

D5.3 Improved Prototype of

Pipeline, Task, and

Parameter Server

Scheduling

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.0

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 1

Document Description

This document describes the improved pipeline and task scheduling prototype

implemented in the DAPHNE system. As discussed in previous deliverable reports (specifically,

D4.1, D5.1, and D5.2), the DAPHNE project team has been consistently improving and

expanding the scheduling mechanisms. The information presented in this document is based

on a snapshot of the DAPHNE system prototype that implements well-tested and verified

scheduling strategies.

The improved prototype of pipeline, task, and parameter server scheduling include

usability improvements, the addition of automated scheduling to the DAPHNE scheduling

framework (DAPHNEsched), the implementation of inter-node scheduling infrastructure, and

parameter server updates.

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

WP5 – Scheduling and Resource Sharing

Type of document Report Version 1.0

Dissemination level PU Project month 36

Lead partner UNIBAS

Author(s) Jonas H. Müller Korndörfer (UNIBAS), Ahmed Eleliemy (UNIBAS up

to 31/08/23), and Florina M. Ciorba (UNIBAS)

Reviewer(s) Pinar Tözün (ITU) and Marius Birkenbach (KAI)

Revision History

Version Revisions and Comments Author / Reviewer

V0.1 Initial draft Jonas H. M. Korndörfer

V0.2 Revised draft Jonas H. M. Korndörfer / Florina M. Ciorba

V0.3 Added Section 4 Parameter Servers Matthias Boehm / Jonas H. M. Korndörfer

V0.4 Integration of examples Jonas H. M. Korndörfer

V0.5 Final draft Jonas H. M. Korndörfer

V0.7 Improved text formatting Jonas H. M. Korndörfer

V0.8 Review 1 Marius Birkenbach / Jonas H. M. Korndörfer

V0.9 Review 2 Pinar Tözün / Jonas H. M. Korndörfer

V1.0 Final version Jonas H. M. Korndörfer / Florina M. Ciorba

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 2

Abbreviations

Terminology

Abbreviation Term

ITU IT University of Copenhagen

KAI Kompetenzzentrum Automobil- und Industrieelektronik

UNIBAS University of Basel

WP Work package

Term Definition

Snapshot Since the DAPHNE system is under continuous development, a

snapshot of the DAPHNE system refers to an immutable version of

the project sources at a particular point in time.

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 3

Table of Contents

1 Introduction .. 4

2 Usability Updates ... 4

3 Automated Scheduling .. 6

3.1 Automated Scheduling Usage .. 7

4 Inter-node Scheduling .. 9

4.1 Inter-node Scheduling Usage ... 11

5 Parameter Server .. 12

6 Conclusion and Outlook .. 14

References .. 15

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 4

1 Introduction
The scheduling philosophy within the DAPHNE system considers four key scheduling

decisions. These decisions encompass work partitioning, work assignment, execution ordering,

and execution timing. The scheduler design for pipelines and tasks within the DAPHNE system

is documented in Deliverable 5.1 [D5.1]. The initial prototype is described in Deliverable 5.2

[D5.2] which documents multithreading scheduling implementation in DAPHNE, examples of

how to use and extend the prototype, and all the initially available multithreading scheduling,

work partitioning, and work assignment options.

This document describes the improved prototype of pipeline, task, and parameter server

scheduling. The improved prototype consists of usability improvements (Section 2), automated

scheduling implementation (Section 2), inter-node scheduling support (Section 3), and

parameter server updates (Section 4).

2 Usability Updates
The usability updates implemented in the improved prototype consist of a series of

changes that influence the way a user can access the different scheduling strategies in DAPHNE.

We briefly describe below the steps required to install DAPHNE and provide an overview of the

usability updates. We use the help menu of DAPHNE to highlight the changes from the initial

to the improved prototype.

The DAPHNE system prototype is publicly accessible on GitHub, in the development

repository at https://github.com/daphne-eu/daphne. This document uses a snapshot that

contains the newly introduced functionalities of the improved prototype.

