
D8.2 Improved Pipelines all

Use Case Studies

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 2.0

PUBLIC

This project has received funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement No. 957407.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 1

Document Description

This document reports on the extended use case pipelines that improve the runtime and/or

accuracy by leveraging the DAPHNE system infrastructure.

In this deliverable, we present the extensions to the individual use case pipelines. We briefly

show the benchmarking setup as well as preliminary benchmarking results.

D8.2 Improved pipelines all use case studies

WP8 – Use Case Studies

Type of document R Version 2.0

Dissemination level PU

Lead partner KAI

Author(s) Benjamin Steinwender (KAI), Vytautas Jancauskas (DLR), Andreas La-

ber (IFAT), Marius Birkenbach (KAI), Bernhard Einberger (AVL), Daniel

Krems (AVL)

Contributors Piotr Ratuszniak (INTP), Ilin Tolovski (HPI), Nils Straßenburg (HPI)

Revision History

Ver-

sion

Item Comment Author / Reviewer

V1.0 Merged documents of individual

uses cases

Steinwender

V2.0 Incorporated reviewer comments Steinwender

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 2

Executive Summary

The use case pipelines presented in the DAPHNE project are enhanced by utilizing the

DAPHNE system infrastructure. Depending on the complexity of the initial pipeline description,

the individual use cases either chose for implementing the pipeline in DSL or DaphneLib.

The WP8 project partners contributed to the development of DAPHNE system infrastructure

by providing constructive feedback in the form of GitHub issues as well as pull-requests to the

source code repository.

Preliminary benchmarking results show an improvement of the end-to-end runtime, which has

been identified as the most crucial measurable of the individual use-case pipelines. For pipe-

lines written in DaphneDSL, the runtime decreased to about 16% to 30% of the baseline im-

plementation. For pipelines utilizing DaphneLib, results are not yet available.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 3

Table of Contents

1 Introduction ... 6

1.1 Feature requests & bug reporting ... 6

1.2 Open-source contributions .. 6

1.2.1 GH #459: [CI] continuous integration ... 6

1.2.2 GH #550: Documentation hosting .. 7

1.2.3 GH #620: Documentation updates ... 7

1.3 Outline .. 7

2 Earth Observation Case Study: Local Climate Zone classification (DLR) 8

2.1 Use Case Description .. 8

2.2 Use Case Extension .. 8

2.3 Evaluation .. 9

3 Semiconductor Manufacturing Case Study: Optimizing the equipment stability and

utilization (IFAT) ... 11

3.1 Overview of Improved Pipeline ... 11

3.2 Data Engineering .. 11

3.3 Machine Learning ... 12

3.3.1 Dataset .. 12

3.3.2 Preprocessing ... 12

3.3.3 Modeling .. 13

3.3.4 Evaluation ... 13

3.3.5 Deployment ... 13

3.4 DaphneDSL Implementation .. 14

3.4.1 Benchmarking Environment .. 15

3.4.2 Additional Identified Possibilities through DAPHNE ... 15

4 Material Degradation Case Study (KAI) .. 16

4.1 The Ramer-Douglas-Peucker Algorithm ... 16

4.2 Dataset Reorganization .. 16

4.3 DAPHNE Scope Pipeline Definitions ... 18

4.4 Python Baseline Implementation ... 18

4.5 DAPHNE DSL Implementation .. 18

4.6 Preliminary Benchmarking .. 19

4.7 Advanced Use Case Definition .. 19

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 4

5 Automotive Vehicle Development Case Study: Ejector geometry optimization

(AVL 1) ... 22

5.1 Summary of Pipeline Improvements ... 22

5.2 Active DOE Implementation ... 22

5.2.1 Active DOE Components .. 23

5.2.2 Communication between Components .. 23

5.3 Machine Learning Python Implementation .. 24

5.3.1 Predictive Model Creation ... 24

5.3.1.1 Load data & Feature Engineering .. 24

5.3.1.2 Hyperparameter Tuning & Evaluation .. 25

5.3.1.3 Model release .. 25

5.3.2 Utilization of Predictive Model... 25

5.4 Daphne Lib Implementation .. 25

6 Automotive Vehicle Development Case Study: Virtual prototype development

(AVL 2) ... 27

6.1 Overview of the improved Pipeline ... 27

6.2 Reworking of Data Generation Sub-Pipeline ... 28

6.2.1 Review of automotive Product Development Processes ... 28

6.2.2 Representation of Candidate Solutions .. 29

6.2.3 Fitness Function ... 29

6.2.4 Manipulation Operators ... 30

6.2.5 Next Steps .. 30

7 References .. 31

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 5

List of Abbreviations

Abbreviation Meaning

APC Advanced Process Control

API Application Programming Interface

CFD Computational Fluid Dynamics

CSV Comma Separated Value

DOE Design Of Experiments

DUT Device Under Test

KRR Kernel Ridge Regression

LCZ Local Climate Zone

MSE Mean Squared Error

RDP Ramer-Douglas-Peucker

SBSE Search Based Software Engineering

VW Visvalingam-Whyatt

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 6

1 Introduction
Since the report on initial use case pipelines (deliverable D8.1), we have been working on en-

hancing the pipelines to utilize the DAPHNE system infrastructure. Naturally, this goes together

with providing feedback to the technical work packages and/or by requesting certain features.

Such are low-level primitives that operate on matrix data types like `idxMin` and `idxMax` but

also high-level functions for data processing and machine learning like `randomForest`.

1.1 Feature requests & bug reporting

When working with the DAPHNE system, some parts of compiling the DSL script are still in an

early stage. To overcome our workarounds, we regularly request for new features and some-

times also find bugs.

Overall, we have created 15 issues on GitHub, where 7 of them are already solved and imple-

mented in the source code. Of the remaining open issues, some are already being imple-

mented.

