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Executive Summary 

The use case pipelines presented in the DAPHNE project present a diverse set of real-world 

scenarios. The use cases are enhanced by utilizing the DAPHNE system infrastructure. Further-

more, the use cases help to identify possible problems in the early version of DAPHNE.  

To perform the benchmarking experiments, it was first necessary to port our use-cases to use 

either DaphneLib (Python library) or DaphneDSL (native DAPHNE language). DAPHNE provides 

a variety of readily available algorithms as callable functions directly1 (among them are e.g., 

decision trees, linear regression, principal component analysis, random forest, …). Furthermore, 

the DAPHNE system infrastructure is documented publicly on the Internet2. Hence, writing the 

required DAPHNE script is generally user friendly.  

Afterwards, we were able to run the experiments and depending on the use-case, we can 

achieve a substantial performance improvement in some cases. In the use cases, DAPHNE com-

petes against numerical packages like NumPy3, which have been optimized since many years. 

Still, DAPHNE is able to outperform NumPy in the KAI use case by a factor of about 3.16 using 

the same algorithm. By switching the method in the AVL2 use case, the execution time could 

be reduced from about four days to less than one day. 

However, we have also identified some weaknesses in the currently available early version of 

the DAPHNE system infrastructure as well as the UMLAUT4 benchmarking tool provided by our 

partners from WP9. We reported the issues to the technical partners – most notably the 

memory leaks mentioned further down in the document. Most of these leaks have already been 

fixed lately and even some of our experiments could be rerun to collect most recent results. 

1 https://github.com/daphne-eu/daphne/tree/main/scripts/algorithms
2 https://daphne-eu.github.io/daphne
3 https://numpy.org
4 https://github.com/hpides/End-to-end-ML-System-Benchmark
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1 Introduction 
In the past months since submitting the early version of the benchmark results (deliverable 

D8.2), we have further provided feedback to the technical partners. By evaluating our real-

world use-cases, we have spotted several weaknesses and bugs in the still early version of the 

DAPHNE system. Therefore, we reported these issues online on GitHub. The technical partners 

have already been able to already fix most of the encountered issues (e.g., GH#788) and pro-

vided discussions and concepts where an immediate implementation is not possible (e.g., 

GH#755). 

Therefore, we are now able to report on our benchmarking results and where the DAPHNE 

system provides usability and/or performance improvements. 

1.1 Outline 

In the following chapters, the individual use cases report on their status in more detail. The 

benchmarking setup of the various use cases is described as well as the comparison to the 

respective baseline implementation. 

Furthermore, our partners within WP8 have also provided the description and benchmarking 

results of additional integrated pipelines, which are reported in chapter 7. 
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2 Earth Observation Case Study: Local Climate Zone Classifi-

cation (DLR) 
Local Climate Zones (LCZ) are a way to classify land based on its use. Unlike other land use 

classification schemes, it focuses on urban environments. LCZ classification divides land in to 

17 classes, 10 of which correspond to different built-up areas while the remaining 7 correspond 

to land without buildings on it. Those classes are listed in Figure 2.1. While it was originally 

developed as an aid to study urban heat islands, it has found further use in various other re-

search scenarios, for example, urban development, transport research, disaster mitigation and 

population assessment among others. At DLR, we use LCZ to facilitate research in such fields 

as the study of transport flows and building height estimation. It is thus of interest to us to 

have a way to acquire up to date LCZ classifications of any area on earth. For that, we need to 

rely on satellite observations of the Earth. Both radar and optical imagery can be used but we 

focus on optical data in this case. Ideally the user would specify a region of interest and a 

period and be able to retrieve an LCZ classification for that area that will look similar like the 

one in Figure 2.1 (right). 

Figure 2.1: LCZ classification classes 

At DLR we developed a pipeline to allow for LCZ classification of arbitrary geographical areas. 

LCZ classification uses a ResNet deep learning model trained on the LCZ42 data set to classify 

land according to its LCZ label. 

2.1 Description of the Use-Case Pipeline 

The pipeline for global LCZ classification consists of four main steps that can be summarized 

as follows: 

1. Dividing the geographical area of interest into chunks of manageable size (half a degree 

of geographical latitude and longitude in our case). 

2. Constructing a cloud-free composite image of that area from Sentinel-2 data, using a 

user specified date range. 

3. Using a deep learning model (ResNet50) to identify LCZ labels for that patch. 

4. Reconstruct the original geographical area from the LCZ classified patches. 
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Out of these steps we have identified the construction of the cloud-free composite image as 

the most likely to benefit from accelerations provided by DAPHNE. That is because the other 

steps are either very computationally cheap (like the patch division and assembly steps) or 

neural network inference. Inference is already very fast, as modern frameworks used for it such 

as PyTorch are very well optimized due to their prominent role in industry. 

Let us quickly explain the compositing algorithm and its implementation. It can be outlined as 

follows: 

Inputs: A date range and geographical coordinates for a rectangular patch of size 0.5 times 0.5 

degrees. 

1. Retrieve all Sentinel-2 tiles that overlap with the patch and that were taken within the 

date range. 

2. For each pixel in the patch: 

1. For each image in the time series choose corresponding pixels that are there (not 

missing in that Sentinel-2 tile), cloud free and shadow free. We use cloud masks 

provided with the Sentinel-2 L2A product for this purpose. 

2. Calculate a medoid of these pixels (explanation in the following paragraph). 

3. Use the medoid as the composite pixel in the resulting cloud-free patch. 

3. Write the results into a GeoTIFF file with the same dimensions and same location as the 

user specified patch. 

We use the medoid as the compositing statistic. The medoid is an extension of the concept of 

the median to more than one dimension. The medoid is the point in multi-dimensional space 

that has the lowest average distance to all the other points.  

𝑥medoid = arg min
𝑦∈𝑋

∑𝑑(𝑦, 𝑥𝑖)

𝑛

𝑖=1

.

It can be illustrated with Figure 2.2: 

Figure 2.2: Mean vs. Medoid 

The reason for preferring the medoid over other statistics lies in the fact that a medoid of a 

group of multi-dimensional points (in this case 13-dimensional since there are 13 Sentinel-2 

bands) is a point that actually belongs to that group. A mean of a group of multi-dimensional 
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pixels can end up being in a sense synthetic (not found in the original data) which can lead to 

some questions about the validity of performing further data analysis on them. The code for 

calculating the medoid is not very complex, but it involves some fair number of matrix opera-

tions which we were hoping DAPHNE could optimize. 

2.2 Benchmarking Setup 

For benchmarking purposes, we have used the area shown in Figure 2.3. We have downloaded 

all Sentinel-2 tiles between 2019-05-01 and 2019-10-01 that overlap with this area (688 x 843 

pixels in size) from the Sentinel-2 archive. We then cropped the tiles to retrieve only the part 

that overlaps with the area of interest. In the end we have ended up with 36 images to be used 

in the medoid compositing algorithm. 

Figure 2.3: Area of interest 

Two implementations of the compositing algorithm were written – one in NumPy and another 

using the DAPHNE Python API (DaphneLib). Then, the execution time for each version using a 

subset of the 36 downloaded images was measured. The algorithm was run on a single image, 

then two images, then three and so on until 36 images were reached. The time it takes to 

complete the composite was recorded for each subset and for each implementation. An exam-

ple composite image result is shown in Figure 2.4. 

The code that was used for this benchmark can be found in a GitHub repository5. The com-

parison plot is given below. In the “Number of images” axis of this plot we have the number of 

images used for the cloud compositing algorithm. We artificially limit the number of images 

retrieved from the Sentinel-2 archive and used in the medoid algorithm in order to explore the 

scaling of the algorithm with regards to number of images available. The scaling should be 

quadratic since we are measuring pairwise distances between multi-spectral pixels of individual 

images. This seems to be consistent with the results seen in Figure 2.5. 

5 https://github.com/DLR-MF-DAS/daphne-cloud-removal-example
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Figure 2.4: Example cloud-free composite image result 

Figure 2.5: Performance comparison between DAPHNE and NumPy versions of the compositing algorithm. Lower 

values mean better performance 

2.3 Productivity & Performance Improvements 

Since the previous deliverable 8.2, we have decided to re-focus on a different aspect of the 

global LCZ classification pipeline. Instead of focusing on the inference part of the pipeline 

which takes a relatively small amount of time we have instead implemented the cloud removal 

algorithm in DAPHNE. The resulting implementation is considerably more complicated than 

the NumPy version because DAPHNE only supports two-dimensional matrices, so each image 

must be handled as a list of such matrices as opposed to a single 3D tensor. Performance of 

the DAPHNE version is also significantly worse than that of the NumPy version. While both 
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display roughly quadratic scaling with regards to the number of images used, NumPy is roughly 

twice as fast as DAPHNE. The causes of this are not clearly apparent but could be since it is not 

currently possible to use tensors in DAPHNE. 

