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Document Description 

This document describes the improved pipeline and task scheduling prototype 

implemented in the DAPHNE system. As discussed in previous deliverable reports (specifically, 

D4.1, D5.1, and D5.2), the DAPHNE project team has been consistently improving and 

expanding the scheduling mechanisms. The information presented in this document is based 

on a snapshot of the DAPHNE system prototype that implements well-tested and verified 

scheduling strategies. 

The improved prototype of pipeline, task, and parameter server scheduling include 

usability improvements, the addition of automated scheduling to the DAPHNE scheduling 

framework (DAPHNEsched), the implementation of inter-node scheduling infrastructure, and 

parameter server updates. 
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Abbreviation Term 

ITU IT University of Copenhagen 

KAI Kompetenzzentrum Automobil- und Industrieelektronik 

UNIBAS University of Basel  

WP Work package 

Term Definition 

Snapshot  Since the DAPHNE system is under continuous development, a 

snapshot of the DAPHNE system refers to an immutable version of 

the project sources at a particular point in time.  
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1 Introduction 
The scheduling philosophy within the DAPHNE system considers four key scheduling 

decisions. These decisions encompass work partitioning, work assignment, execution ordering, 

and execution timing. The scheduler design for pipelines and tasks within the DAPHNE system 

is documented in Deliverable 5.1 [D5.1]. The initial prototype is described in Deliverable 5.2 

[D5.2] which documents multithreading scheduling implementation in DAPHNE, examples of 

how to use and extend the prototype, and all the initially available multithreading scheduling, 

work partitioning, and work assignment options.  

This document describes the improved prototype of pipeline, task, and parameter server 

scheduling. The improved prototype consists of usability improvements (Section 2), automated 

scheduling implementation (Section 2), inter-node scheduling support (Section 3), and 

parameter server updates (Section 4). 

2 Usability Updates 
The usability updates implemented in the improved prototype consist of a series of 

changes that influence the way a user can access the different scheduling strategies in DAPHNE. 

We briefly describe below the steps required to install DAPHNE and provide an overview of the 

usability updates. We use the help menu of DAPHNE to highlight the changes from the initial 

to the improved prototype. 

The DAPHNE system prototype is publicly accessible on GitHub, in the development 

repository at https://github.com/daphne-eu/daphne. This document uses a snapshot that 

contains the newly introduced functionalities of the improved prototype. 

The installation steps below follow the same sequence as for [D5.2]. These steps are kept 

here for completeness. The usability updates are described after the installation instructions with 

examples regarding the changes. 

Step 1 Download the snapshot from: 

https://daphne-eu.know-center.at/index.php/s/8XZz2ynDS6F3pNe 

 

 

Step 2 Install dependencies:  

Set up a Linux environment and install the software dependency versions specified in 

docs/GettingStarted.md. Other alternatives to build the DAPHNE prototype are described in 

docs/GettingStarted.md and include the use of containers, e.g., Docker and Singularity. The 

use of the provided containers is recommended to ensure that all required software 

dependencies and versions are correct. 

Step 3 Build DAPHNE:  

Within the daphne directory, run the build script. The first time DAPHNE is built; it may 

take ~30 minutes.  

unzip daphne-improved-sched-prototype-d5.3.zip 
cd daphne  

./build.sh  

 

https://github.com/daphne-eu/daphne
https://daphne-eu.know-center.at/index.php/s/8XZz2ynDS6F3pNe
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If the build fails, try to clean the build directory and rebuild DAPHNE as follows:  

 

 

Step 4 Check the Help menu of DAPHNE 

After the installation is completed, one can access the help menu by executing the 

following command: 

 

The output of the help command can be found below. The usability updates are 

highlighted in yellow and annotated with call-out boxes. The DAPHNE’s help menu 

contains numerous other options which are not directly related to scheduling and were 

redacted to improve clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

./build.sh –-clean 

./build.sh 
 

 

 

./bin/daphne --help 
 

This program compiles and executes a DaphneDSL script. 