Solved:

 GH #477 [discussion] Running ./build-containers.sh without WSL internet connection

 GH #582 [feature] passing str variable to readFrame/readMatrix

 GH #583 [feature] return multiple values from UDF

 GH #589 [feature] idxMin, idxMax

 GH #599 [discussion] Daphne Lib Containers pip

 GH #602 [feature] DaphneLib Complex Computation exp(matrix)

 GH #618 [feature] passing string literals to a DAPHNE script

Open:

 GH #581 [feature] string comparison

 GH #584 [feature] creating a dataFrame from variables

 GH #587 [feature] reading parquet files

 GH #590 [feature] crossProduct

 GH #601 [feature] KernelRidgeRegression DaphneDSL - Algorithms Implementation

 GH #603 [discussion] Tensor Implementation

 GH #616 [feature] Daphne Lib: Numpy – Vector support

 GH #621 [feature] randomForest implementation

1.2 Open-source contributions

The people working in WP8 on the use-cases are the first users of the DAPHNE system infra-

structure and thereby provide not only valuable feedback, but also contribute directly on the

open-source GitHub repository:

1.2.1 GH #459: [CI] continuous integration

As we were using early versions of the main branch (partly not yet released snapshots of the

repository) we wanted to know whether a specific commit is usable and thereby proposed an

initial version of an automated build of the source code.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 7

This initiative was taken over and enhanced by the technical work packages in a way that we

now have (1) checks for every commit/merge to the main branch to check whether the intro-

duction of a new feature breaks existing code and (2) a possibility to simply download the

binary artifacts for execution on a supported system.

1.2.2 GH #550: Documentation hosting

The DAPHNE system infrastructure already contains a vast documentation in markdown format

directly included in the git code repository. The drawback thereby is that such system is not

easily searchable. An initial effort was undertaken by members of the WP8 team to provide an

automated mechanism to render the static markdown files into a searchable web application

and hosting the documentation publicly on the internet.

The result can be found here1. It allows users to search any content of the help files in a simple

way. Furthermore, the documentation is split up into separate parts between users of the

DAPHNE system (both DaphneLib and DAPHNE-DSL) and developers who want to contribute

to the DAPHNE system.

1.2.3 GH #620: Documentation updates

While working on improving our pipelines to utilize DAPHNE, we also enhance the documen-

tation for all.

1.3 Outline

In the following chapters, the individual use cases report on their status in more detail.

1 https://daphne-eu.github.io/daphne

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 8

2 Earth Observation Case Study: Local Climate Zone classifica-

tion (DLR)

2.1 Use Case Description

Local Climate Zones (LCZ) are a way to classify land based on its use. Unlike other land use

classification schemes, it focuses on urban environments. It divides land in to 17 classes, 10 of

which correspond to different built-up areas while the remaining 7 correspond to land without

buildings on it. Those classes are listed in the image below this paragraph. While it was origi-

nally developed as an aid to study urban heat islands, it has found further use in various other

research scenarios, for example, urban development, transport research, disaster mitigation

and population assessment among others. At DLR, we use LCZ to facilitate research in such

fields as the study of transport flows and building height estimation. It is thus of interest to us

to have a way to acquire up to date LCZ classifications of any area on earth. For that, we need

to rely on satellite observations of the Earth. Both radar and optical imagery can be used but

we focus on optical data in this case. Ideally the user would specify a region of interest and a

period and be able to retrieve an LCZ classification for that area that will look similar like the

one in Figure 2.1.

Figure 2.1: LCZ classification classes

At DLR we developed a pipeline to allow for LCZ classification of arbitrary geographical areas.

It uses a ResNet deep learning model trained on the LCZ42 data set to classify land according

to its LCZ label.

2.2 Use Case Extension

Since the deliverable D8.1, the pipeline was extended to support LCZ classification of the large

geographical areas (including the full extent of the Earth). To this end a software framework

was written that allows for efficient execution of user defined workflows on arbitrary geograph-

ical areas. The specified areas are divided into rectangular patches which are processed using

a user specified Pypyr workflow described in a YAML file. After processing the results are op-

tionally reconstituted into a larger image corresponding to the originally specified area. In our

case, the workflow consists of a data acquisition phase and an inference phase. Data acquisition

consists of a finding a time series of Sentinel-2 images for a given area and a given period as

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 9

well as having a lower than specified cloud cover. From these images we construct a mosaic of

cloud free pixels for each pixel of the image. This is done by taking pixels for which cloud

probability is lower than the threshold and taking their medoid. The resulting image is then

used as input for the inference stage. Inference is done using a ResNet based model trained

on the LCZ42 dataset. We use Pytorch for the inference stage of the pipeline. After inference

we get probabilities that given patches on the satellite image belong to a given LCZ class. These

probabilities can then further be refined through Bayesian inference and the use of additional

data sets, such as ESA WorldCover land use data set or the WSF 3D dataset of building height

data. To this end we allow the user to define likelihoods specific to these data sets. A likelihood

consists of probabilities of a specific feature appearing in the dataset if it belongs to a specific

LCZ class. These probabilities are specified in a JSON file by the user. In Figure 2.2 we give an

example of such a classification.

Figure 2.2: LCZ classification of an urban area

2.3 Evaluation

Figure 2.3 shows the Earth Observation Use Case results on the NVIDIA Tesla T4 GPU with 8.1

TFLOP/s and 16GB memory when using DAPHNE as well as other frameworks. We trained the

ResNet20 model with the Adam optimizer for 100 epochs on So2Sat LCZ42 dataset. TensorFlow

and TensorFlow XLA (both with GPU) show similar performance, which is dominated by I/O.

TensorFlow XLA is a domain-specific compiler for linear algebra operations with similar goals

to DAPHNE with regards to optimizing deep learning operations. Apache SystemDS (with GPU

and read into FP64 and conversion to FP32) is about 1.2x slower, but 4x faster with multi-

threaded I/O. DAPHNE’s basic CSV reader and GPU integration read FP32 directly and show

the best single-threaded performance. Vectorized read pipelines and task placement have

potential for solid improvements. Further improvements to the Earth Observation Use Case

could be possible with regards to data pre-processing and Bayesian inference stage of the

pipeline.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 10

Figure 2.3: DLR pipeline results

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 11

3 Semiconductor Manufacturing Case Study: Optimizing the

equipment stability and utilization (IFAT)
In deliverable D8.1 we described the underlying implantation process, the interim data engi-

neering workflow, and the initial machine learning pipeline. Since then, we published a paper

about the proof-of-concept of ion beam tuning prediction based on log files produced by the

equipment [1]. Moreover, we have been working intensively on progressing the use case to

make it ready for a productive implementation. It therefore had to under-go significant

changes, which we will detail out in the later sections. Afterwards, we will showcase the Daph-

neDSL implementation for the core of the machine learning pipeline, this includes prepro-

cessing, model training and scoring.