The primary effort during the course of this project went into the scaling of the code towards 

global (Earth) scales. To this end we have implemented a convenient system to describe pro-

cessing workflows using YAML files (using pypyr6) as well as implementing code necessary to 

split large areas into smaller patches, process them and re-assemble the results. In these larger 

scales, fault tolerance becomes an issue and we have implemented functionality to resume 

processing after failure at any of the previously described processing steps as well as a logging 

and debugging system that lets users find and debug issues at any of the processing stages 

without losing progress. This is very important since processing a large area can take weeks of 

time. 

6 https://pypyr.io
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3 Semiconductor Manufacturing Case Study (IFAT) 
In view of the high total cost of semiconductor manufacturing assets, respective equipment 

needs to be as productive as possible. To avoid needless idling and unnecessary downtime, 

scheduling and maintenance strategies are important in practice. We developed a novel ap-

proach to reduce the substantial setup costs inherent to ion implantation by deriving schedul-

ing constraints based on current equipment conditions. Consequently, a supervised learning 

pipeline is established that utilizes built-in sensors and process target data to accurately predict 

recipe transition costs. The derived constraints are integrated into scheduling, thereby enhanc-

ing its efficiency through dynamic dispatching adaptations. The application of our method is 

projected to significantly improve equipment availability by avoiding more than 100 hours of 

potential downtime annually. 

3.1 Description of the Use-Case Pipeline 

The implantation process requires precise control to ensure that ions are implanted into the 

semiconductor material at the correct depth and with the desired distribution, which in turn 

control the electrical properties of the manufactured device. For comprehensive information 

regarding the physical aspects of the implantation process, please refer to our deliverable D8.1. 

We develop our solution for medium current implantation equipment. The built-in sensors and 

additional feedback values of implanter components are tracked via the Advanced Process 

Control (APC) system. Together, they provide us the current equipment condition. In the con-

text of manufacturing, a recipe specifies parameters to meet the requirements of a process 

step. For ion implantation, the most critical parameters are energy, species, and dose. When-

ever recipes are changed, a setup is necessary, i.e., ion beam tuning. This tuning is instrumental 

in minimizing deviations from recipe target specifications under varying equipment conditions. 

We develop predictive models that forecast the results of the tuning process in terms of its 

success and duration. The former being of utmost importance since it enables proactive sched-

uling adaptations to enhance equipment stability and utilization. By incorporating respective 

success predictions as (soft-)constraints, scheduling systems can proactively address potential 

tuning issues. This is achieved by avoiding the dispatch of lots to equipment that is currently 

not in the condition to tune for the associated recipes efficiently. Dynamic updates to the setup 

cost matrix with more precise estimates of tuning duration through regression analysis assist 

in identifying more efficient setup sequences. 

To enhance equipment performance and process stability (uptime increase of >1 percentage 

point), we must integrate data engineering, Machine Learning (ML) modeling, and deployment 

within a robust Machine Learning Operations (MLOps) framework. 

3.1.1 Employed Data Engineering, Preprocessing and Resulting Dataset 

Since the beginning of the project, we have adapted our data engineering method multiple 

times to fit our current needs, as outlined in Deliverable D8.2. The resulting dataset has been 

published to foster research in this area via the Zenodo research repository7 [1]. To not leak 

critical information about our processes and products, the data has been anonymized by scal-

7 https://zenodo.org/records/11084332
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ing data and not providing the scaler and by replacing the feature names with generic place-

holders, e.g. sensor_1. Random generators cannot be aligned across programming languages 

easily, thus we avoid it by splitting the dataset into train and test sets, instead of providing one 

file with all the observations. As the preprocessing is already done for the purpose of anonym-

ity, it is not required after loading the data into memory. 

3.1.2 Modeling, Evaluation and Deployment 

We made further advancements towards a productive implementation, which required another 

iteration of feature selection. We now only include features in our dataset that were carefully 

curated by implantation experts. Transitioning from the research phase to a dynamic produc-

tion environment comes with its unique set of challenges. Lot scheduling and transportation 

takes time, therefore we need to minimize frequent shifts in our predictions, as changing plans 

incurs diverse costs. To achieve this, we removed certain features from the input and regular-

ized our models adequately.  

For the classification model, evaluation metrics such as the confusion matrix, F1 score, preci-

sion, and recall are analyzed. It is important to note that fluctuations in performance across 

various equipment units and time periods can be ascribed to volatility in the dataset. 

Deployment practices have been guided by MLOps principles, underscoring the significance of 

containerization and orchestration for stable operation. We refactored our code to split the 

preprocessing, modeling and postprocessing into separate microservices, that can be called 

individually. 

Postprocessing is currently being developed. It will prepare the output table, as initially de-

scribed in Deliverable D8.2 Section 3.3.5 but will at the same time reduce the amount of data 

stored. This is achieved by only actually transmitting recipe transitions which are predicted to 

fail and by introducing wildcards (*) for recipe transitions that are generally predicted to fail. 

The updated interface concept is depicted in Table 3.1. Greyed and crossed out columns and 

rows are no longer necessary. Additionally, a row has been added symbolizing the wildcard 

approach. Moreover, it performs sanity checks on the model output, e.g., by checking the ratio 

of recipes to be deprioritized. If it exceeds a certain threshold on equipment-level, a mainte-

nance activity is triggered automatically. 

Table 3.1: Updated Interface Concept between Machine Learning and Scheduling System 

Equipment Current Recipe Next Recipe Duration (min) Tune Success

IMP01 X1-80E3B020A X5-00E2B170A 2.8 1

IMP04 X3-22E4P020A Y1-00E2B400A 4.2 0

IMP03 Y1-31E3B050A Y2-50E4B130A 3.1 1

IMP01 Y6-11E5A150A Y6-71E2P285D 5.3 1

IMP05 * Z5-66E2P020A 3.3 0

IMP02 Y8-05E2P285D .. 5.8 0

3.2 Benchmarking Setup 

We implemented the core of the machine learning pipeline within DaphneDSL, aiming for com-

parable workflows in Python and DaphneDSL. We benchmark both computer languages 



D8.3 Benchmarking Results all Use Case Studies 

DAPHNE – 957407 14 

against each other based on the above-mentioned fixed dataset. Moreover, we compare ma-

chine learning model implementations for decision trees. The DecisionTree algorithm and oth-

ers are publicly available within the DAPHNE source code repository8, use-case details can be 

found in our private git repository shared with consortium partners (commit 90af0e73). 

After setting up the UMLAUT framework from WP9 in our Python environment, we only need 

to assign decorators to Python functions. This enables benchmarking Python processes based 

on manifold metrics, such as time, memory, power, energy and CPU. Details are provided in 

Deliverable D9.3. We can also benchmark our DaphneDSL implementation in this way by in-

voking the DaphneDSL script execution via a Python subprocess. 

For our tests we will use a single notebook (HP EliteBook x360 830 G6) and we also perform 

tests on Infineon’s High-Performance Computing (HPC) cluster. Details about these environ-

ments are given in Table 3.2. Usage of HPC was initially limited, as outside connections are 

blocked by default. It only became possible after assistance from consortium partners, which 

jointly built DAPHNE binaries for RedHat Enterprise Linux (RHEL8). The obtained results of our 

experiments with DAPHNE (4e96943) using these environments are presented in section 3.3. 

Table 3.2: Hardware and Software Environment Details of Experiments 

Category Notebook HPC Node 

Operating 

System 

Windows 10 Pro 64-bit (10.0, Build 

19045) with WSL2

Linux 4.18.0-477.36.1 (x86_64) 

RedHat Enterprise Linux 8 

Processor Intel Core i5-8365U @ 1.60 GHz (8 

cores)

Intel Xeon CPU E5-2690 v4 @ 

2.60GHz (28 cores)

RAM 8 GB (of 16 GB due to WSL) 512 GB 

Python Python 3.9 (scikit-learn 1.5.1) Python 3.9 (scikit-learn 1.3.0) 

3.3 Productivity & Performance Improvements 

In this report we focus on the quantitative improvements achieved by the DAPHNE stack. We 

will delineate the runtime efficiencies and accuracy enhancements by directly comparing Daph-

neDSL with the Python implementation. To illustrate the productivity gains, we provide empir-

ical data demonstrating the reduction in computational time and improvement in validation 

measures. 

When benchmarking our DaphneDSL and Python pipelines, we focus on the following metrics:  

 classification metrics: Accuracy, F1, Precision and Recall 

 runtime,  

 memory and CPU usage 

8 https://github.com/daphne-eu/daphne/tree/main/scripts/algorithms
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On the notebook with WSL running DAPHNE (commit gc4c928af) with docker image (commit 

e17fe114a8c4), we observed the following metrics: 

Table 3.3: WSL performance table 

Metric / System Python DaphneDSL 

Runtime (s) 6.34 237.47

Accuracy 0.74 0.68

Precision 0.77 0.78

Recall 0.68 0.50

F1 Score 0.72 0.61

Confusion Matrix  0 1 

0 4299 1071

1 1687 3673

 0 1 

0 4613 757 

1 2689 2670

Figure 3.1 and Figure 3.2 display the usage trends for CPU and memory within WSL. 