The installation steps below follow the same sequence as for [D5.2]. These steps are kept

here for completeness. The usability updates are described after the installation instructions with

examples regarding the changes.

Step 1 Download the snapshot from:

https://daphne-eu.know-center.at/index.php/s/8XZz2ynDS6F3pNe

Step 2 Install dependencies:

Set up a Linux environment and install the software dependency versions specified in

docs/GettingStarted.md. Other alternatives to build the DAPHNE prototype are described in

docs/GettingStarted.md and include the use of containers, e.g., Docker and Singularity. The

use of the provided containers is recommended to ensure that all required software

dependencies and versions are correct.

Step 3 Build DAPHNE:

Within the daphne directory, run the build script. The first time DAPHNE is built; it may

take ~30 minutes.

unzip daphne-improved-sched-prototype-d5.3.zip
cd daphne

./build.sh

https://github.com/daphne-eu/daphne
https://daphne-eu.know-center.at/index.php/s/8XZz2ynDS6F3pNe

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 5

If the build fails, try to clean the build directory and rebuild DAPHNE as follows:

Step 4 Check the Help menu of DAPHNE

After the installation is completed, one can access the help menu by executing the

following command:

The output of the help command can be found below. The usability updates are

highlighted in yellow and annotated with call-out boxes. The DAPHNE’s help menu

contains numerous other options which are not directly related to scheduling and were

redacted to improve clarity.

./build.sh –-clean

./build.sh

./bin/daphne --help

This program compiles and executes a DaphneDSL script.

USAGE: daphne [options] script [arguments]

OPTIONS:

Advanced Scheduling Knobs:

 --partitioning=<value> - Choose task partitioning scheme:

 =STATIC - Static (default)

 =SS - Self-scheduling

 =GSS - Guided self-scheduling

 =TSS - Trapezoid self-scheduling

 =FAC2 - Factoring self-scheduling

 =TFSS - Trapezoid Factoring self-scheduling

 =FISS - Fixed-increase self-scheduling

 =VISS - Variable-increase self-scheduling

 =PLS - Performance loop-based self-scheduling

 =MSTATIC - Modified version of Static, i.e., instead of n/p, it uses n/(4*p) where n is

number of tasks and p is number of threads

 =MFSC - Modified version of fixed size chunk self-scheduling, i.e., MFSC does not requi-

re profiling information as FSC

 =PSS - Probabilistic self-scheduling

 =AUTO - Automatic partitioning

 --queue_layout=<value> - Choose queue setup scheme:

 =CENTRALIZED - One queue (default)

 =PERGROUP - One queue per CPU group

 =PERCPU - One queue per CPU core

 --victim_selection=<value> - Choose work stealing victim selection logic:

 --SEQ - Steal from next adjacent worker (default)

 --SEQPRI - Steal from next adjacent worker, prioritize same NUMA domain

 --RANDOM - Steal from random worker

 --RANDOMPRI - Steal from random worker, prioritize same NUMA domain

 --debug-mt - Prints debug information about the Multithreading Wrapper

 --grain-size=<int> - Define the minimum grain size of a task (default is 1)

 --hyperthreading - Utilize multiple logical CPUs located on the same physical CPU

 --num-threads=<int> - Define the number of the CPU threads used by the vectorized execution engine

(default is equal to the number of physical cores on the target node that executes the code)

 --pin-workers - Pin workers to CPU cores

 --pre-partition - Partition rows into the number of queues before applying scheduling technique

 --vec - Enable vectorized execution engine

...

 --dist_backend=<value> - Choose the options for the distribution backend:

 ...

 =MPI - Use message passing interface for internode data exchange

...