3.1 Overview of Improved Pipeline

For productive use of the developed AI model in Infineon’s fabrication facilities (fab), we

needed to substitute our existing data source - log files parsed directly by Python scripts - with

a proper database that is supported by our IT department. In that regard we switched our input

to be taken from a system called Advanced Process Control (APC). This also comes with a more

stable and comfortable way of getting the data, i.e., from a data lake with the corresponding

infrastructure and a data virtualization layer on top, that unifies the way data is accessed. As

we learned more about our data, we updated the machine learning pipeline. Details can be

found in the next two sections.

3.2 Data Engineering

We get our APC data from a Hadoop data lake instance. The data representation is in long

format. Thus, we have a separate row for every feature tracked and wafer processed. This sums

up to about 70 million entries per equipment and month. Via Python scripts we transform it

into wide format, the typical (X, y) format, that we need for machine learning: (1) We pivot the

dataset to have all the relevant data for an observation in a single row; (2) We sub-select the

data, keeping only the last wafer per lot. We run the previously mentioned operations within

our HPC cluster, due to the vast amount of data being handled. For preparing a dataset for one

equipment, for a timeframe of 6 months, the resource usage summary shows values for maxi-

mum memory of up to 560 GB, with average memory usage of roughly 100 GB.

Prior to September 2023 the setup result of the tuning process which are used as the labels for

supervised learning, were not tracked in APC. To compensate for missing labels, we merge our

APC data with setup data from the proof-of-concept phase. The merge proved to be unman-

ageable within pandas because we kept running into an out-of-memory error. With the library

pandasql2 we were able to merge the APC sensor data with setup result data from the MySQL

database. The data is then persisted as Python objects, utilizing the library joblib3. This method

replaces our previous approach of using csv files. This allows for faster reloading into memory.

On this data we can now run our machine learning pipeline.

2 https://github.com/yhat/pandasql
3 https://joblib.readthedocs.io

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 12

3.3 Machine Learning

Building up on the dataset generated within data engineering, we employ a couple of tech-

niques on it to get a better performance of the machine learning model. An overview is shown

in Figure 3.1.

Figure 3.1: Improved Machine Learning Pipeline

3.3.1 Dataset

With the transition from the log files to the APC system we were confronted with a reduction

of available features, from 2547 features down to 769. The observed reduction in the number

of parameters can be attributed to the fact that the remaining features represent a carefully

expert-curated set that monitors the quality of the equipment's manufacturing process. It is

worth noting that despite this reduction in overall features, the predictive signal in the data has

not been impacted negatively, as our performance metrics of the ML model have remained

consistent, Moreover, we have introduced feature engineering to extract the most important

components from a recipe: dose, species, and energy. We then replace the categorical species

values (e.g., B for Boron) with the corresponding atomic mass units. As a result, we are left with

a purely numeric dataset.

3.3.2 Preprocessing

We preprocess the data to prepare it for model training. We have a set of column filters that

remove columns based on high NaN-portions, quasi-constant values, column-wise duplicates,

and high correlation with other columns. This leaves us with roughly 650 feature columns.

We introduced an additional method for feature selection, which relies on the Boruta algorithm

and Shapley values. The Boruta algorithm creates shadow features by shuffling the values

within one column for each feature in the dataset. It then compares their importance scores to

the original features. If the importance score of a feature is not significantly different from that

of its shadow features, it is deemed unimportant and removed from the dataset. By default, it

uses random forests as an underlying model. To get an estimate of the feature importance we

can either use the feature importance scores inherent to the model or we can calculate the

corresponding model-agnostic Shapley values. The resulting subset of features is then used

for further processing and is usually in the range of 75 up to 100 features.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 13

We split our data into train and test datasets. Imputation is currently not necessary because we

get rid of missing entries by removing affected rows beforehand. Scaling is currently not im-

proving the performance of the employed decision tree-based models, yet we know that it is

necessary for e.g., neural network models.

3.3.3 Modeling

A dummy model, which always predicts the majority class, acts as a baseline as it reflects the

status quo, in terms of how scheduling is currently handled within our fab. We dispatch lots,

without taking the probability for tuning success into account. This is viable because tuning is

successful in 80%+ of the cases. As a second level baseline we reference our results to random

forests because they are known to be robust to noise and outliers in the data.

We evaluated a couple of models on the datasets and found that histogram-based gradient

boosting classifiers perform very well on our dataset, Microsoft’s LightGBM4 and sklearn’s

HistGradientBoostingClassifier5. A master student tried to outperform them with various deep

learning topologies with the help of TensorFlow/Keras6, but was only able to match the same

performance – with increased computational effort. In terms of hyperparameter tuning, we

used optuna7. Yet, we could not achieve significant better results, as it tended to overfit the

model to the training dataset.

Additionally, we developed a regression model to predict the tuning duration, as this would be

straight-forward to integrate with our scheduling solution. While evaluating the business value

of this use case, it turned out that most of the uptime loss is due to failed setups, not prolonged

ones. Hence, the development of enhancements to the regression model has been put on hold

for now. It is still valuable though, and we have again two baselines to compare the predictions

with. Currently there is a set of static values in use for the setup matrix, which defines the cost

for a specific recipe transition, i.e., switching from recipe A to recipe B. The second baseline is

the Chebyshev distance between the most important parameters of a setup, dose, species, and

energy. It remains to be checked whether our regression model can beat both baselines. This

needs to be analyzed in the coming months.

3.3.4 Evaluation

For validating the classification models, we are analyzing the confusion matrix and monitor the

F1 score, Precision and Recall. We have noticed differences in performance metrics from equip-

ment to equipment, that could be explained by the volatility of the overall tuning fails in the

corresponding datasets.