Figure 3.1: WSL CPU usage 

Figure 3.2: WSL memory usage 

The runtime of DaphneDSL is shown to be about 40 times longer than Python. However, having 

to rely on a subsystem within Windows and due to other applications open on the notebook, 

the comparison is prone to errors. Yet, we wanted to showcase that there is an option to de-

velop and test DaphneDSL scripts on a notebook running Windows as an operating system 

with the already existing resources and software artifacts. 

For a more comparable benchmark, we ran experiments on our HPC with RHEL8 with DAPHNE 

(commit gc4c928af), where we observed the following metrics: 
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Table 3.4: HPC performance table 

Metric / System Python DaphneDSL

Runtime (s) 17.66 74.66

Accuracy 0.74 0.69

Precision 0.79 0.70

Recall 0.65 0.67

F1 Score 0.72 0.68

Confusion Matrix 0 1

0 4461 909

1 1827 3533

0 1

0 3810 1560

1 1768 3591

Figure 3.3 and Figure 3.4 depict the CPU and memory usage within our HPC environment. 

Figure 3.3: HPC CPU usage 

Figure 3.4: HPC memory usage 

With the current implementation of Decision Trees, Python is faster by a factor of 4. 

3.4 Conclusion and Outlook 

Differences in classification metric are due to random initialization effects. For our WSL pipe-

lines we used the default hyperparameters provided from scikit-learn. To enhance model per-

formance, we regularized our HPC models by limiting the max_depth of a tree. This resulted in 

less diverging metrics between implementations. 
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When inspecting the CPU usage, DaphneDSL only uses roughly 50% of what is consumed by 

Python per timestep but also takes longer time to finish the overall computation. Memory 

usage appears to be static for DaphneDSL and is lower than what is requested from Python. 

Optimization possibilities to further speed up the execution time of decision trees within Daph-

neDSL have been identified and are being worked on. We expect to see a 10x to 15x improve-

ment, which would result in DaphneDSL requiring less than 50% of the runtime observed with 

Python. 

As for the next steps, we will finish deployment of our productive solution in our manufacturing 

environment. Moreover, we want to verify the above-mentioned speed-up of the decision tree 

implementation in DaphneDSL. Simultaneously, we will strive to complete the implementation 

of a second model for our pipeline, which calculates classifications based on a Multi-Layer-

Perceptron (MLP) – a neural network with three hidden affine layers, two distinct activations 

(reLu, sigmoid) and one loss (log_loss) function together with an optimizer (Adam) for a faster 

learning process. 
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4 Material Degradation Case Study (KAI) 
Within the KAI Material Degradation Case Study, we differentiate between two use cases. On 

the one hand, there is the line simplification use case (UC4.1) and on the other there is the RUL 

(remaining useful lifetime) prediction use case (UC4.2). Our data is represented as time series 

originating from accelerated stress test systems which measure the electrical behavior of the 

devices under test (DUT) while being stressed. The purpose of the line simplification use case 

is to reduce all the time series down to the most significant sample points to allow for finite-

element simulation of the thermo-electrical behavior of the DUTs. In parallel, during the RUL 

prediction use case, we develop an approach to predict the remaining lifetime of a DUT. Put 

another way, the model predicts how soon in the future a device will fail. Deliverables D8.1 and 

D8.2 provide more details on both use-cases. Section 4.1 additionally offers a brief recap of the 

respective pipelines. 

4.1 Description of the Use-Case Pipelines 

This section gives a brief recap of the pipelines of our two use cases and additionally points 

out the progress since deliverable D8.2. 

For both pipelines we hold a Python implementation which acts as a baseline and a DAPHNE 

DSL (domain specific language) implementation. 

The Python implementation of the line simplification pipeline makes use of NumPy9, pandas10

and a proprietary implementation of the line simplification algorithms. For the RUL prediction 

pipeline, we make use of PyTorch11 and TorchMetrics12. 

4.1.1 Line Simplification Pipeline 

First, let us look at the line simplification pipeline. At its core is a so-called line simplification 

algorithm coming from cartography is reducing the time series in a lossy way. Meaning that 

from 768 sample points of a single time series, only about 20 are retained. The rest is discarded. 

At KAI, we make use of two different line simplification algorithms, the Visvalingam-Whyatt 

algorithm (VW) [2] and the Ramer-Douglas-Peucker algorithm (RDP) [3]. These algorithms op-

timize the data reduction with a different target metric. The benchmarking efforts were put 

into the RDP algorithm. Hence, this document focuses on the RDP algorithm. 

Since deliverable D8.2, there are minor adaptions. We changed the data CSV file representation 

originally introduced in D8.2 Section 4.2. Instead of storing one CSV file for each test cycle, we 

switched to storing the values of one measured variable of all test cycles in a single file each. 

This tremendously reduces the number of CSV files from several thousands to just three. Such 

approach thereby leads to fewer file I/O operations, in turn increasing the memory footprint 

since all data of a test run is loaded into memory as a whole. 

9 https://numpy.org
10 https://pandas.pydata.org/docs
11 https://pytorch.org
12 https://lightning.ai/docs/torchmetrics/stable
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Figure 4.1: Line simplification pipeline. The red color indicates that the pipeline component is implemented with 

DAPHNE. (T = number of test runs, C = number of cycles in test run, S = number of sample points per cycle, R = 

number of indexes after reduction) 

Figure 4.1 depicts the final line simplification pipeline. First the data is read from CSV files. Per 

DUT there are three CSV files, where one contains the electrical current measurements, the 

second contains the voltage measurements and third one the relative time of the sample 

points. Afterwards as a preparation step, the electrical current vector is multiplied (dot product) 

with the voltage vector to obtain the power vector. The latter is forwarded to the RDP algorithm 

implementation. The results are represented as a list of indexes. They are aggregated from all 

test cycles into a matrix and written together into a CSV file with a single write operation at the 

end. 

4.1.2 Remaining Useful Lifetime Prediction 

Our second use case, the RUL prediction pipeline is modeled as a regression problem. A deep 

ML model predicts a value between 1.0 and 0.0. A value 0.9 indicates that the device still has 

90% of its lifetime left and 0.1 indicates that only 10% lifetime are left (wear out). Since wear 

means that the device behavior and respectively the measurement data will change over time, 

the model needs to be able to learn this. To map time dependency into the input data, we 

stack a specific number of subsequent cycles into a tensor forming a window. 

Figure 4.2: The input data format for the RUL prediction model 

Figure 4.2 presents the input data format. A test cycle consists of a current waveform (Id) and 

a voltage waveform (Vds). These two arrays are stacked to a matrix. Several cycles in turn are 

stacked to a tensor. Increasing the start index of the tensor forms a moving window. For train-

ing purposes, the windows are sampled randomly. This approach enables the usage of CNNs. 
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Figure 4.3: The architecture of the CNN model 

In Figure 4.3, the layers of the CNN model are shown. As you can see, default CNN layers are 

used for feature extraction. Several dense layers solve the regression task. *no. of channels* 

stands for the window size (number of stacked cycles). 

Figure 4.4: RUL prediction pipeline (inference). The red color indicates that the pipeline component is implemented 

with DAPHNE. The lavender color indicates that the respective component was running with another system (here 

PyTorch). (T = number of batches (1004 

Figure 4.4 shows the RUL prediction pipeline. During the implementation of this pipeline, 

DAPHNE was not yet providing the backwards passes of the NN functions. Hence, it was not 

actually possible to perform model training with DAPHNE back at that moment. To bypass this, 
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we reused the learned parameters from PyTorch by exporting them into CSV files and loading 

them into DAPHNE. 

The input data has a CSV representation as well. It already contains the prepared batches with 

64 windows of a test run. This was done with a Python script which translated the original 

dataset from PyTorch .pt files into the described representation. 

After loading, the pipeline forwards the batches to the model for inference. All predictions are 

stacked in a temporary matrix. After inferring all batches, the respective ground truth is also 

loaded and stacked. The prediction matrix and the label matrix are both fed into the three error 

metric functions specified in 4.2.2. In the end the final metric values are stored in a CSV file. 

For the RUL prediction pipeline, the DAPHNE DSL implementation differs substantially from 

the Python baseline implementation. Python offers OOP and PyTorch makes use of this at sev-

eral points. For our Python ML pipeline, we have a single cycle stored in .pt files (in contrast 

to a whole batch per CSV file). The windows and batches are then loaded and composed dy-

namically during runtime by leveraging PyTorch's Dataset and DataLoader classes. For bet-

ter comparison the parameter num_workers of DataLoader is set to 0 which avoids data 

loading in parallel. Additionally, we set the number of threads for PyTorch to 1. Although 

PyTorch allows for tracking the metrics on the fly, we still stack all predictions and calculate the 

error metrics as one batch for better comparability. TorchMetrics is used to calculate the error 

metrics. 

4.2 Benchmarking Setup 

This section describes the benchmarking setup for the KAI use cases. It describes which metrics 

are used to compare the baseline implementation with the DAPHNE implementation and how 

the metrics are measured. 