USAGE: daphne [options] script [arguments] 

OPTIONS: 

Advanced Scheduling Knobs: 

  --partitioning=<value>   - Choose task partitioning scheme:  

      =STATIC             - Static (default) 

      =SS                 - Self-scheduling 

      =GSS                - Guided self-scheduling 

      =TSS                - Trapezoid self-scheduling 

      =FAC2               - Factoring self-scheduling 

      =TFSS               - Trapezoid Factoring self-scheduling 

      =FISS               - Fixed-increase self-scheduling 

      =VISS               - Variable-increase self-scheduling 

      =PLS                - Performance loop-based self-scheduling 

      =MSTATIC          - Modified version of Static, i.e., instead of n/p, it uses n/(4*p) where n is 

number of tasks and p is number of threads 

      =MFSC               - Modified version of fixed size chunk self-scheduling, i.e., MFSC does not requi-

re profiling information as FSC 

      =PSS                - Probabilistic self-scheduling 

      =AUTO               - Automatic partitioning 

  --queue_layout=<value>   - Choose queue setup scheme:       

      =CENTRALIZED        - One queue (default) 

      =PERGROUP           - One queue per CPU group 

      =PERCPU             - One queue per CPU core 

  --victim_selection=<value> - Choose work stealing victim selection logic: 

      --SEQ                - Steal from next adjacent worker (default) 

      --SEQPRI             - Steal from next adjacent worker, prioritize same NUMA domain 

      --RANDOM             - Steal from random worker 

      --RANDOMPRI          - Steal from random worker, prioritize same NUMA domain 

  --debug-mt            - Prints debug information about the Multithreading Wrapper 

  --grain-size=<int>    - Define the minimum grain size of a task (default is 1) 

  --hyperthreading      - Utilize multiple logical CPUs located on the same physical CPU 

  --num-threads=<int>   - Define the number of the CPU threads used by the vectorized execution engine 

(default is equal to the number of physical cores on the target node that executes the code) 

  --pin-workers         - Pin workers to CPU cores 

  --pre-partition       - Partition rows into the number of queues before applying scheduling technique 

  --vec                 - Enable vectorized execution engine 

 
... 

 

  --dist_backend=<value> - Choose the options for the distribution backend: 

    ... 

    =MPI                 -   Use message passing interface for internode data exchange 

     

 

 

... 

 

Input variable added 

Newly introduced option for automated scheduling, see Section 2 

Input variable added 

Input variable added 

Input variable added 

Newly introduced support for distributed runtime scheduling using MPI, see Section 3 
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Four variables were added and are highlighted in the snippet above. Those are: 

“partitioning”, “queue_layout”, “victim_selection”, and “distributed_backend”. In the initial 

version of the prototype, the user would need to directly specify the expected configuration 

with the available options. For example, in the initial version of the prototype, to select the 

partitioning strategy, the user would need to directly use --STATIC when executing a DAPHNE 

script. To improve clarity and reduce the number of different options/variables in DAPHNE, we 

introduced the variables mentioned above which, depending on their value, define the 

different scheduling and partitioning configurations. Also highlighted in the snippet above is 

the automated scheduling and partitioning strategy namely AUTO. This is discussed in the 

following section. 

3 Automated Scheduling 
The choice of a scheduling algorithm and work partitioning strategy is not trivial. An 

inefficient choice can result in performance loss due to load imbalance and/or high scheduling 

overhead. Manually finding the highest-performing scheduling and work partitioning strategy 

is time-consuming and creates a large burden on the user. To mitigate this issue, in the 

improved DAPHNE scheduling prototype, we introduce an additional automated 

scheduling and work partitioning strategy.  

The automated scheduling and work partitioning strategy implemented in the improved 

DAPHNE’s scheduling prototype was previously proposed and exhaustively evaluated in 

[MKEC’22]. In DAPHNE, such strategy is denoted as “AUTO” and can be used by defining the -

-partitioning=<value> to AUTO. When defining the “partitioning” strategy of DAPHNE to 

AUTO, the scheduler will automatedly find a high performing task grain size. 