The regression models used to be evaluated on mean absolute error and mean squared error

(MSE), but as mentioned before corresponding development effort is on hold.

3.3.5 Deployment

The productive deployment is still planned the same way, as described in the deliverable D8.1,

section 3.3.5. It is essential to follow Machine Learning Operations (MLOps) practices while

4 https://github.com/microsoft/LightGBM
5 https://scikit-learn.org
6 https://keras.io
7 https://optuna.org

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 14

deploying an ML model in a production environment. This involves hosting the model within

a containerization and orchestration platform to ensure stable and continuous operation. To

ensure minimal to no delay in dispatching decisions, it is vital that the model receives live data

from production equipment as quickly as possible. Regarding the process flow of the proposed

productive solution, once a lot is moved out of the previous operation, it is added to the dis-

patch list of our implantation work center. When multiple equipment tools are available for

processing the same recipes, we refer to it as a work center, and this is typically the case when

the equipment is from the same equipment platform. Using a trained model, the ion beam

tuning outcome is predicted with probability percentages for success/fail and respective dura-

tion estimates, and the lots are reranked based on these values along with other criteria like

wait time, remaining time to due date, prioritization for development and customer demanded

lots and lots needed for equipment checks. Our experiments during model training are tracked

within MLflow8. We also register our trained models accordingly. The models can then be

pulled from this registry for productive deployment.

Additionally, we created a conceptual interface between the machine learning pipeline and the

dispatching system. It contains only the data needed for optimizing the schedule. The corre-

sponding draft can be found in Table 1. If the value in the “Tune Success” column is 1, it indi-

cates a successful tuning attempt, while a value of 0 indicates a failed tuning attempt.

Table 1: Interface between Machine Learning and Scheduling System

Equipment Current Recipe Next Recipe Duration (min) Tune Success

IMP01 X1-80E3B020A X5-00E2B170A 2.8 1

IMP04 X3-22E4P020A Y1-00E2B400A 4.2 0

IMP03 Y1-31E3B050A Y2-50E4B130A 3.1 1

IMP01 Y6-11E5A150A Y6-71E2P285D 5.3 1

IMP02 Y8-05E2P285D ..

The development of the Python code for deployment has not been started yet.

3.4 DaphneDSL Implementation

In the above chapters we provided details on the Python implementation, which is going to be

used productively within our fab. For benchmarking purposes, we maintain a decoupled Python

implementation, which mirrors the DaphneDSL implementation as closely as possible. The cor-

responding code can be found in our internal GitLab repository, hosted by Know-Center and

available to the consortium partners. The first version of our DSL scripts in the daphne folder

can be run via a publicly available docker image from daphneeu/daphne, which can be found

on the Docker Hub container registry9. Instructions on how to run the daphne container image

are available in the public daphne-eu/daphne GitHub repository. Lastly, there is a data folder

which contains the sample input data for running both benchmarking pipelines. With this ap-

8 https://mlflow.org
9 https://hub.docker.com

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 15

proach we can run comparable workflows in Python and DaphneDSL. The initial steps are per-

formed within our productive Python implementation up to the point, where we export the

preprocessed data to csv files, including the required meta files.

In a nutshell, we have been able to implement the core of the productive machine learning

pipeline within DaphneDSL. We are just missing one more vital piece to and can benchmark it

against Python, the Random Forest algorithm. Our benchmarking workflows begin with read-

ing in the previously prepared csv files. After splitting this data into train and test sets, we

optionally can run a normalization procedure. Afterwards, we plan to feed the data to the Ran-

dom Forest algorithm. An optimized implementation of the Random Forest algorithm has been

developed in Apache SystemDS and, that is currently being ported over to DaphneDSL imple-

mented specifically for us, to help advance our use case. We then calculate the same set of

metrics on the test dataset – F1, Precision and Recall. After the Random Forest is available, we

can time both implementations, and compare them against each other in more detail.

3.4.1 Benchmarking Environment

For our tests we will use a single notebook (HP EliteBook x360 830 G6) and this environment:

 Hardware:

o Processor: Intel Core i5-8365U @ 1.60 GHz

o RAM: 16 GB DDR4 @ 3200 MHz

o Storage: 475 GB NVMe SSD

 Software:

o Operating System: Windows 10 Pro 64-bit (10.0, Build 19045)

o Python 3.10.12; with scikit-learn 1.3.1

We have simple timing mechanism in place, that tracks the execution time, starting from the

beginning of the script, until the completion of the last instruction. More detailed benchmark-

ing information will be gathered with the UMLAUT framework from WP9.

3.4.2 Additional Identified Possibilities through DAPHNE

Running the Boruta algorithm for feature selection on the training set requires multiple hours

to complete a predefined number of runs. For the productive Python implementation, the de-

fault number of runs is 20 but even after running 100 iterations some features remain tentative.

This contrasts with the features that have either been rejected or accepted at some point.

Speeding up this process would save a substantial amount of HPC resources.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 16

4 Material Degradation Case Study (KAI)
At KAI, we develop accelerated stress test systems for semiconductor devices. Our use case is

about investigating the degradation of power semiconductors. As described in D8.1, simula-

tions offer valuable insights in degradation effects which are essential for lifetime models. The

electrical measurements from the stress test systems need to be compressed before the actual

simulation to reduce the computational effort. Suitable algorithms are the Visvalingam-Whyatt

(VW) algorithm (see D8.1 Chapter 4.2.4) and the Ramer-Douglas-Peucker algorithm.

In this chapter, we show that:

 (1) we have extended the pipeline,

 (2) the DAPHNE system infrastructure is used for executing the use case and

 (3) the runtime of our use-case pipeline runs several times faster that its baseline im-

plementation in Python.

4.1 The Ramer-Douglas-Peucker Algorithm

The Ramer-Douglas-Peucker (RDP) algorithm plays an important role at KAI since it has differ-

ent properties and optimization targets than the VW algorithm. It optimizes for retaining criti-

cal points as maxima or minima while VW better retains effective areas. Like the VW algorithm,

it is a lossy compression.