4.2.1 Line Simplification Benchmark 

In order to benchmark the line simplification pipeline, we extracted a subset of the KAI dataset 

consisting of 60 test runs (specific test types of lower interest were filtered out). This means the 

dataset counts an overall of 180 CSV files (and another 180 DAPHNE specific .csv.meta files). 

It has a total of ~1.3 million cycles to reduce and ~17 GB in aggregated file size. Depending 

on the benchmarking purpose we only make use of a part of this data. 

The line simplification pipeline is a pure CPU workload. We decided to evaluate the following 

performance metrics: 

 Runtime (scalar) 

 CPU utilization (time series) 

 Memory usage (time series) 

We are running the experiments on our company internal High-Performance Computing (HPC) 

cluster. Specifically, the experiments are conducted on a compute node with an Intel Xeon Gold 

6242 CPU (2.80 GHz) with 32 cores with a Red Hat Enterprise Linux (RHEL) 8 installation. IBM 
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Spectrum LSF13 provides job queueing, submitting and scheduling. Our internal IT provides an 

in-house developed extension of LSF for tracking benchmarking metrics of LSF jobs. 

4.2.2 Remaining Useful Lifetime Prediction Benchmark 

For the data science experiments, we extracted a subset of 130 test runs. This filtering was 

necessary to compose a homogenous dataset with comparable device types and test condi-

tions. The selected data comprises 1004 files as CSV representation for DAPHNE and it counts 

~307,000 files (and test cycles at the same time) as PyTorch binary file representation for Py-

thon. The CSV files have 51 GB and the PT files 2.4 GB in overall file size. The significant differ-

ence of the dataset size roots from data duplication in the CSV representation since whole 

windows are stored and windows do have an overlap. However, the PT files are read out many 

times instead of only once. 

Because the RUL prediction use case pipeline makes usage of a deep CNN model, GPU kernels 

are leveraged. Still, the data loading is performed by a CPU. The following performance metrics 

are selected: 

 Effective end to end runtime (scalar) 

 CPU utilization (time series) 

 Memory usage (time series) 

 GPU utilization (time series) 

 GPU memory usage (time series) 

 GPU power consumption (time series) 

Additionally, the performance of the ML model is measured with the following error metrics: 

 Mean absolute error (MAE) (scalar) 

 Root mean squared error (RMSE) (scalar) 

 Coefficient of determination (R²) (scalar) 

The model error metrics are calculated as described in 4.1.2. All experiments were conducted 

on a machine with two Intel Xeon Gold 6238R (2.20GHz) CPU, a NVIDIA Tesla T4 GPU and an 

Ubuntu 20.04.6 LTS installation. The performance metrics are obtained with a Python package 

named gpustat14. This package uses NVIDIA's official Python bindings for the NVML library15. 

4.3 Benchmarking Results 

This section shows the results of the benchmarking experiments, comparing the DAPHNE DSL 

implementation with the Python baseline implementation. 

4.3.1 Line Simplification Experiments 

The following DAPHNE version was used for the experiments: commit bed9bcde at daphne-

eu/daphne/main on 2024-08-08. The DAPHNE binary was executed with default arguments 

(daphne myScript.daphne). 

13 https://www.ibm.com/docs/en/spectrum-lsf
14 https://github.com/wookayin/gpustat
15 https://pypi.org/project/nvidia-ml-py
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To compare the runtime between the DAPHNE and the Python baseline, the whole benchmark-

ing dataset of 60 test runs is used. Both implementations processed the exact same amount of 

data. 

Table 4.1: Runtime of the line simplification use case of the DAPHNE DSL implementation and the Python implemen-

tation on the exact same dataset 

Python DAPHNE DSL

Runtime 3h15m26s 61m54s

Table 4.1 shows that the runtime of the DAPHNE DSL script is about 3.16 times faster than the 

Python script. 

For tracking the CPU utilization and the memory footprint, we chose a differing dataset size to 

achieve an hour of runtime for both implementations. The benchmarking tool only stores the 

sample points if changes occur. 

Figure 4.5: CPU utilization of the Python implementation and the DAPHNE DSL implementation of the line simplifi-

cation pipeline 

Figure 4.5 shows the CPU load. Both implementations fully utilize one CPU core. 
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Figure 4.6: Memory usage of the Python implementation and the DAPHNE DSL implementation of the line simplifi-

cation pipeline 

Figure 4.6 depicts the memory usage (resident set size) of both implementations. The line sim-

plification iterates over many CSV files. First it loads a file, then processes the data and finally 

writes the result. As can be seen, the Python implementation frees the memory which is used 

up within a loop iteration and not of relevance for the next iteration anymore. DAPHNE uses 

less memory overall. The spikes show a fast allocation and freeing of memory. As can further 

be seen in Figure 4.6, the DAPHNE implementation shows a small memory leak: It needs a 

slightly increasing amount of memory with each iteration because not all disposable objects 

are freed. We have reported this issue to the technical partners who are working on the bug 

fixes. 

4.3.2 Remaining Useful Lifetime Prediction Experiments 

The following DAPHNE version was used for the experiments: commit with hash 18833321 at 

corepointer/daphne/dnn-ops on 2024-07-29. The DAPHNE binary was executed with the 

arguments, daphne --cuda --config UserConfig.json myScript.daphne, mainly 

to ensure the usage of GPU kernels. 

Table 4.2: Runtime of the RUL prediction use case of the DAPHNE DSL implementation and the Python implementa-

tion on the exact same dataset 

Python DAPHNE DSL

Runtime 7m53s  11m27s

In Table 4.2, we can see that for the RUL prediction pipeline, the DAPHNE script needs ~150% 

of the runtime of the Python script. 
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Figure 4.7: CPU utilization of the Python implementation and the DAPHNE DSL implementation of the RUL predic-

tion pipeline 

In Figure 4.7, the CPU load can be seen. Both implementations fully utilize one CPU core. 

Figure 4.8: GPU utilization of the Python implementation and the DAPHNE DSL implementation of the RUL predic-

tion pipeline 
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Figure 4.8 shows the GPU utilization. One pulse represents the processing of one batch or in 

other words one inference pass. This figure shows that the DAPHNE implementation puts a 

very fluctuating load onto the GPU although the batch size is kept constant. Furthermore, the 

peaks are more than ten times higher. 

Figure 4.9: Memory usage of the Python implementation and the DAPHNE DSL implementation of the RUL prediction 

pipeline 

Figure 4.9 depicts the memory footprint of the RUL prediction pipeline. The DAPHNE imple-

mentation shows a continuous increasing memory usage. This result was retrieved with an 

earlier version of DAPHNE. Most of the reasons leading to memory leaks are already fixed as 

can been seen in Figure 4.6. Since performing this experiment is connected to more effort on 

our side, there was not enough time left between the memory leak fixes in the past month and 

the deliverable deadline to rerun the benchmarking experiment. 

Figure 4.10: GPU memory usage of the Python implementation and the DAPHNE DSL implementation of the RUL 

prediction pipeline 

Figure 4.10 shows the GPU memory usage. The behavior of both implementations is very sim-

ilar. 
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Figure 4.11: GPU power draw of the Python implementation and the DAPHNE DSL implementation of the RUL pre-

diction pipeline 

The plot in Figure 4.11 shows the GPU power draw. DAPHNE draws slightly less power but since 

the runtime is longer it consumes more energy. 

Table 4.3: Inference scores of the PyTorch model and the DAPHNE model of the RUL prediction use case 

Python DAPHNE DSL

MAE 0.051 0.051

RMSE 0.071 0.071

R2 Score 0.937 0.932

Table 4.3 shows the MAE and RMSE metrics as well as the R2 score. The values coincide sub-

stantially. Since the use case reuses already learned parameters, similar results are expected. 

4.4 Benchmark Conclusion of KAI Experiments 

For some tracked benchmarking metrics, the behavior of the DAPHNE DSL and Python are 

similar (CPU load, GPU memory usage, GPU power draw). Significant differences could be ob-

served for the memory usage and the GPU load. Performance benchmarks showed that 

DAPHNE was suffering from memory leaks. Investigations with the analysis tool Valgrind16 re-

vealed that the memory leaks were caused by string concatenations, file input/output and ker-

nel casting (this can still be observed in Figure 4.9). All three have been fixed in the meantime. 

It remains to find the reasons for the smaller leaks. Regarding the GPU load, the investigations 

are still running. 

For pure CPU loads, like the line simplification pipeline, DAPHNE is already several times faster 

than the respective Python implementation. When it comes to GPU load, DAPHNE cannot yet 

keep up completely with PyTorch. The latter is a very mature and dedicated framework for GPU 

loads and hence hard to beat. Anyway, DAPHNE aims to improve the performance of hetero-

genous loads. 