The current implementation of AUTO consists of automatedly defining a grain size 

for the scheduling and work partitioning strategy SS. The grain size works as a threshold, 

in the sense that when the size of a task, calculated by a scheduling and partitioning strategy, 

fall below the grain size threshold it will be replaced by the defined grain size. Declaring a 

proper grain size improves performance by reducing the number of scheduling rounds and 

decreasing loss of data locality. In a related work which uses OpenMP (a well-known and widely 

used parallel runtime for multithreaded applications), the authors have shown that SS with a 

proper grain size (referred to as chunk parameter in [KEMC’21]) frequently outperforms all other 

techniques [KEMC’21].  

The automated grain size is calculated in DAPHNE based on the total number of possible 

tasks and the number of workers. The calculation uses the equation below (adapted from 

[MKEC’22]) to arrive at a high-performing grain size for SS. In Eq. 1, 𝑁 denotes the total number 

of tasks, and 𝑃 is the number of workers. The automated (AUTO) grain size is a practical method 

that uses the golden ratio φ = 1.618 in the interval [N/(2P ), ..., 1 to arrive at a grain size value 

that leads to high performance, using only N , P , and φ. 

Eq 1.) 𝑔𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒 = ⌊
𝑁

2𝑓×2𝑃
⌋ ,  𝑤ℎ𝑒𝑟𝑒 𝑓 =  ⌊𝑙𝑜𝑔2 (

𝑁

𝑃
) ×

1

ϕ
⌋ 
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3.1 Automated Scheduling Usage 

This section uses the snapshot discussed in Section 1.1 to exemplify the functionality of 

AUTO. After downloading and installing DAPHNE from this snapshot, one can find the 

folder example-D5.3 inside the uncompressed DAPHNE folder (see installation steps in 

Section 1.1). This folder contains three files that will be required for the following example. 

Files in /daphne/example-D.53: 

• components.daph – connected components implementation in DAPHNE script 

used for the example. This was selected to keep consistency between [5.2] and this 

deliverable. 

• amazonx1.mtx – input matrix for the components.daph DAPHNE script. 

• amazonx1.mtx.meta – required metadata that characterizes amazonx1.mtx 

matrix. 

• matrix_addition.daph – matrix summation DAPHNE script. This example is 

used later example in Section 3. 

Step 1 Navigate to the main DAPHNE folder. 

 

Step 2 Execute the components.daph DAPHNE script  

One can use the following command and include --timing to record the execution time and 

set the number of workers to with --num-threads. Here we start by using a single worker. 

 

 

The output of the command above should look similar to the following. Highlighted in bold is 

the execution time of the script. 

 

 

One can also increase the total number of workers as follows: 

 

 

The output below shows the increased performance with more workers: 

 

 

Figure 1 shows the results of a simple benchmark comparing AUTO and the other 

scheduling and work partitioning options available in DAPHNE. In this example, the SS 

scheduling and work partitioning strategy without the AUTO grain size was not considered 

as it causes too much scheduling overhead and loss of data locality. These experiments were 

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=1 --partitioning=AUTO ./example-

D5.3/components.daph G=\"./example-D5.3/amazonx1.mtx\" 

 

cd daphne 

{"startup_seconds": 0.00353753, "parsing_seconds": 0.0114381, "compilation_seconds": 0.0736943, 

"execution_seconds": 11.3002, "total_seconds": 11.3889} 

 

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=6 --partitioning=AUTO ./example-

D5.3/components.daph G=\"./example-D5.3/amazonx1.mtx\" 

 

{"startup_seconds": 0.00386959, "parsing_seconds": 0.00983812, "compilation_seconds": 0.0680012, 

"execution_seconds": 5.18662, "total_seconds": 5.26833} 
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conducted using 6 pinned workers (6 threads) and executed on an Intel Xeon E5-2640 v4 node 

with a total of 2 sockets, 10 cores per socket, and disabled hyperthreading. A single 

CENTRALIZED work queue (default) was considered. The results shown in Figure 1 are based 

on the execution of the following command repeatedly 5 times for each different “--

partitioning” strategy.  