The RDP algorithm is a recursive algorithm which step by step chooses points which retain

after reduction. To achieve this, an auxiliary line is drawn between the first and the last point.

A tolerance band around this line decides which points are withdrawn. If there are points out-

side of this tolerance band, no points are withdrawn. Instead, the algorithm picks the point

with the maximum normal distance to that line and splits the input series into two sub series.

The algorithm is then applied to both slices independently. This process is repeated until each

slice has no more points outside the tolerance band.

The RDP algorithm has the following parameters:

1. max_points

 Maximum number of points after simplification

2. tolerance

 Defines the tolerance band around the auxiliary lines (tolerance into one direction)

The RDP algorithm actually chooses points to retain step by step. It stops at the natural termi-

nation criterion (no more points outside tolerance bands) or if the max_points limit is exceeded.

4.2 Dataset Reorganization

The KAI dataset contains a collection of ~13.500 TDMS files. Since the DAPHNE system cur-

rently only supports reading CSV files, a reorganization of the data structure is necessary to

run experiments.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 17

Figure 4.1: TDMS file structure

Figure 4.1 shows the general hierarchy of a TDMS file. Each file contains an arbitrary number

of groups, a group in turn contains an arbitrary number of channels. Metadata can be attached

to the 3 hierarchy levels (file, group, channel) each. The actual data is contained in the channels.

As can be seen in Figure 4.1, within our dataset one TDMS file contains all measurement data

which is related to one device under test (DUT). A group contains a datetime stamp, at which

the measurement started. The number of groups varies across files. Each group contains exactly

two channels, Id and Vds. Put in another way, two sampled waveforms with a duration of a few

milliseconds. The sample points are equidistant, but the distance can vary across files. One

TDMS file with 1000 recorded cycles (groups) would be represented with dimensions

[1 × 1000 × 2].

Figure 4.2: Dataset CSV representation

CSV is a flat data representation and offers two hierarchy levels (file and column). To obtain an

arbitrary number of additional levels, a directory hierarchy can be constructed. Figure 4.2 shows

how the TDMS structure is mapped to a representation with directories and CSV files. The

TDMS file is replaced by a directory with the same name. Each TDMS group is stored in an own

CSV file with the respective enqueued sequence number in the file name. TDMS channels are

represented as CSV columns. During this transformation process, the metadata attached to the

TDMS files and channels gets lost. The distance between sample points is a relevant metadata

key. To maintain this information, an additional column with the relative time is added to each

CSV file. The reminder of the metadata is not important for the line simplification use case and

is neglected for now.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 18

4.3 DAPHNE Scope Pipeline Definitions

This chapter defines a pipeline which is fully implementable with DAPHNE and represents the

Data Reduction component of the initial pipeline definition (D8.1 Chapter 4.1). The pipeline’s

I/O is adapted as CSV files are used for input and CSV files or stdout for output.

Figure 4.3: Line simplification pipeline for single file (pipeline P4.1)

Figure 4.3 defines the simple line simplification pipeline P4.1. A single CSV file is read (one

measurement group in a set of tenth of millions) and forwarded to pre-processing and the

actual line simplification algorithm. The output is printed to stdout.

Figure 4.4: Line simplification pipeline for single TDMS file (pipeline P4.2)

Figure 4.4 shows the pipeline definition P4.2 with a larger dataset. A collection of CSV files is

read and forwarded through the processing steps. The large number of results are stored in

CSV files.

4.4 Python Baseline Implementation

We hold Python implementations of both P4.1 and P4.2, each for both mentioned line simpli-

fication algorithms, which serve as baselines. The RDP and VW algorithms are delivered as a

KAI internal Python package. This makes use of the numpy10 library for all linear algebra oper-

ations (abs, trapz, stack, concatenate, cross, max, argmax, reshape, append, sort). For reading

and writing CSV files, the pandas11 library is utilized (read_csv, to_csv).

4.5 DAPHNE DSL Implementation

As an improvement to our pipeline, we implemented P4.1 and P4.2 (each for both line simpli-

fication algorithms) with the DaphneDSL. This use case can utilize the following built-in DSL

functions / features: readFrame / writeFrame, print, pow, sqrt, nrow, abs, aggMin / aggMax,

idxMin / idxMax, cbind / rbind, sum, order, seq, script arguments, user defined functions (UDF).

User defined functions allow for a modular programming technique. Both, VW and RDP are

modularized via UDFs with several utility UDFs. The following UDFs have been implemented:

10 https://numpy.org
11 https://pandas.pydata.org/pandas-docs/stable

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 19

 RDP algorithm (see section 4.1)

o Cross product for R2

o Frobenius norm between two points

o Function to calculate all normal distances to the auxiliary line

 VW algorithm (see D8.1)

o Calculation of triangle areas

o Checking for termination criterion

o Cumulative trapezoid

DSL scripts import above mentioned UDFs and execute them.

4.6 Preliminary Benchmarking

The current DSL implementation of our use case allows for preliminary experiments. Simple

runtime tests can be executed without any benchmarking framework by making use of the

Linux time command. The experiments are executed as time /bin/daphne vw.daphne

and time python3 vw.py accordingly. The real time metric is extracted as experiment result.

All of the following results were obtained from one single machine: Intel® Core™ i7-10700 @

2.9 GHz, 16 GB RAM, Ubuntu 20.04 on WSL (on Windows 10 64-bit).

To evaluate the implementation of P4.1, a single measurement cycle was extracted as CSV from

a previously selected TDMS file.

Table 2: Preliminary benchmarking result single waveform

Runtime in seconds VW RDP

Python Baseline 0.63 1.25

DaphneDSL 0.26 0.2

To evaluate the implementation of P4.2, one TDMS file was chosen and transformed into the

adapted data structure as described in section 4.2. This sub dataset contains 9421 CSV files /

measurement cycles. Each representing one input to the reduction algorithms. Hence the al-

gorithms are executed 9421 times.

Table 3: Preliminary benchmarking results whole dataset

Runtime in seconds VW RDP

Python Baseline 200 110

DaphneDSL 630 34

For some reason unclear to us, the DAPHNE implementation of the VW-algorithm is slower in

the case of running the reduction step for reading multiple files. This is subject to further in-

vestigations with the core developers.