Input variable added

Newly introduced option for automated scheduling, see Section 2

Input variable added

Input variable added

Input variable added

Newly introduced support for distributed runtime scheduling using MPI, see Section 3

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 6

Four variables were added and are highlighted in the snippet above. Those are:

“partitioning”, “queue_layout”, “victim_selection”, and “distributed_backend”. In the initial

version of the prototype, the user would need to directly specify the expected configuration

with the available options. For example, in the initial version of the prototype, to select the

partitioning strategy, the user would need to directly use --STATIC when executing a DAPHNE

script. To improve clarity and reduce the number of different options/variables in DAPHNE, we

introduced the variables mentioned above which, depending on their value, define the

different scheduling and partitioning configurations. Also highlighted in the snippet above is

the automated scheduling and partitioning strategy namely AUTO. This is discussed in the

following section.

3 Automated Scheduling
The choice of a scheduling algorithm and work partitioning strategy is not trivial. An

inefficient choice can result in performance loss due to load imbalance and/or high scheduling

overhead. Manually finding the highest-performing scheduling and work partitioning strategy

is time-consuming and creates a large burden on the user. To mitigate this issue, in the

improved DAPHNE scheduling prototype, we introduce an additional automated

scheduling and work partitioning strategy.

The automated scheduling and work partitioning strategy implemented in the improved

DAPHNE’s scheduling prototype was previously proposed and exhaustively evaluated in

[MKEC’22]. In DAPHNE, such strategy is denoted as “AUTO” and can be used by defining the -

-partitioning=<value> to AUTO. When defining the “partitioning” strategy of DAPHNE to

AUTO, the scheduler will automatedly find a high performing task grain size.

The current implementation of AUTO consists of automatedly defining a grain size

for the scheduling and work partitioning strategy SS. The grain size works as a threshold,

in the sense that when the size of a task, calculated by a scheduling and partitioning strategy,

fall below the grain size threshold it will be replaced by the defined grain size. Declaring a

proper grain size improves performance by reducing the number of scheduling rounds and

decreasing loss of data locality. In a related work which uses OpenMP (a well-known and widely

used parallel runtime for multithreaded applications), the authors have shown that SS with a

proper grain size (referred to as chunk parameter in [KEMC’21]) frequently outperforms all other

techniques [KEMC’21].

The automated grain size is calculated in DAPHNE based on the total number of possible

tasks and the number of workers. The calculation uses the equation below (adapted from

[MKEC’22]) to arrive at a high-performing grain size for SS. In Eq. 1, 𝑁 denotes the total number

of tasks, and 𝑃 is the number of workers. The automated (AUTO) grain size is a practical method

that uses the golden ratio φ = 1.618 in the interval [N/(2P), ..., 1 to arrive at a grain size value

that leads to high performance, using only N , P , and φ.

Eq 1.) 𝑔𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒 = ⌊
𝑁

2𝑓×2𝑃
⌋ , 𝑤ℎ𝑒𝑟𝑒 𝑓 = ⌊𝑙𝑜𝑔2 (

𝑁

𝑃
) ×

1

ϕ
⌋

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 7

3.1 Automated Scheduling Usage

This section uses the snapshot discussed in Section 1.1 to exemplify the functionality of

AUTO. After downloading and installing DAPHNE from this snapshot, one can find the

folder example-D5.3 inside the uncompressed DAPHNE folder (see installation steps in

Section 1.1). This folder contains three files that will be required for the following example.

Files in /daphne/example-D.53:

• components.daph – connected components implementation in DAPHNE script

used for the example. This was selected to keep consistency between [5.2] and this

deliverable.

• amazonx1.mtx – input matrix for the components.daph DAPHNE script.

• amazonx1.mtx.meta – required metadata that characterizes amazonx1.mtx

matrix.

• matrix_addition.daph – matrix summation DAPHNE script. This example is

used later example in Section 3.

Step 1 Navigate to the main DAPHNE folder.

Step 2 Execute the components.daph DAPHNE script

One can use the following command and include --timing to record the execution time and

set the number of workers to with --num-threads. Here we start by using a single worker.

The output of the command above should look similar to the following. Highlighted in bold is

the execution time of the script.

