an UMLAUT user to track the GPU utilization, GPU memory, GPU time, and GPU power 

usage. 
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Metric name Description 

GPUMetric() Measures the GPU utilization in percent using 

nvmlDeviceGetUtilizationRates() 

GPUMemoryMetric() Measures the GPU memory usage in MB using 

nvmlDeviceGetMemoryInfo() 

GPUTimeMetric() Measures the execution time using CUDA Events. There is usually 

a small difference between this and time.perf_counter(), which 

matters for quick methods. 

GPUPowerMetric() Measures the power usage of the GPU in Watts. 

Table 5: Extended Benchmarking Metrics 

To improve the monitoring of DAPHNE DSL scripts, we have implemented subprocess tracking, 

allowing us to have detailed measurements for the DSL workload when executed from a Python 

environment. This enables users to have a finer granular overview of the DSL experiments 

compared to the prototype implementation of the framework. 

 

We demonstrate how to use UMLAUT for benchmarking plain Python pipelines, DAPHNE DSL 

implementation of the IFAT Semiconductors use case, and the GPU-accelerated KAI Material 

Degradation use case. The resources for both use cases were provided by the use case partners. 

 

For a better user experience, we changed UMLAUT’s interface for plots from MatplotLib to 

Plotly and implemented the functionality to provide custom names in the decorator functions. 

As shown in Figure 11: Interactive Plotting in UMLAUT with Plotly, this allows users to identify 

relevant measurements easily and to hide irrelevant data for a better overview. 
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Figure 11: Interactive Plotting in UMLAUT with Plotly 

 

3.10.  Dissemination and Exploitation (KNOW) [M10-M48] 

The primary objective of dissemination and exploitation is a broad and open sharing of the 

project results via publications and talks, dedicated networking efforts, and an open-source 

reference implementation. In project year 3 these activities have been re-defined in D10.1 

Refined Dissemination and Exploitation plan [18] and have been carried out accordingly.  

 

In the first task of this WP T10.1 - which is the only active task until M48 - Continuous 

Dissemination via Publications and Talks [M10-M48, Lead: KNOW, Participants: all, Effort: 

13PM] - complementary to the work in the technical WPs that perform dissemination via 

scientific publications, which is interleaved with the actual research, 81 publications and 102 

talks have been organized or co-organized are being listed and further communicated via the 

EU portal and conveyed to the public via our DAPHNE website [2]. 

 

The dissemination tracking document is updated every 3 months asking project partners to 

provide details concerning their DAPHNE-related activities and update the listed items. The 

publications and talks are inter-linked according to the open-source principle. The organization 
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of the dissemination tracker is time-consuming, but necessary as all relevant dissemination and 

communication activities must be recorded.  

Thus, the current overview of our publications and talks throughout the project runtime till 

now (M1-M36) shows 81 publications and 102 talks.  They directly link to the source material. 

We have achieved to promote DAPHNE in the central venues of data management, such as 

VLDB, HiPEAC and Euro-Par as well as workshops organized by the European Big Data Value 

Association (BDVA). KNOW are an active member of the interplay between EU research policy 

and research organizations through our leading role in BDVA. KNOW former CEO has been on 

the board of directors (BoD) of BDVA since 2016, granting KNOW access to the policy making 

level. Her mandate was taken over by our current CSO Roman Kern. KNOW also actively 

participate in BDVA taskforces. 

In addition to the listed publications and talks we have also connected to similar projects such 

as MARVEL, EVEREST, or eFlows4HPC synergizing within ML/DL systems and system support. 

In detail, in a reciprocal process we have been exploring architectures for gathering 

heterogenous data, language abstractions, intermediate representation, methods for extreme-

scale analytics, e.g. combination of ML models, simulations and subsequent data analysis in 

different Use Cases, standardized interconnection methods, e.g., runtime integration, HPC 

libraries as well as data fusion and data integration technologies.  