4.7 Advanced Use Case Definition

In the course of the DAPHNE project, we at KAI developed an advanced material degradation

use case [2]. This is about failure prediction of devices under test based on the raw measure-

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 20

ment data contained in our dataset. A CNN model was developed which gets fed with meas-

urement cycles in a tensor representation and predicts the remaining useful lifetime. The ap-

proach defines a regression problem with supervised learning.

Figure 4.5: Advanced Use Case Training Pipeline

Figure 4.6: Advanced Use Case Inference Pipeline

Figure 4.5 defines the failure prediction pipeline. For the training, some data preparation steps

are necessary which will take place outside of DAPHNE. The actual model training and inference

(see Figure 4.6) offer the potential to be implemented with DAPHNE. A Python implementation

based on PyTorch12 is in place.

Figure 4.7: Advanced use case dataset preparation

Figure 4.7 shows the dataset preparation step. It needs to be restructured as defined in section

4.2 but it additionally needs to be pre-filtered.

Figure 4.8: Advanced use case detailed model training

12 https://pytorch.org

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 21

As can be seen in Figure 4.8, the training pipeline consists of a classic machine learning work-

flow. According to our color-coding scheme introduced in D8.1, the red boxes could be ad-

dressed completely by the DAPHNE system.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 22

5 Automotive Vehicle Development Case Study: Ejector ge-

ometry optimization (AVL 1)

5.1 Summary of Pipeline Improvements

Several improvements have been provided to the initial ejector dimensioning pipeline since

deliverable D8.1 to decrease user interaction and therefore increase efficiency as well as diver-

sification of the Machine Learning tools.

Summarized the following major features and enhancements are now available:

 Full automatization of the pipeline – Active DOE Python script

 Additional Machine Learning pipeline (KRR method implementation in Python)

 DaphneLib Implementation of Machine Learning components

The Active DOE targets the maximization of automatization capabilities to guarantee an effi-

cient dataset extension into new operating condition regions. An additional pipeline imple-

mentation in Python tackles the diversification of the workflow in order to stay flexible in ac-

cessing several Machine Learning methods besides the ones implemented in AVL’s in-house

tool Cameo. DaphneLib is used to test the speed up potential, which is important for upscaling

the ejector dimensioning workflow to larger datasets or multiple feature variations to improve

prediction accuracy.

5.2 Active DOE Implementation

The benefit of the Active DOE approach is the capability of fast ejector data generation with a

low amount of user interaction. This is very important when completely new operating condi-

tions are investigated in a new ejector dimensioning project. In such a case the prediction

model does not perform optimal before seeing new data that corresponds to such operation

conditions.

Another benefit is the possibility to start a DOE in times of low load on High Performance

Clusters that can be utilized with this method to increase the ejector database without much

user interaction for upcoming projects.

Figure 5.1: Ejector dimensioning pipeline

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 23

The pipeline, shown in Figure 5.1, describes the data-driven ejector layout. Initially, several

manual steps were necessary:

 set up parameter space,

 building behavior model with dataset,

 perform optimization to operating conditions,

 initiate preprocessing and start simulations via scripts,

 initiate postprocessing via scripts.

A completely automated loop is called Active DOE and is targeted to increase the productivity

of this Use Case. The implementation is realized with a Python script. On the way towards

automatization the current pipeline has just one manual step left which is the Active DOE con-

figuration. The configuration includes a parameter space definition, setting up the cluster on

which the simulations should be performed and some other setup possibilities e.g., how many

parallel simulations should be performed, how many loops should be executed. The configu-

ration is set up via .json files which are loaded by the Python script.

5.2.1 Active DOE Components

The Active DOE is realized with a Python script that handles the interaction between the Ma-

chine Learning, executed on Windows (Cameo), and the simulation, executed on Linux.

Cameo provides the behavior model training, variation parameter distribution and the optimi-

zation to generate adequate design parameter configurations that finally will be simulated by

CFD code to generate new data for the database.

On Linux side, the meshing of the candidates, setup and running of the 3D-CFD simulation and

the postprocessing is performed. The simulation is carried out with AVL’s in-house commercial

CFD solver named Fire.

All these elements are managed by the active DOE Python script which is running on a Linux

workstation.

5.2.2 Communication between Components

The communication to Cameo is established via a web API and for which a local host must be

established on Windows side. Cameo provides a Python class “active_doe_client” that acts as a

template for such tasks. The communication from Python to the web API is performed with the

python library requests13.

On the Linux side, the Active DOE Python script runs the shell scripts from the initial pipeline

for preprocessing, postprocessing and starting of the simulation via the os14 Python library. The

simulation is carried out on a HPC system, the connection is established utilizing the SSH pro-

tocol.

13 https://requests.readthedocs.io
14 https://docs.python.org/3/library/os.html

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 24

5.3 Machine Learning Python Implementation

A Python script is developed in order to increase the accessibility of Machine Learning models

provided by several Python libraries such as TensorFlow15, scikit-learn16 etc.

This capability can be seen as a diversification in our pipeline to increase flexibility in terms of

predictive model architectures parallel to AVL’s strong in-house tool Cameo, which does not

provide the variety of models like the Python framework allows.

A Kernel Ridge Regression17 model is set up in this Python implementation. Another key aspect

is the identification of accurate model architectures in order to get them also implemented in

Cameo. In the Python implementation we can identify various calculations that can be executed

in DaphneDSL via the DaphneLib API.

In Figure 5.1, the related blocks that are coded in Python are: Behavior model and Optimizer.

The Python script is stored on the daphne GitLab repository that is maintained by Know-Center

and available to the consortium partners.

5.3.1 Predictive Model Creation

Figure 5.2 shows the steps that are covered by the Python script in order to create a predictive

model.