16 https://valgrind.org
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5 Automotive Vehicle Development Case Study: Ejector Ge-

ometry Optimization (AVL 1) 
Within the DAPHNE project, two major improvements have been implemented: 

 Active DOE Workflow (see D8.2 – section 6.2) 

 Machine Learning & Optimization Python Implementation (see D8.2 – section 6.3) 

The active DOE (Design of Experiments) implementation replaces all manual steps of the pipe-

line, enhancing productivity and minimizing throughput time. This improvement is achieved 

through a Python script that automates all previously manual steps. As a result, engineers can 

focus on analyzing results and understanding key concepts, such as those caused by flow sep-

aration. 

In the initial pipeline, the entire Machine Learning and optimization process was handled by 

AVL’s in-house software, CAMEO. To diversify the pipeline and enable the implementation of 

the DaphneLib Python API, an alternative option was developed using the Python ecosystem. 

The Python implementation expanded the range of available Machine Learning architectures, 

overcoming the initial limitations posed by CAMEO. This capability to test a broader set of 

Machine Learning architectures proved to be a significant advantage resulting from the 

DAPHNE project. By implementing a Kernel Ridge Regression model, the initial layout of an 

ejector for a robustness test operating condition was improved by approximately 60% (see 

Figure 5.1). 

These enhancements significantly streamline the workflow, allowing for more efficient and ef-

fective analysis and optimization processes. 

Figure 5.1: Kernel Ridge Regression vs. Robust Neural Network 
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5.1 Description of the Use-Case Pipeline 

The AVL Ejector Use-Case pipeline is designed to optimize the design of an ejector com-ponent 

for fuel cell applications. An ejector replaces a blower to increase overall efficiency by utilizing 

high-pressure gas available in tanks, thereby enhancing the system's performance. 

In the ejector pipeline, the first step involves performing a data-driven initial layout of the 

component to meet performance requirements for specific operating conditions, such as a new 

customer project. The performance prediction is achieved through 3D CFD (Computational 

Fluid Dynamics) simulation. For this, the initial layout must undergo meshing, a process that 

spatially discretizes the fluid domain. Additionally, the simulation setup is generated based on 

the specified operating conditions. Following this, a finite volume-based 3D CFD simulation is 

executed, and the results are post-processed for further analysis. 

After completing the initial simulation loop, the performance results are compared against the 

requirements of the system under investigation. If the target performance is achieved, the de-

sign process can be concluded, or further fine-tuning can be carried out to optimize the design. 

If the target is not met, Machine Learning models are retrained with the new data. The geom-

etry is then optimized to enhance performance, and approximately 20 new geometric variants 

are generated. This initiates a loop of geometric variant creation, simulation, post-processing, 

Machine Learning training, and optimization, which continues until the performance require-

ments are satisfied. 

The DAPHNE Library (DaphneLib) is integrated into the Python Machine Learning workflow at 

the prediction function stage. During optimization, this function is called approximately 10,000 

times using a genetic optimization algorithm (optimizer block in Figure 5.2) to evaluate a pop-

ulation size of around 1,000 candidates. This results in a total of 10 million evaluations, ensuring 

a thorough and comprehensive optimization process. 

These detailed steps ensure that the design and optimization of the ejector component are 

both efficient and effective, ultimately leading to enhanced performance and reliability in fuel 

cell applications. 

Figure 5.2: Ejector dimensioning pipeline 
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5.2 Benchmarking Setup 

For benchmarking, we utilized a Dell Precision 7865 workstation equipped with 128GB of RAM 

and a 16-core AMD Ryzen Threadripper PRO 5955WX processor. To ensure accurate results, all 

other productive tasks were halted to free up the CPUs for benchmarking purposes. 

The benchmarking process employed the UMLAUT framework, which was developed as part 

of the DAPHNE project. UMLAUT is applied to the Python scripts by simply adding a decorator 

to the function that is to be benchmarked. UMLAUT allows for seamless integration and easy 

setup for performance analysis. 

An instance of the benchmark object is created to define the parameters we want to analyze, 

such as RAM utilization and CPU utilization. The results of the benchmarking process are stored 

in a SQL database. Access to these results is facilitated by a shell script provided by the UMLAUT 

framework, which can be found at UMLAUT Framework GitHub Repository. 

By utilizing this comprehensive benchmarking setup, we can accurately assess and optimize 

the performance of our systems, ensuring they meet the required standards and per-form ef-

ficiently under various conditions. 

The benchmarking takes place with a sample rate of 0.01 s and 1.5 s 

5.3 Productivity & Performance Improvements 

The productivity improvements of the overall development pipeline were documented in de-

liverable 8.1 and 8.2 and covers the following bullet points: 

 Active DOE Workflow (see D8.2 – section 6.2) 

 Machine Learning & Optimization Python Implementation (see D8.2 – section 6.3) 

The implementation of DaphneLib at the application level was straightforward and user-

friendly. This ease of integration was a key factor in our decision to choose DaphneLib over a 

direct implementation of DaphneDSL. 

This section will focus on the performance comparison between the stand-alone python im-

plementation and a DaphneLib supported python workflow. 

5.3.1 DaphneLib Implementation 

To generate predictions using a Kernel Ridge Regression model, the following calculations are 

required: 

 Train the model with the dataset to generate: 

o Support vectors (feature vectors from the dataset) 

o Alphas (model weights) 

 Compute the difference matrix between the support vectors and new feature vectors 

for prediction. 

 Calculate the L1 norm of the difference matrix. 

 Input the norm into the kernel function and multiply it by the model parameter gamma. 

 Obtain predictions via the dot product of alphas and the kernel matrix. 

For this purpose, the prediction function is implemented in Python in two ways: once using the 

DaphneLib and once without it. This dual implementation aims to provide a fair comparison. 
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DaphneLib is a Python API that shifts computations to DaphneDSL, enhancing computational 

performance. Although, in this use case, the primary computational load lies in the 3D-CFD 

simulation rather than the Machine Learning and Optimization components. Nonetheless, the 

DAPHNE ecosystem, particularly the DaphneLib Python API, can streamline the Python work-

flow. 

On the Optimization and Machine Learning front, the primary computational burden is related 

to predictions within the genetic algorithm used to optimize the feature vector. For instance, 

running 1,000 generations with a population of 1,000 feature vectors results in 1 million eval-

uations. 

5.3.2 Benchmarking Results 

The pipeline is benchmarked with a fixed number of 1,000 generations, varying the number of 

feature vectors in each generation (population size) across three scenarios: 100, 1,000, and 

10,000 feature vectors. The following figure presents a comprehensive comparison of runtime 

for these three different population sizes: 

Figure 5.3: Runtime comparison 

The DaphneLib implementation demonstrates increased speed compared to pure Python as 

the number of evaluations rises. The DaphneContext() instance is computed once per genera-

tion utilizing the DaphneLib function DaphneContext.from_numpy() for data exchange 

from Python towards DAPHNE. At smaller feature vector sizes, the overhead associated with 

shifting computations from NumPy and Python to DaphneDSL is more pronounced. However, 

as the feature vector sizes grow with increased generation sizes, this overhead becomes less 

significant. This indicates that a full DaphneLib implementation of the optimizer could be a 

viable option to minimize overhead and enhance performance. 
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The next sections will show runtime, CPU utilization and memory allocation for the three sce-

narios of different population sizes. 

5.3.2.1 Population size 100 

Figure 5.4: CPU utilization – population size 100, sampling 0.1s 

Figure 5.5: Memory allocation – population size 100, sampling 0.1s 

Note that the plain Python implementation does not utilize all available CPUs, but DAPHNE 

does. Figure 5.4 indicates that the faster execution in Python is resulting from parallelization 

overhead associated with DaphneLib execution. There is an indication of a memory leak when 

utilizing DaphneLib and it likely significantly slows down computation. 
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5.3.2.2 Population size 1000 

Figure 5.6: CPU utilization – population size 1000, sampling 0.1s 

Figure 5.7: Memory allocation – population size 1000, sampling 0.1s 

Compared to a population size of 100, the plain Python implementation now utilizes more of 

the available CPU resources. However, the memory allocation leak remains an issue on the 

DAPHNE side. The performance advantage of the plain Python implementation diminishes sig-

nificantly as the population size increases, reducing from being 6.3 times faster to only 1.4 

times faster. 

5.3.2.3 Population size 10000 

The trends observed in other population sizes continue. The plain Python implementation is 

now 1.2 times faster than the DaphneLib implementation. Overall, these scenarios demonstrate 

that the more computations are shifted towards DAPHNE, the faster the pipeline becomes. 

The following figures present the benchmark: 
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Figure 5.8: CPU utilization – population size 10000, sampling 1.5s 

Figure 5.9: Memory allocation – population size 10000, sampling 1.5s 
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6 Automotive Vehicle Development Case Study: Virtual Pro-

totype Development (AVL 2) 
This case study is a step towards the vision of data-driven process optimization: The data (CAD 

models capturing product geometry, simulation models capturing product behavior etc.) de-

scribing the product under development and the evolution thereof along the development 

process shall be utilized to find patterns which can be improved in future product development. 