One can also increase the total number of workers as follows:

The output below shows the increased performance with more workers:

Figure 1 shows the results of a simple benchmark comparing AUTO and the other

scheduling and work partitioning options available in DAPHNE. In this example, the SS

scheduling and work partitioning strategy without the AUTO grain size was not considered

as it causes too much scheduling overhead and loss of data locality. These experiments were

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=1 --partitioning=AUTO ./example-

D5.3/components.daph G=\"./example-D5.3/amazonx1.mtx\"

cd daphne

{"startup_seconds": 0.00353753, "parsing_seconds": 0.0114381, "compilation_seconds": 0.0736943,

"execution_seconds": 11.3002, "total_seconds": 11.3889}

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=6 --partitioning=AUTO ./example-

D5.3/components.daph G=\"./example-D5.3/amazonx1.mtx\"

{"startup_seconds": 0.00386959, "parsing_seconds": 0.00983812, "compilation_seconds": 0.0680012,

"execution_seconds": 5.18662, "total_seconds": 5.26833}

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 8

conducted using 6 pinned workers (6 threads) and executed on an Intel Xeon E5-2640 v4 node

with a total of 2 sockets, 10 cores per socket, and disabled hyperthreading. A single

CENTRALIZED work queue (default) was considered. The results shown in Figure 1 are based

on the execution of the following command repeatedly 5 times for each different “--

partitioning” strategy.

Figure 1. Connected Components DAPHNE script execution with different work partitioning strategies. The red

dashed line highlights the performance of the script executing with STATIC (default).

In Figure 1, The x-axis shows the different scheduling and work partitioning options

available in DAPHNE, while the y-axis shows the average execution time of the

components.daph DAPHNE script. To improve visualization, the newly introduced AUTO work

partitioning option is highlighted in green, while all other options are colored in blue. The X-

axis is ordered by execution time, from the fastest to the slowest configuration. The dotted red

line highlights the performance achieved by STATIC (default). The percentages highlight the

execution time difference between a given work partitioning strategy and STATIC. Therefore,

negative percentages represent faster executions.

We can observe that AUTO outperform most, but not all, other scheduling and work

partitioning options. This shows that more development towards automated scheduling and

work partitioning is required in DAPHNE. The development of automated selection of

scheduling and work partitioning techniques during execution is still work in progress.

To reproduce the example shown in Figure 1, one can find two python scripts in the

provided snapshot. (1) D5.3-benchmark-example.py that can be used to perform all executions,

The command below is a simple example and will not work if copied directly. We include it here simply to

illustrate the set of commands used to execute the experiment.

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=6 --partitioning={STATIC, GSS, FAC2, ... AUTO}

./example-D5.3/components.daph G=\"./example-D5.3/amazonx1.mtx\"

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 9

and (2) D5.3-benchmark-example-plotting.py used to plot the results. The D5.3-benchmark-

example.py script generates an output file called output-benchmark-D5.3-example.txt which

contains all results and is required by the D5.3-benchmark-example-plotting.py script to plot

the results. Note that the Python scripts require the Matplotlib and Pandas packages to be

installed.

To use the scripts mentioned above, one can use the following steps:

Step 1 Navigate to the main DAPHNE folder

From there, execute the D5.3-benchmark-example.py script to perform the executions.

While the above is executing, the script will print the progress of the execution which

should look similar to the example below. Only after the script finishes, the complete output is

stored in the output-benchmark-D5.3-example.txt file.

Step 2 Execute the D5.3-benchmark-example-plotting.py script

To plot the results, one can use the following command:

The command above will generate and display the plot. Furthermore, it will store the plot

in a file called D5.3-benchmark-example-plot.png.

4 Inter-node Scheduling
Message Passing Interface (MPI), is pivotal not only in High-Performance Computing (HPC)

but also in diverse fields like data science. As the most widely adopted framework, MPI provides

a standardized communication protocol, enabling parallel processes to exchange data

effectively. In the computational landscape, where power arises from numerous interconnected

nodes, MPI's importance is evident in its ability to seamlessly coordinate nodes, allowing

concurrent execution.