Figure 5.2: Model creation workflow

5.3.1.1 Load data & Feature Engineering

The first step is to load the dataset which is stored in a .csv file format to build up the feature

matrix X and the label vector y. Features cover geometrical parameters and operating condi-

tions, and the predicted label is the ejectors suction pressure. Afterwards the feature engineer-

ing is applied. Currently all features and labels are MinMax18 scaled. In addition, a data cleaning

is applied which aims to erase outliers to increase the predictive model quality. The data is split

up in test data (20%) and trainings data (80%).

15 https://www.tensorflow.org
16 https://scikit-learn.org
17 https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.Kernel-

Ridge.html#sklearn.kernel_ridge.KernelRidge
18 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 25

5.3.1.2 Hyperparameter Tuning & Evaluation

The tuning is performed as a Grid Search utilizing the scikit-learn implementation19 that fea-

tures Cross Validation. The following model parameters are optimized.

 Kernel-function

 Regularization parameter

 Kernel parameter

The evaluation is performed on the test data by analyzing R2 score and mean squared errors.

5.3.1.3 Model release

The trained Kernel Ridge Regression instance and all scaler instances of the scikit-learn classes

are stored utilizing the joblib20 Python library.

5.3.2 Utilization of Predictive Model

Figure 5.3 shows the steps to utilize the predictive model.

Figure 5.3: Predictive model utilization

At first the Kernel Ridge Regression model and all scalers are loaded. There are two different

possibilities to utilize this Python script. The first one tackles the prediction of a specified ge-

ometry and operating condition and is represented by the block manual prediction. The second

possibility is to optimize a geometry based on fixed operating conditions. The optimization is

performed by a genetic algorithm that utilizes the following concepts:

 survival of the fittest,

 mutation,

 crossover,

 random candidate generation.

5.4 Daphne Lib Implementation

DaphneLib is a Python API that can gather computations and perform them with DaphneDSL.

With this approach it is not necessary to learn a new programming language and it opens the

possibility to directly compute calculations in DaphneDSL from Python code.

To execute the Python workflow in combination with DaphneLib a container must be set up,

this is described on GitHub21. Afterwards a virtual Python environment must be created in

which all necessary Python libraries must be installed. (sklearn, joblib)

19 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
20 https://joblib.readthedocs.io
21 https://github.com/daphne-eu/daphne/blob/main/doc/GettingStarted.md

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 26

In the Python workflow described in section 5.3, two parts can currently be executed utilizing

DaphneLib. The first one is the MinMax scaling of the features and the second one is the pre-

diction utilizing a trained Kernel Ridge Regression model.

The prediction is picked to be executed in DaphneLib due to the huge number of calls in the

optimization progress. For the next deliverable more components will be implemented (e.g.,

model training) with DaphneLib to perform the benchmarking of the stand-alone Python work-

flow vs. the DaphneLib enhanced Python workflow.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 27

6 Automotive Vehicle Development Case Study: Virtual pro-

totype development (AVL 2)
In deliverable D8.1, we described the overall goal of this case study (i.e., to create process

mining solutions) as well as the initial data processing pipeline setup consisting of 3 parts (data

generation, model training, prediction). Since then, we have been incorporating DaphneLib

into the existing pipeline implementation and did a first benchmarking, which will be described

in more detail in the next section of this chapter. Moreover, we have conceived a possible

solution to a major limitation of the current pipeline, that we can tackle with the expertise and

technology available in the DAPHNE project consortium. Consequently, substantial conceptual

work has been carried out to get this solution idea ready for implementation, which will be laid

out in more detail in the latter sections of this chapter.

6.1 Overview of the improved Pipeline

This case study is dealing with a pipeline that consists of three parts that build on top of each

other, as described in deliverable 8.1. Thus, work on the different parts of the pipeline needs

to be done in sequence. Consequently, work has focused on the first part of the overall pipeline.

The remainder of this chapter will also focus on the first part.

This sub-pipeline is shown in Figure 6.1. It creates time series data by running multiple simula-

tions – each simulation contributes one data point – and putting the data points into a tem-

poral order. It is implemented partly in proprietary AVL software (e.g., Model.CONNECTTM) and

partly in Python. The parts implemented in Python have been refactored using DaphneLib.

Specifically, refactoring has focused on the “Create time series” step, since it is the numerically

most time-consuming step in the sub-pipeline. This step is implemented in one Python script

that executes a sequence of multiple array operations, with arrays consisting of typically 104

elements.

Figure 6.1: Pipeline for data generation

Array operations that were mostly using NumPy methods have been replaced with methods

provided by DaphneLib (version 0.2). In general, the introduction of DaphneLib methods into

the Python script was convenient, because individual lines of code could be changed while

retaining the overall structure and workflow of the code. However, minor differences in numer-

ical results have been observed compared to the original implementation, but these differences

are not relevant for the pipeline.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 28

The next steps will be to benchmark the pipeline on more capable hardware platforms (e.g.,

workstations or clusters) and improve the integration of DaphneLib into the sub-pipeline with

the goal of decreasing the execution time of the sub-pipeline in comparison to the original

implementation.

6.2 Reworking of Data Generation Sub-Pipeline

The major limitation of the sub-pipeline shown in Figure 6.1 is that the step “Put data points

into time series” involves manual engagement of the user to create time series data of sufficient

data quality, i.e., time series data that shows properties and trends as observed in real-world

data. Thus, to increase the level of automation, this step shall be reworked by introducing other

algorithmic approaches and shall be implemented using DaphneLib or DaphneDSL.

To overcome this major limitation, different approaches have been analyzed and genetic algo-

rithms (cf. [3]) have been identified as the most promising and resourceful one. In collaboration

with the DAPHNE project partner University of Maribor, which contributes expertise on genetic

algorithms, the basic concepts of genetic algorithms have been thoroughly reviewed and the

conceptual framework has been created which maps the defining features of genetic algo-

rithms to this case study. In the following sections, the results of this analysis and the created

framework will be described in more detail.

6.2.1 Review of automotive Product Development Processes

In the context of this case study, the goal and scope of automotive development processes can

be characterized as follows:

 Find near-optimal solutions that fall within specified acceptable tolerances.

 Iterate and optimize the product design until all product requirements are satisfied.

 Balance competing product constraints and goals, e.g., balance product cost with prod-

uct performance.