For instance, an example pattern might indicate similar simulation and physical test results for 

specific test cases. This entails that these physical tests can be avoided in future product de-

velopment, rendering the underlying development process more efficient in terms of time and 

cost, because costly and time-intensive physical tests can be replaced by significantly cheaper 

and quicker simulation without compromising product quality. 

Specifically, this case study focuses on creating synthetic data, i.e., data describing the product 

under development and the evolution thereof along the development process. This synthetic 

data is the prerequisite for a follow-up step (beyond the DAPHNE project): The pre-training of 

machine learning models (to be utilized for process optimization), which can eventually be 

refined with relatively small volumes of real-world data. Synthetic data is inevitable in the con-

text of the given case study, which poses a few-shot learning problem: There are not millions, 

but only tens of different development projects available to learn from in a typical organization, 

e.g., an automotive OEM or supplier. 

The synthetic data to be created shall be as realistic as possible, i.e., show the same patterns 

and flaws that are observed by experts in real-world product development. Moreover, the pipe-

line producing this data shall work autonomously, without requiring manual input, so that da-

tasets can be created automatically and in sufficient volume to be able to train state-of-the-art 

machine learning models. 

Since creating such training data in sufficient volume is a numerically highly demanding task 

(as are the follow-up steps of data management, data analysis, and machine learning model 

training), DAPHNE technology needs to be leveraged. 

6.1 Description of the Use-Case Pipeline 

The pipeline has been substantially reworked and improved within the DAPHNE project: As 

described in deliverable D8.2 (section 6.2), a severe restriction of the baseline pipeline has been 

the requirement of manual input during pipeline execution. To achieve pipeline automation, 

genetic algorithms are utilized as a new approach to synthetic data generation. The conceptual 

framework of applying genetic algorithms to development process data generation has been 

elaborated in collaboration with University of Maribor: The essential concepts of genetic algo-

rithms (candidate solution representation, fitness function, manipulation operators) have been 

defined for the domain of product development processes. This conceptual framework has 

been implemented leveraging DAPHNE technology. The architecture of this pipeline is shown 

in Figure 1. The pipeline has been substantially reworked during the DAPHNE project. In the 

following, we explain the pipeline in more detail. 
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Figure 6.1: Architecture of the pipeline for development process data generation 

The first pipeline step is the manual specification of pipeline hyperparameters, i.e., the number 

of generations for the genetic algorithm, number of individuals per generation, and develop-

ment process structure. The development process structure captures the constraints of real-

world development processes and ensures that the synthetic data also adheres to these con-

straints, e.g., that a process consists of several subsequent development phases, and different 

aspects of the product are elaborated in different process phases. 

Based on these hyperparameters, a set of (initially random) parent candidate solutions are se-

lected from a pool of candidate solutions. A new generation of child solutions is created from 

this set of parents by means of crossover, i.e., merging parameter vector subsets of different 

parent candidates. To enhance diversity among child solutions, additional solution candidates 

are created randomly using mutation, i.e., by randomly changing individual parameter values. 

Specifically for methods of genetic algorithms (e.g. cross-over; mutation), the pymoo frame-

work17 is applied. Each candidate solution in this generation is fully characterized by a unique 

parameter vector (cf. D8.2 section 6.2.2), which encodes a specific product design.  

The KPIs (Key Performance Indicators) of each candidate solution are computed by parameter-

izing a simulation model with the candidate’s parameter vector, executing, and post-pro-

cessing the simulation. Based on the KPI results, the fitness of each candidate solution is eval-

uated by means of sorting (both non-dominated and crowd-distance sorting, cf. [4] for details) 

with respect to the KPI results. The best candidate solution in each generation is stored in the 

development process data file as an individual data point, i.e., a parameter-KPI-tuple. 

In the last step of the pipeline, the generated data is visualized so that domain experts can 

assess and judge data quality (cf. next section for examples of data visualization). If the number 

of generations as specified by a hyperparameter is reached, the pipeline stops, otherwise the 

best candidate solutions are used as parents in the next generation of the optimization. 

17 https://pymoo.org
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Crucially, this pipeline does not need manual intervention, but the expected patterns in the 

time series data of parameter values over time and KPI values over time emerge from the op-

timization process based on genetic algorithms. 

6.2 Benchmarking Setup 

For benchmarking the pipeline, UMLAUT18 and the Python library timeit19 are used. The focus 

of benchmarking is put specifically on three sections in the pipeline (see Figure 6.1), where 

DaphneLib is utilized: Crossover, post-processing and data visualization. The crossover function 

is predefined in the opensource framework pymoo and requires additional tools and libraries.  

The Docker image20 provided by DAPHNE is running on a Windows Subsystem for Linux 

(WSL21). For benchmarking, the DAPHNE commit 4e9694322 is used. Besides the DaphneLib 

integration, the pipeline also includes a third-party tool for simulation: As mentioned in section 

6.1, the evaluation of each proposed candidate solution by means of simulation is essential. 

For executing these simulations, the AVL co-simulation tool Model.CONNECTTM 23 is used. In 

Table 6.1, the software tools and libraries used for running and benchmarking the pipeline are 

listed. In Table 6.2, the high-level specifications of the hardware system used for benchmarking 

are listed. 

Table 6.1: List of tools and libraries used for executing and benchmarking the pipeline 

Tool / Library Version

Cython 3.0.10

Docker 24.0.5

Linux Ubuntu 22.04.4 LTS

Model.CONNECTTM R2022.2

Numpy 1.24.4

Pandas 2.0.3

pymongo 2.6.1

pymoo 0.6.1.1

UMLAUT 0.1.0

WSL2 2.2.4.0

Table 6.2: Hardware system for running pipeline benchmarks 

Attribute Version

Processor Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz (2 cores)

RAM 176 GB

System type 64-bit operating system, x64-based processor

18 https://github.com/daphne-eu/umlaut
19 https://docs.python.org/3/library/timeit
20 https://hub.docker.com/r/daphneeu/daphne-dev
21 https://learn.microsoft.com/en-us/windows/wsl
22 https://github.com/daphne-eu/daphne/commit/4e96943 
23 https://www.avl.com/en-de/simulation-solutions/software-offering/simulation-tools-a-z/model-

connect
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6.3 Productivity & Performance Improvements 

As mentioned in section 6.1, the pipeline existing at the beginning of the DAPHNE project 

(referred to as “baseline0” in the remainder of this section) has been improved in terms of 

architecture and algorithmic approach (“baseline1”, using genetic algorithms) and in terms of 

implementation (“baseline2”, using DAPHNE technology) in the DAPHNE project. Thus, there 

are 2 different comparisons to be analyzed: 

 Baseline0 vs. baseline1: Productivity and performance improvements due to changes in 

architecture and algorithms, as addressed in section 6.3.1 

 Baseline1 vs. baseline2: Productivity and performance improvements due to leveraging 

of DAPHNE technology, as addressed in section 6.3.2. 

6.3.1 Pipeline Results: Development Process Data 

Since the baseline1 pipeline has been substantially reworked compared to the baseline0 pipe-

line, the development process data generated by the baseline1 pipeline shall be presented and 

discussed.  

Figure 6.2: Generated development process data: Parameter values over generations. Parameter values of the best 

candidate solution in each generation are plotted 

Figure 6.2 shows the visualization of a sample development process dataset. On the x-axis, the 

consecutive generations of the genetic algorithm optimization are plotted, which is semanti-

cally equivalent to time passing in the development process. On the y-axis of each subplot, 

one specific parameter (i.e., component of the parameter vector) is plotted. The blue curves 

consist of individual data points: One data point (i.e., the parameter-KPI-tuple) per generation. 

Each data point is the best / fittest candidate solution in its generation. In this example (sim-

plified for illustrative purposes), each candidate solution is specified by 6 different parameter 

values: The product under development in this case is a car, the design of which is encoded by 

these 6 parameters. Considering the parameter “Wheel track” (bottom right subplot), one can 

see that the parameter value changes from generation to generation, showing an oscillating 

behavior and converging to a final optimal value, which is also the behavior of parameter values 

over development time typically observed in real-world development projects. One can also 

observe in these 6 subplots that shortly after Generation 100, an optimal parameter vector has 

been found. Finally, the development process structure as specified in the hyperparameters is 

reflected in these subplots: For this simplified example development process, the process is 
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defined to consist of 2 phases: The 1st phase optimizes fundamental hardware-related param-

eters (wheelbase, wheel track, vehicle mass) while the rest of the parameters are kept constant 

(at best-guess values). The 2nd phase optimizes the remaining parameters while retaining the 

optimal values found in the 1st process phase. 

Figure 6.3 shows the visualization of the same sample development process dataset as Figure 

6.2, but now product KPIs over generations (i.e., the KPI part of the parameter-KPI-tuple). In 

this simplified example, two different KPIs of the product under development are considered. 