The improved scheduling prototype of DAPHNE now implements support for inter-node

scheduling with MPI. The initial design of the scheduler can be found in [D5.1], [EC’23], and

[ECa’23]. Figure 2 shows the expansion of the DAPHNE scheduler design to accommodate

distributed-memory systems.

python3 D5.3-benchmark-example.py

python3 D5.3-benchmark-example-plotting.py

Iteration 1 of work partitioning strategy: STATIC

Command executed: ./bin/daphne --vec --select-matrix-repr --timing --num-threads=6 --partitioning=STATIC

./example-D5.3/components.daph G="./example-D5.3/amazonx1.mtx"

Partial output: {'startup_seconds': 0.00214975, 'parsing_seconds': 0.00533891, 'compilation_seconds':

0.0460168, 'execution_seconds': 5.94518, 'total_seconds': 5.99868, 'partitioning': 'STATIC'}

Iteration 2 of work partitioning strategy: STATIC

. . .

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 10

Figure 2. DAPHNE scheduler design for inter-node scheduling, taken from [ECa’23].

This design leverages the existing DAPHNE framework for shared-memory systems. The

distributed version introduces a novel component referred to as the coordinator, which

interfaces with multiple instances of the shared-memory schedulers. The coordinator acts as

the primary entry point used by the DAPHNE runtime system. In other words, the DAPHNE

runtime system communicates with the coordinator to manage the division, distribution, and

collection of tasks and results from the various local scheduler instances. The modifications

made to the local scheduler instances are minimal, primarily involving their ability to listen to

incoming messages from the coordinator.

The coordinator is responsible for transmitting diverse messages and data. These include,

for example, 1) distributed pipeline inputs, 2) broadcast pipeline inputs, and 3) MLIR code. On

the receiving end, the worker component accepts and stores incoming data items as they

arrive. Once a DAPHNE worker receives the MLIR code, it initiates the process of generating

local tasks and executing them. Currently, the inter-node DAPHNE coordinator scheduler only

supports STATIC scheduling and work partitioning, while the local schedulers support different

dynamic strategies (see Section 2, and [D5.2]). Support for inter-node dynamic (and

automated) scheduling and work partitioning is under development. Section 3.1 shows an

example of how to execute a DAPHNE script using the inter-node scheduler and MPI.

Coordinator

Local DaphneSched

…

DM CM BM

Local DaphneSched

Communication

Manager

DM CM BM

Local DaphneSched

Communication

Manager

DM CM BM

BM: Broadcast Message

CM: Compute Message

DM: Distribute Message

RM: Ready Message

Communication

Manager

RM RM RMData

MLIR

Sync

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 11

4.1 Inter-node Scheduling Usage

To execute a DAPHNE script using the Inter-node scheduling implementation using MPI,

one can use the following steps:

Step 1 It is necessary to compile DAPHNE with MPI support

One can use the following command:

For this example, another DAPHNE script called matrix_addition.daph is used. This is also

available in the snapshot discussed in Section 1. The script can be found in the folder

/scripts/examples/.

Step 2 Execute the matrix_addition.daph DAPHNE script

The following command executes the example with the distributed runtime:

The option --distributed activates the distributed runtime, and the option --

dist_backend=MPI indicates that it should use MPI as backend. The output of the above

command will be similar to the following:

In the example above, only 1 thread per process (--num-threads=1) was used. In total, this

execution used 2 workers (mpirun -np 2, 1 worker thread per process). It is also possible to

combine multiple levels of parallelism and scheduling to increase performance. For example, it

is possible to use a combination of number of processes and workers per process that fits the

requirements of the workload. This example can scale up to approximately 6 workers.