As complementary dissemination and exploitation measures to maximize impact - in addition 

to publications and talks and exploring synergies by reaching out to similar projects - we have 

contributed to benchmarks and standards and have implemented a release timeline to the 

open-sourced DAPHNE reference implementation with the latest 0.3 release in August 2024. 

We have started to facilitate real-world data or datasets with similar characteristics to simplify 

reproducing our experimental results. 

Eventually, as planned we have regularly updated our DAPHNE website https://DAPHNE-eu.eu 

[2] which communicates the project idea and objectives. The website gives a general overview 

of the project, showing latest news, listing all consortium partners, displaying a team photo of 

our personal gathering for the TEC-Use Case Workshop in Graz in September 2023, presenting 

portrait photos of the consortium partners, referring to the EU’s Horizon 2020 research and 

innovation program, displaying a regularly updated list of publications and talks including the 

public deliverables, presenting the DAPHNE use cases, and showing a contact form for visitors 

https://daphne-eu.eu/
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to get in touch. The website also invites to visit the open-source community on GitHub and 

follow DAPHNE project on social media. DAPHNE is active on LinkedIn. We consider these 

social media engagements via LinkedIn not as core but still as must-haves to promote our 

project and easily link to our target users and project partners. Within the last project year, we 

have increased the quantity and quality of our social media posts as well as our efforts towards 

project exploitation. Therefore, we have created a product portfolio element for DAPHNE to 

make it more accessible to a broader audience. In this portfolio we describe the advantages of 

DAPHNE to potential customers. Regarding visuals, we have a DAPHNE poster that can be 

adapted easily.  

Regarding DAPHNE major target groups, our dissemination efforts address system or data 

engineers that are designing and operating robust infrastructures, and application users that 

are mostly concerned with productivity and accurate predictions. The open-source strategy has 

been mobilized to attract target users and invite them to give feedback. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D1.6 Final Project Report  

 

DAPHNE – 957407  38 

4 References  

[1] D1.1 Project and risk management plan [confidential] 

[2] DAPHNE website https://DAPHNE-eu.eu  

[3] D2.1 Initial System Architecture [public] https://DAPHNE-eu.eu/dissemination/ 

[4] D2.2 Refined System Architecture [public] https://daphne-eu.eu/wp-content/up-

loads/2022/08/D2.2-Refined-System-Architecture.pdf 

[5] D3.1 Language Design Specification [public] https://DAPHNE-eu.eu/dissemination/ 

[6] D3.2 Compiler Prototype [public] https://DAPHNE-eu.eu/dissemination/ 

[7] D3.3 Extended Compiler Prototype [public] https://daphne-eu.eu/dissemination/ 

[8] D3.5 Final Compiler Prototype [public] (to be submitted in accordance with this re-

port/M48)  

[9] D3.4 Compiler Design and Overview [public] https://daphne-eu.eu/dissemination/ 

[10] D5.1 Scheduler design for pipelines and tasks [public] https://DAPHNE-eu.eu/dissemina-

tion/ 

[11] D6.1 Report on search space analysis, automatic capability configuration [public] 

https://DAPHNE-eu.eu/dissemination/ 

[12] D6.2 Prototype and overview of managed storage tiers and near-data processing [public] 

https://DAPHNE-eu.eu/dissemination/ 

[13] D7.1 Design of integration HW accelerators [public] https://DAPHNE-eu.eu/dissemina-

tion/ 

[14] D7.2 Prototype and Overview HW Accelerator Support and Performance Models [public] 

https://daphne-eu.eu/dissemination/ 

[15] D8.1 Initial pipeline definition all use cases [public] https://DAPHNE-eu.eu/dissemination/ 

[16] Ihde, Nina, et al. "A Survey of Big Data, High Performance Computing, and Machine 

Learn-ing Benchmarks." Technology Conference on Performance Evaluation and Benchmark-

ing. Springer, Cham, 2021.  

[17] D9.2 Initial Benchmark Concept and Definition [public] https://daphne-eu.eu/dissemina-

tion/ 

[18] D10.1 Refined dissemination and exploitation plan [confidential] 