This is in accordance with the characterization of engineering problems provided by [4], which

argues that engineering problems – including product development, as one specific example

of an engineering problem – can be considered optimization or search problems.

In the research area of search-based software engineering (SBSE), this idea is used to cast soft-

ware engineering problems as search / optimization problems and apply search / optimization

techniques to solve them. In [5], which was used as a basis to develop the conceptual frame-

work laid out in this and the following sections, this approach is used to automatically improve

software code using genetic algorithms.

In SBSE, engineering problems are cast as search / optimization problems. Since the character-

ization of engineering problems that SBSE is based on also applies to automotive product de-

velopment, the key idea here is to apply the approaches from SBSE, particularly metaheuristic

search-based optimization techniques and genetic algorithms, to this case study in order to

improve and automate the data generation sub-pipeline, specifically its “Create time series

step”.

Following [4], there are 3 requirements to consider when casting product development as a

search / optimization problem:

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 29

 Representations of candidate solutions that allow for symbolic manipulation.

 Fitness functions that are defined in terms of the candidate solution representation and

that can characterize good solutions.

 Manipulation operators to mutate one candidate solution into another candidate solu-

tions. If manipulation operations include cross-over to produce child solutions from

parent solutions, genetic algorithms are applicable.

In the following sections, these 3 generic requirements and their mapping to this case study

will be analyzed in more detail to build up step-by-step the conceptual framework of how to

apply optimization techniques and genetic algorithms to this case study.

6.2.2 Representation of Candidate Solutions

In the context of this case study, automotive product development can be simplified such that

candidate solutions can be represented in terms of two numerical vectors: A vector 𝐶𝑉 ⃗ and a

vector 𝑃 ⃗ . The vector 𝐶𝑉 ⃗ contains a list of characteristic values (also often referred to as product

key performance indicators or KPIs) and the vector 𝑃 ⃗ contains a list of product parameters.

Product parameters are numerical values that encode and are derived from product design,

e.g., the vehicle mass, the vehicle wheelbase, or the coefficient of aerodynamic drag. All these

exemplary parameters are derived from the product design, e.g., from the CAD model of the

vehicle. Product design and consequently product parameters are subject to optimization.

Product characteristic values, on the other hand, are numerical values that encode the product

performance, e.g., the electric driving range, the acceleration time to 100 kph, or the battery

charging time. Product characteristic values are subject to product requirements and target

characteristic values: The product design must be optimized such that the product character-

istic values can meet the target characteristic values, which is the quintessential goal of product

development.

The vectors 𝐶𝑉 ⃗ and 𝑃 ⃗ are also linked with each other: The characteristic values are determined

from the product design using tests or simulations, which means that 𝐶𝑉 ⃗ = 𝑓(𝑃 ⃗). In the context

of this case study, an available vehicle simulation model will be used as the function 𝑓.

6.2.3 Fitness Function

As explained in the previous section, product characteristic values are subject to target char-

acteristic values and product design / product parameters must be optimized such that char-

acteristic values meet associated target values. Consequently, a candidate solution’s fitness can

be quantified by how close a candidate solution’s characteristic values come to the target val-

ues.

However, only measuring the deviation of a characteristic value to its target and summing up

the deviations of all characteristic values is not correct, because quantifying target achievement

is target-specific: For example, for the characteristic value “electric driving range” a character-

istic value smaller than the target indicates an unfit candidate solution and a value larger than

the target indicates an overachieving candidate solution, for the characteristic value “accelera-

tion time” it is the other way around.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 30

6.2.4 Manipulation Operators

To mutate one candidate solution into another candidate solutions, the numerical values of

the parameters in vector 𝑃 ⃗ must be changed. However, these manipulation operations are not

arbitrary but are subject to parameter-specific constraints. For example, the parameter “vehicle

mass” cannot be changed to negative values.

Another manipulation operation is cross-over, i.e., creating a child solution from parent solu-

tions while retaining features from all parents. Cross-over manipulation operations can be

mapped to simultaneous engineering from real-world product development: Automotive

product development is usually split up into several concurrent workstreams, e.g., mechanical

design, thermal design etc. Each workstream works on optimizing a subset of 𝑃 ⃗ , e.g., mechan-

ical design only optimizes parameters related to the vehicle chassis. At discrete times during

development, optimized candidate solutions from the different workstreams are merged to

create a common baseline, which provides the common starting candidate solution for the

next subset optimization in each workstream. The baseline child candidate solution can be

created from parent candidate solutions coming from the different workstreams using cross-

over.

6.2.5 Next Steps

The previous sections have described the framework of how the basic concepts used in opti-

mization and specifically in genetic algorithms can be mapped to this case study / to the area

of automotive product development.

The next step is to further extend and improve this framework in collaboration with the

DAPHNE project partner University of Maribor, i.e., create a sub-pipeline architecture similar to

the one shown in Figure 6.1 specifically for the step “Create time series”. Since the implemen-

tation will likely be numerically demanding, the Daphne solutions must be leveraged and pos-

sibly need to be extended to cater to this case study’s needs.

D8.2 Improved Pipelines all Use Case Studies

DAPHNE – 957407 31

7 References

[1] A. Laber, M. Gebser, K. Schekotihin and Y. Yang, "Predicting Ion Beam Tuning Success in

Semiconductor Manufacturing," in 2022 14th International Conference on Advanced

Semiconductor Devices and Microsystems (ASDAM), Smolenice, Slovakia, 2022.

[2] M. Ghoneim, "Modelling Degradation of Semiconductor Devices for Lifetime Prediction

based on Stress Test Data," Alpen-Adria-Universität Klagenfurt, Klagenfurt, 2023.

[3] S. Silva and L. Paquete, "GECCO '23: Proceedings of the Genetic and Evolutionary

Computation Conference," Lisbon, 2023.

[4] M. Harman, "Search-based software engineering," Information and Sofware Technology,

vol. 43, no. 14, 2001.

[5] B. R. Bruce, Reducing Energy Consumption Using Genetic Improvement, vol. Proceedings

of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15),

New York: Association for Computing Machinery, 2015, pp. 1327-1334.