The following command shows an example of how to combine parallelism and scheduling

options at thread and MPI process level in DAPHNE:

./build.sh --mpi

mpirun -np 2 ./bin/daphne --timing –vec --num-threads=1 --distributed --dist_backend=MPI ./example-

D5.3/matrix_addition.daph

part of random matrix m1

DenseMatrix(4x4, double)

198.775 920.847 442.355 743.048

601.304 666.923 172.892 546.055

979.946 88.0811 397.535 150.133

812.155 529.164 351.775 790.783

part of random matrix m2

DenseMatrix(4x4, double)

462.339 818.61 471.804 154.84

787.252 293.225 572.014 161.88

420.559 56.6451 95.3896 165.118

246.444 415.208 386.613 489.65

m3 = m1 + m2

DenseMatrix(4x4, double)

661.114 1739.46 914.158 897.888

1388.56 960.148 744.906 707.935

1400.5 144.726 492.925 315.25

1058.6 944.372 738.388 1280.43

{"startup_seconds": 0.0290332, "parsing_seconds": 0.00473754, "compilation_seconds": 0.0601155,
"execution_seconds": 14.7998, "total_seconds": 14.8937}

First matrix

Second matrix

Result matrix

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 12

With the command above, 3 MPI processes will be created, each with 2 threads that will

execute the workload. This results in a total of 6 workers. Also, at thread level, the local DAPHNE

scheduler will partition and schedule the local workload using the newly introduced AUTO

strategy to achieve execution load balancing (see Section 2 for more information regarding

AUTO). The output of the command above will be similar to the first example using the

matrix_addition_for_mpi.daph DAPHNE script with 2 processes. The only difference is the

performance improvement as one can see below:

5 Parameter Server
Data- and model-parallel parameter servers, and similar distribution strategies, are the

predominant system architecture for mini-batch training of deep neural networks (DNN) and

other expensive ML models. In a classical data-parallel parameter server [S+10, D+12, Li+14],

we have M parameter servers (collectively holding the model weights), and N workers (each

holding a disjoint partition of the data). Starting from a randomly initialized model, the workers

pull the current model from the parameter server(s), perform one or multiple forward and

backward passes on data batches to compute gradients, and push these gradients or local

models back to the parameter server(s) where the gradients are aggregated and models are

updated accordingly. Similar architectures apply to multi-threaded training [ZR14], multi-

device training [TF19], distributed training [D+12], as well as federated training [KMS20].

Synchronization Strategies: Commonly applied update strategies for when to update the

models include Bulk Synchronous Parallel (BSP), Asynchronous Parallel (ASP), and Synchronous

with backup workers [D+12, A+16, J+17]. BSP introduces barriers and waits for updates from

all workers which ensures consistency but is prone to stragglers (slow workers) because workers

wait for the slowest. In contrast, ASP avoids barriers by immediately updating and returning

the model for every worker update. However, in case of slow workers, there is the problem of

working on stale models which can slow down the learning process, and in extreme cases, even

lead to divergence. Synchronous with backup workers combines the advantages of BSP and

ASP by waiting only for N updates of the N+b workers, and thus ignoring the b slowest workers

on every synchronization step (i.e., model update). Further strategies bound the maximum

staleness (i.e., differences between the fastest and slowest worker) [Ho+13].

Reduced Communication Overhead: Given the broad applicability of the parameter

server architecture and importance of fast communication, existing work extensively studied

reducing the communication overhead. Commonly applied techniques include larger batch

sizes [G+17] (i.e., fewer communications steps), more advanced optimizers [GKS18] (i.e., fewer

model updates until convergence), decentralized training [L+17] (i.e., barriers among sub-

groups of workers), prefetching and overlapping computation with communication [TF19] (e.g.,

mpirun -np 3 ./bin/daphne --timing --vec --num-threads=2 --partitioning=AUTO --distributed --dist_backend=MPI

./example-D5.3/matrix_addition.daph

. . .

{"startup_seconds": 0.0288519, "parsing_seconds": 0.00471287, "compilation_seconds": 0.0713904,

"execution_seconds": 6.84299, "total_seconds": 6.94794}

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 13

layer-wise All-Reduce overlapped with backward pass computation), lossless and lossy-

compressed communication [S+14, J+18], sparse communication [R+22], different

communication primitives, direct device communication, and even in-network aggregation

[S+21].