The parameter values are the input of the simulation (cf. Figure 6.1), while the KPIs are the 

output of the simulation. The KPIs are relevant for evaluating the fitness of each candidate 

solution: The closer a candidate’s KPIs are to the pre-defined target values as specified in the 

product’s requirements (not shown here for sake of simplicity), the better the candidate solu-

tion is. As for the parameters, also the generated KPI time series show the oscillating and con-

verging behavior, as observed in real-world projects. 

Figure 6.3: Generated development process data: KPI values over generations. Specifically, KPI values of the best can-

didate solution in each generation are plotted. 

In summary, the development process data created by the baseline1 pipeline well addresses 

the two measurables defined in deliverable D8.1 (section 6.3): The first measurable is the simi-

larity of the synthetic data to those data and patterns observed in real-world projects. As ana-

lyzed in Figure 6.2 and Figure 6.3, the created data exhibits patterns also typically observed in 

real-world projects, while not showing any patterns deemed unrealistic by domain experts. The 

second measurable is the pipeline’s scalability. As laid out in this chapter, the revised pipeline 

creates realistic synthetic training data autonomously, without manual intervention during 

pipeline execution. Thus, this autonomy provides for scalability of data generation, since the 

main bottleneck of manual intervention (as laid out in deliverable D8.2, section 6.2) is resolved, 

which means that synthetic data can be created in significantly larger volume using the revised 

pipeline. 

6.3.2 Pipeline Benchmark: Results 

In this section, the effect on performance of DaphneLib utilization in the baseline2 pipeline 

investigated. Comparing Figure 6.4 and Figure 6.5, one can observe that the performance of 

the pipeline is decreasing overall. We attribute the longer runtime to intense usage of parallel-
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ized matrix computations in the baseline1 pipeline: In the data visualization pipeline step (Fig-

ure 6.1), matrices for each of the six parameters are computed in parallel. Since DaphneLib is 

(at the time of benchmarking) not capable of parallelized matrix computations, the observation 

of increased runtime is to be expected. In the CPU usage the baseline2 pipeline is peaking 

twice and the memory behavior is similar to baseline1. Since the data visualization step is not 

executed repeatedly but only once per pipeline execution, any potential memory leak cannot 

be observed in the results. 

Figure 6.4: Benchmarking the data visualization pipeline step without DaphneLib (baseline1 pipeline) 

Figure 6.5: Benchmarking the data visualization pipeline step with DaphneLib (baseline2 pipeline) 

For the postprocessing pipeline step, we observe a similar memory usage behavior for both 

baselines, as shown Figure 6.6 und Figure 6.7. Differences can be seen in the CPU usage which 

plateaus at approximately 100% for baseline1 and has a sharp peak for baseline2. As for the 
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visualization pipeline step, the worse pipeline performance is caused by parallel computations: 

The postprocessing computations are executed in parallel for each candidate solution in a 

given generation (for benchmarking, 100 candidate solutions are evaluated per generation). 

With parallelized computing capabilities in DaphneLib these timing issues can not only be pre-

vented, but it is likely that the performance will improve. 

Figure 6.6: Benchmarking the postprocessing pipeline step without DaphneLib (baseline1 pipeline) 

Figure 6.7: Benchmarking the postprocessing pipeline step with DaphneLib (baseline2 pipeline) 

Overall, the pipeline performance (baseline2 vs. baseline0) has improved significantly within 

the DAPHNE project: A full simulation run for baseline0 took approximately four days. With the 

genetic algorithm approach of the revised pipeline, the pipeline execution is now fully auto-

matically and significantly faster. One execution of the revised pipeline (both baseline1 and 
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baseline2) can be done (using the same hardware setup) within one day. These improvements 

can substantially overcompensate the DaphneLib performance drawbacks, which are exclu-

sively caused by the issue parallelized computation. Prospective parallelized computation ca-

pabilities and genetic algorithm methods provided by DAPHNE would likely further improve 

the pipeline performance substantially. 
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7 Additional Integrated Pipelines 
In this section, we present two additional pipelines using the DAPHNE system. These pipelines 

have been developed by our partners during the DAPHNE project. 

7.1 Randomized Optimization Algorithms 

This additional pipeline presents Randomized Optimization Algorithms (ROA) in DAPHNE run 

in Singularity container on EuroHPC Vega using Slurm [5]. 

First, the DAPHNE system is downloaded as source code, cloning DAPHNE main repository as 

from GitHub: the git command is invoked, then the remote code is cloned into the local file 

system. Then, a singularity image is 

compiled locally and transferred to the 

Vega so that it can be used later for 

compilation of DAPHNE: the singularity 

command is invoked, then the build 

proceeds and completes by creating 

the daphneeu.sif image. 

In order to validate DAPHNE in an Eu-

roHPC infrastructure, the container im-

age is copied to Vega, where the two-

factor authentication and checking of 

the user access certificate take place: 

the image file is specified, then authen-

tication takes place, then copying pro-

ceeds. With the singularity image and 

source code in-place, the DAPHNE sys-

tem is then compiled on the target sys-

tem (Vega) from source code: the com-

pilation is started, and the build then 

finishes. After the images are prepared, 

a ROA [6] is implemented in roa.d and 

run with different configurations (sam-

ple configurations with for...do and the 

srun command) and saving of outputs 

and timings. Each task contains an in-

dependent run that start with a fixed 

seed (RNi) for random generator in 

ROA. For each task, up to 1 GB memory and 10 minutes node use are requested to run the 

workload using the container. 

To further explain the deployment and benchmarking of ROA in DAPHNE for our use case, we 

also provide a flowchart which is seen in above Figure 7.1 and shows how the data flows in the 

ROA use case. The ROA@HappyCat center part in red color is completely executed by the 

DAPHNE system, as the Differential Evolution (DE) [7] parameters D (dimension), G (number of 

Figure 7.1: Pipeline definition flowchart for DAPHNE ROA CI ad-

ditional pipeline
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generations), and NP (population size), and function for fitness evaluation (HappyCat) are pro-

vided within the core of the use case. The pipeline generates data analysis reports (e.g. in PDF 

format, in the bottom of the flowchart), after it builds the Singularity image from Docker plat-

form and DAPHNE from GitHub source and runs the ROA tasks over Slurm (flowchart top). The 

collection of logs and cleanup after waiting of the tasks completion and lookup into the Slurm 

database to see resource use, then contribute to generating the reports. 

7.1.1 Benchmarking Setup 

A sample setup run set for ROA in single objective case is presented in this paper, using a 

challenging optimization function HappyCat [8], where the fitness evaluation of a numerical 

input vector x is computed by the function 

𝑓 = ( (∑(𝑥2) − 10)2)0.125 +

∑(𝑥2)
2 + ∑(𝑥)

10
+ 0.5

The CPU partition of Vega was used and prepared as described in [5], using Singularity and 

source code of DAPHNE with underlying software packages. As DAPHNE supports LLVM low-

ering and also implements Multi-Level Intermediate Representation (MLIR) kernels [6], the gen-

erated code for the fitness function in LLVM was presented in [5], for which the function defi-

nition includes the constants definition, allocations, and the specific calls to the implemented 

kernels (e.g. for matrix operations like addition/subtraction or multiplication/division). The al-

gorithm is configured with combinations of D at 10, 100, 1000 and NP at 10, 100, 1000. 

As D and NP are increased by tenfolding (each increase is ten times larger), their impact to 

result quality and workload time is observed, while testing if the system computes the workload 

successfully. The setup script is run on Vega and is listed in Figure 7.2: the run-daphne.sh is 

supplied with the roa.d file that is parameterized with D, NP, and RNi. The run-daphne.sh exe-

cutes within the daphneeu.sif image, which itself is executed over Slurm. 

Figure 7.2: Deployment of ROAs with DAPHNE using Slurm on Vega 

Although the prepared independent randomization runs output the same computational re-

sults for the same configuration, their runtime varies. Considering that in the previous deliver-

able D8.1 the runtime was the identified crucial measurable, this benchmarking setup focuses 

for D in 10 100 1000; do 
for NP in 10 100 1000; do 

echo D=$D NP=$NP 
for RNi in {1..10}; do 

echo -n . 
{ time srun --mpi=none \ 

--time 10 --mem=1G \ 
../daphneeu.sif \ 
./run-daphne.sh roa.d \ 
D=$D NP=$NP RNi=$RNi \ 
> results-D-$D-NP-$NP-RNi-$RNi-out.txt & 

} 2> time-D-$D-NP-$NP-RNi-$RNi-out.txt  
done #RNi 

done #NP 
done #D 
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on measuring runtime when allocating Slurm tasks on HPC and executing the randomization 

runs as well. The allocation time is important for HPC users so that they do not wait for their 

results longer than running sequentially, as allocation times might exceed the combined time 

rendering the speed up nonsignificant from the user perspective, which should be alleviated 

and is hence benchmarked here as well within the measured time. 

7.1.2 Productivity & Performance Improvements 

As identified in the previous deliverable D8.1 that measuring time is the crucial measurable and 

as in deliverable D8.2 it has been identified, that e.g. automotive Product Development Pro-

cesses includes finding near-optimal solutions by iterating and optimizing product design, 

productivity and performance are addressed in this subsection with regard to  improving a 

framework that creates an optimization technique sub-pipeline being mapped to some specific 

case study. Therefore, to check that the optimization technique works, the generated ROA 

computational results are gathered and checked if the fitness is converging toward the mini-

mum values and hence the main functionality works. 