BAGUA Demonstrator: In order to enable researchers to explore combined

configurations of such techniques for reducing communication overhead, the ETH team

(around Ce Zhang who meanwhile left ETH Zurich and the DAPHNE project) created the

standalone BAGUA system [G+21]. BAGUA provides well-defined communication alternatives

at extension hooks and thus, allows experimenting with different combinations of optimization

algorithms, communication primitives, and system relaxations. In detail, BAGUA includes

parameter servers, collective operations like All-Reduce (MPI and NCCL), and decentralized

learning; techniques for overlapping communication and computation, synchronous and

asynchronous updates; and means of lossy compression and sparsification. A user specifies the

network architecture, an optimizer, and a BAGUA wrapper with additional configurations.

BAGUA then provides a dedicated optimization framework for automatic scheduling and

batching. This optimization framework applies overlapping communication and computation

(via dynamic profiling), fusion and flattening of intermediates into continuous objects (batched

communication), and hierarchical communication across nodes and multiple devices per node.

The demonstrator artifact is available at:

https://daphne-eu.know-center.at/index.php/s/N6YJ3oScY7rS3tp

It can be tested through the prepared tutorials at:

https://tutorials.baguasys.com/.

Integration into DAPHNE: We aim to eventually integrate the lessons learned and

selected components from BAGUA into a parameter-server primitive in the DAPHNE system as

well:

 Mp = paramserv(M, X, y, updateGrad, updateModel, ASP, BATCH, 200, 64, ...)

Here, the parameter server is invoked through a built-in function to which we pass a list of

initialized weight matrices M, the feature matrix X, the labels y, two function pointers for

computing gradients and updating the model, as well as a synchronization strategy and

frequency, number of epochs, batch size, and other parameters. While BAGUA focuses on

variability (selecting and combining prepared communication alternatives), DAPHNE further

aims for extensibility allowing the integration and experimentation with new communication

and synchronization primitives. This DAPHNE integration will reuse existing functionality for

second order functions (e.g., map(X, fun)) but needs additional infrastructure for extensibility.

https://daphne-eu.know-center.at/index.php/s/N6YJ3oScY7rS3tp
https://tutorials.baguasys.com/

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 14

6 Conclusion and Outlook

This deliverable provides a comprehensive overview of the improved DAPHNE scheduling

prototype. It describes key enhancements in usability, automated scheduling and work

partitioning, and scheduling with distributed data developments. Automated scheduling solves

the problem of relying on extensive experimentation or user expertise to select efficient

scheduling algorithms. The developments regarding scheduling with distributed data enhance

the scalability of DAPHNE. Finally, all these implementations together improve user experience

and expand the scheduling capabilities of DAPHNE.

Further thread-pinning strategies and interfacing with resource managers are subject to

improvement in future versions of the prototype. The automated grain size selection presented

in this deliverable can be extended for the automated selection of scheduling and work

partitioning strategies. This is part of ongoing work in WP5. Finally, support for dynamic and

automated scheduling and work partitioning at MPI process level is an immediate next step.

These forthcoming enhancements will provide users with even more adaptable and efficient

scheduling solutions in DAPHNE.

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 15

References

[A+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit

Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

Xiaoqiang Zheng: TensorFlow: A System for Large-Scale Machine Learning. OSDI 2016:

265-283

[D4.1] DAPHNE: D4.1 DSL Runtime Design, 11/2021.

[D5.1] DAPHNE: D5.1 Scheduler Design for Pipelines and Tasks, 11/2021.

[D5.2] DAPHNE: D5.2 Prototype of Pipelines and Task Scheduling Mechanisms,

11/2022

[D+12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,

Andrew Y. Ng: Large Scale Distributed Deep Networks. NeurIPS 2012: 1232-1240

[EC’23] A. Eleliemy and F. M. Ciorba. “DaphneSched: A Scheduler for Integrated Data

Analysis Pipelines”, In Proceedings of the 22nd IEEE International Symposium on

Parallel and Distributed Computing (ISPDC), Bucharest, Romania, 07/2023.

[ECa’23] A. Eleliemy and F. M. Ciorba. “DaphneSched: A Scheduler for Integrated Data

Analysis Pipelines”, arXiv version https://arxiv.org/abs/2308.01607, 07/2023.

[GKS18] Vineet Gupta, Tomer Koren, Yoram Singer: Shampoo: Preconditioned

Stochastic Tensor Optimization. ICML 2018

[G+17] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, Kaiming He: Accurate, Large

Minibatch SGD: Training ImageNet in 1 Hour. CoRR abs/1706.02677, 2017

[G+21] Shaoduo Gan, Xiangru Lian, Rui Wang, Jianbin Chang, Chengjun Liu, Hongmei

Shi, Shengzhuo Zhang, Xianghong Li, Tengxu Sun, Jiawei Jiang, Binhang Yuan, Sen

Yang, Ji Liu, Ce Zhang: BAGUA: Scaling up Distributed Learning with System

Relaxations. Proc. VLDB Endow. 15(4): 804-813 (2021),

https://github.com/BaguaSys/bagua

[Ho+13] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, Eric P. Xing: More Effective

Distributed ML via a Stale Synchronous Parallel Parameter Server. NeurIPS 2013: 1223-

1231

[J+17] Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu: Heterogeneity-aware Distributed

Parameter Servers. SIGMOD Conference 2017: 463-478

[J+18] Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui: SketchML: Accelerating

Distributed Machine Learning with Data Sketches. SIGMOD Conference 2018: 1269-

1284

[KEMC’21] J. H. Müller Korndörfer, A. Eleliemy, A. Mohammed, F. M. Ciorba.

“LB4OMP: A Dynamic Load Balancing Library for Multithreaded Applications”, in IEEE

Transactions on Parallel and Distributed Systems (TPDS), 10/2021

[KMS20] Peter Kairouz, Brendan McMahan, and Virginia Smith. Federated

Learning Tutorial. NeurIPS 2020. https://slideslive.com/38935813/federated-learning-

tutorial

https://github.com/BaguaSys/bagua
https://slideslive.com/38935813/federated-learning-tutorial
https://slideslive.com/38935813/federated-learning-tutorial

D5.3 Improved Prototype of Pipeline, Task, and Parameter Server Scheduling

DAPHNE – 957407 16

[Li+14] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J. Shekita, Bor-Yiing Su: Scaling Distributed

Machine Learning with the Parameter Server. OSDI 2014: 583-598

[L+17] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu: Can

Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for

Decentralized Parallel Stochastic Gradient Descent. NeurIPS 2017: 5330-5340

[MKEC’22] A. Mohammed, J. H. Müller Korndörfer, A. Eleliemy, F. M. Ciorba.

“Automated Scheduling Algorithm Selection and Chunk Parameter Calculation in

OpenMP”, In IEEE Transactions on Parallel and Distributed Systems (TPDS), 12/2022

[R+22] Alexander Renz-Wieland, Rainer Gemulla, Zoi Kaoudi, Volker Markl: NuPS: A

Parameter Server for Machine Learning with Non-Uniform Parameter Access. SIGMOD

Conference 2022: 481-495

[S+10] Alexander J. Smola, Shravan M. Narayanamurthy: An Architecture for Parallel

Topic Models. Proc. VLDB Endow. 3(1): 703-710 (2010)

[S+14] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, Dong Yu: 1-bit stochastic gradient

descent and its application to data-parallel distributed training of speech DNNs.

INTERSPEECH 2014: 1058-1062

[S+21] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,

Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports, Peter

Richtárik: Scaling Distributed Machine Learning with In-Network Aggregation. NSDI

2021: 785-808

[TF19] Google: Inside TensorFlow: tf.distribute.Strategy, 2019,

https://www.youtube.com/watch?v=jKV53r9-H14

[ZR14] Ce Zhang, Christopher Ré: DimmWitted: A Study of Main-Memory Statistical

Analytics. Proc. VLDB Endow. 7(12): 1283-1294 (2014)

https://www.youtube.com/watch?v=jKV53r9-H14