The optimization results from the ROA runs (fitness convergence through generations) as ex-

plained in the above deployment preparation, are presented in Figure 7.3 as a set of con-

vergence graphs, in configurations with dimensions D of 10, 100, 1000 and population sizes 

NP of 10, 100, 1000. 

Figure 7.3: Convergent optimization runs (fitness on vertical axis, generations on horizontal axis) using DAPHNE ROA 

on function HappyCat, for different independent seeds 

For each of the runs plotted, we observe that the fitness function optimized by the ROA is 

successfully improving, hence, the ROA CI is performing its main functionality of optimization. 
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The respective timings of the real time to allocate and execute different job variations are 

shown in Figure 7.4 as reported by time command. We can observe that the configuration of 

D=1000 and NP=1000 in case (i) has the far highest time requirements overall for these cases. 

When observing each of the subfigures separately, we see some limited degree of variation in 

job allocation and execution waiting time from 2 to 22 seconds, but these are much less than 

the case (i) that always reported timings above 100 seconds (with only run 5 and 7 above 200 

seconds, but still below maximum requested allocation of 10 minutes). We also further in-

spected the Slurm database to profile run 7 and see that while it consumed 92.139 Wh in 582 s, 

the task has spent only 8 seconds waiting to be allocated, on empty current user queue, which 

further demonstrates fast Vega task allocations, practical in this use case. 

Figure 7.4: Times (in seconds, on vertical axis) of running optimization runs (runs 0 to 9, on horizontal axis), for dif-

ferent configurations (a)-(i) 

Figure 7.5: Combined time (left bar in the plot) vs. batched time (right bar in the plot) 

In Figure 7.5 on the right, the combined time of processing all batched jobs, compared to 

running them with Slurm, is presented, demonstrating the speedup of real time needed by 
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running the tasks in parallel, and hence, scaling. Also, when running just a subset of the jobs 

with much more similar timings (e.g. jobs with D=100, NP=100) for much more independent 

runs, the speed up is mostly capped by the longest running job. 

While the responsiveness of the Slurm scheduler varies slightly due to HPC workload of all 

running jobs, the batching of the set of jobs however greatly reduces the crucial measurable 

of time required to execute a batch, compared to just sequentially running each job. Also, as 

allocation time is important for HPC users considering their productivity so that they do not 

wait for their results longer than running sequentially, the allocation times by far did not exceed 

the combined time, i.e. the speed up was significant also from the user perspective. The main 

observed advantage is hence the potential for scaling the ROA that was successfully bench-

marked and scaled through tasks in Slurm. 

Additionally, to the main observed advantage, Very Large Scale Global Optimization (VLS-GO) 

in context of Randomized Optimization Algorithms (ROA) in DAPHNE is run for dimension sizes 

beyond ten thousand and up to hundred thousand. The latest software from DAPHNE reposi-

tory daphne at the GitHub account daphne-eu, using the last July 2024 commit to the main 

branch (548ea01), is compiled and deployed on Euro-HPC Vega supercomputer in Maribor, 

Slovenia. The compilation is then deployed using Slurm to execute a set of ROA runs with 

different configuration classes for VLSGO, increasing the optimized parameter sizes [9]. Then, 

the newly obtained computational results from ROA runs are reported and analyzed below. 

Figure 7.6: ROA timing using Umlaut 

Further, using Universal Machine Learning Analysis Utility (Umlaut) from GitHub24, the resource 

usage is tracked during execution. As an example, for configuration D=10000, NP=1000, the 

total runtime over some of these independent runs is seen in Figure 7.6. The aggregated runs 

24 https://github.com/daphne-eu/umlaut
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displayed in Figure 7.7 demonstrate the linear increase of runtime with dimension, suitable for 

scaling. Furthermore, Figure 7.8 provides usage of memory and CPU resources, respectively. 

The memory usage plot peeks at approximately 105.87 MB for these runs, by initially rising to 

roughly 89 MB and then slightly increasing. It very likely also shows the remaining memory 

leaks indicated by the other use-case pipelines. 

Figure 7.7: Average and standard deviation aggregated plot for runtimes 

Figure 7.8: Memory usage for ROA tracked using Umlaut 

7.2 Surface High-Density Electromyogram (HDEMG) Processing 

High-density surface electromyography (HDEMG) is one of the most popular methods for non-

invasive acquisition of muscle activity. Two decades of significant improvements in acquisition 

systems brought along also the development of decomposition algorithms that decompose 
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the EMG signals into contributions of individual muscle motor units, enabling identification of 

motor unit firing times. However, such data processing pipelines present a significant compu-

ting challenge and require substantial computing power. This makes it a good candidate for 

high performance parallel data processing of HDEMG signals on modern CPUs, GPUs, or HPC 

clusters. 

High-density surface EMG signals are recorded with special flexible electrodes consisting of 

multiple channels, typically, 32, 64 or more channels are used. Each channel is stored as one 

row in a large data matrix, so 64 channels result in 64 rows. The number of columns depends 

on the recording length and sampling frequency: e.g., a 4096 Hz sampling frequency which 

results in 245,760 samples (columns) per one minute of recording, stored in double format. 

This results in fairly large matrices, which can easily reach 10 GB to 30 GB in size.  

A simple data processing pipeline was prepared and implemented in DaphneDSL that demon-

strates realistic matrix operations that are often used in EMG processing, such as concatena-

tion, extension, and calculation of correlation matrix [10]. The benchmarking setup and results 

are provided below. 

7.2.1 Benchmarking Setup 

To demonstrate a typical sEMG processing operation we prepared the following pipeline [10]:  

 Input matrices A and B are loaded from CSV files. 

 Matrices A and B are horizontally concatenated. 

 The resulting matrix is extended by a factor R: R-1 time-delayed (right-shifted) copies 

of each row are added to the matrix. 

 Calculation of correlation matrix. 

 Calculation of pseudoinverse of the correlation matrix. 

This pipeline was implemented as a script in DaphneDSL language using the latest libraries 

from the daphne-eu/ daphne/main GitHub repository daphne-rep, commit with hash 4e96943 

from 2024-07-18. The DAPHNE binary was executed with additional parameters to print the 

MLIR-based intermediate representation (DaphneIR): daphne --explain parsing_sim-

plified,property_inference ckc_simple_pipeline2.daph. The code includes a 

main function and two sub-functions: for matrix extension and for matrix pseudoinverse. 

Figure 7.9: Overview of HDEMG pipeline. Boxes represent matrices. N = number of rows, X,Y = number of columns, R 

= matrix extension factor 

For realistic input HDEMG data several sets were used for simulated HDEMG signals for gen-

erated signals for the Biceps Brachii muscle, with the following parameters [10]: up to 500 mo-

tor units, electrode grid with 10 rows and 9 columns (90 channels), 5 mm interelectrode dis-

tance, constant force of 10 %, 30 %, 50 % and 70 % of maximum voluntary contraction, 4096 Hz 
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sampling rate, 600 seconds in length, no added noise, monopolar recording mode. Data is 

stored as a 2D matrix of raw EMG values in CSV format. For the initial tests, presented in this 

paper, only 10 different subsets of the available data were used, with 90 rows and 10,000, 

20,000, … and up to 100,000 columns. 

A dedicated DAPHNE runtime environment was prepared in a virtual machine created with the 

QEMU/KVM hypervisor software ver. 4.0.0 on a Linux host computer with Kubuntu 22.04.4 LTS 

operating system, 64 GB RAM, AMD Ryzen Threadripper 1920X 12-core CPU and Samsung 980 

PRO 2 TB NVME SSD. The virtual machine was with Kubuntu 24.04 operating system installed, 

16 GB RAM, 4 virtual CPUs and 100 GB of available disk. All the required libraries and depend-

encies were installed and the DaphneDSL executables built from the GitHub repository source 

code. 

7.2.2 Productivity & Performance Improvements 

To measure performance, the pipeline was run 5 times for each of the 10 selected matrix sizes 

(90 x 10,000, 90 x 20,000, 90 x 30,000, …, 90 x 100,000) and run times measured, as seen in 

Figure 7.10 and these results show that the run time increases linearly with the size of the input 

matrices, which is the correct and expected behavior. 

Figure 7.10: Mean total run time of HDEMG pipeline, estimated over 5 consecutive runs. The input matrices consisted 

of 90 rows and from 10,000 to 100,000 columns. Time is measured in milliseconds 

HDEMG signal processing pipeline productivity improvements are hence a viable option and 

can be used for creating data processing pipelines. As the DaphneDSL language is still in de-

velopment larger amounts of data and more complex pipelines are also expected in future, 

further development and testing is also needed to provide an even more reliable and conven-

ient solution for parallel and HPC-ready processing of HDEMG data. 
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