 

  

 

 

Figure 1. Connected Components DAPHNE script execution with different work partitioning strategies. The red 

dashed line highlights the performance of the script executing with STATIC (default). 

In Figure 1, The x-axis shows the different scheduling and work partitioning options 

available in DAPHNE, while the y-axis shows the average execution time of the 

components.daph DAPHNE script. To improve visualization, the newly introduced AUTO work 

partitioning option is highlighted in green, while all other options are colored in blue. The X-

axis is ordered by execution time, from the fastest to the slowest configuration. The dotted red 

line highlights the performance achieved by STATIC (default). The percentages highlight the 

execution time difference between a given work partitioning strategy and STATIC. Therefore, 

negative percentages represent faster executions.  

We can observe that AUTO outperform most, but not all, other scheduling and work 

partitioning options. This shows that more development towards automated scheduling and 

work partitioning is required in DAPHNE. The development of automated selection of 

scheduling and work partitioning techniques during execution is still work in progress. 

To reproduce the example shown in Figure 1, one can find two python scripts in the 

provided snapshot. (1) D5.3-benchmark-example.py that can be used to perform all executions, 

# The command below is a simple example and will not work if copied directly. We include it here simply to 

illustrate the set of commands used to execute the experiment. 

 

./bin/daphne --vec --select-matrix-repr –-timing –-num-threads=6 --partitioning={STATIC, GSS, FAC2, ... AUTO} 

./example-D5.3/components.daph G=\"./example-D5.3/amazonx1.mtx\" 
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and (2) D5.3-benchmark-example-plotting.py used to plot the results. The D5.3-benchmark-

example.py script generates an output file called output-benchmark-D5.3-example.txt which 

contains all results and is required by the D5.3-benchmark-example-plotting.py script to plot 

the results. Note that the Python scripts require the Matplotlib and Pandas packages to be 

installed. 

To use the scripts mentioned above, one can use the following steps: 

Step 1 Navigate to the main DAPHNE folder  

From there, execute the D5.3-benchmark-example.py script to perform the executions. 

 

While the above is executing, the script will print the progress of the execution which 

should look similar to the example below. Only after the script finishes, the complete output is 

stored in the output-benchmark-D5.3-example.txt file. 

 

 

 

 

 

Step 2 Execute the D5.3-benchmark-example-plotting.py script  

To plot the results, one can use the following command: 

 

The command above will generate and display the plot. Furthermore, it will store the plot 

in a file called D5.3-benchmark-example-plot.png. 

4 Inter-node Scheduling 
Message Passing Interface (MPI), is pivotal not only in High-Performance Computing (HPC) 

but also in diverse fields like data science. As the most widely adopted framework, MPI provides 

a standardized communication protocol, enabling parallel processes to exchange data 

effectively. In the computational landscape, where power arises from numerous interconnected 

nodes, MPI's importance is evident in its ability to seamlessly coordinate nodes, allowing 

concurrent execution.  

The improved scheduling prototype of DAPHNE now implements support for inter-node 

scheduling with MPI. The initial design of the scheduler can be found in [D5.1], [EC’23], and 

[ECa’23]. Figure 2 shows the expansion of the DAPHNE scheduler design to accommodate 

distributed-memory systems.  

python3 D5.3-benchmark-example.py 

python3 D5.3-benchmark-example-plotting.py 

Iteration 1 of work partitioning strategy: STATIC 

Command executed: ./bin/daphne --vec --select-matrix-repr --timing --num-threads=6 --partitioning=STATIC 

./example-D5.3/components.daph G="./example-D5.3/amazonx1.mtx" 

Partial output: {'startup_seconds': 0.00214975, 'parsing_seconds': 0.00533891, 'compilation_seconds': 

0.0460168, 'execution_seconds': 5.94518, 'total_seconds': 5.99868, 'partitioning': 'STATIC'} 

Iteration 2 of work partitioning strategy: STATIC 

. . . 
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Figure 2. DAPHNE scheduler design for inter-node scheduling, taken from [ECa’23]. 

This design leverages the existing DAPHNE framework for shared-memory systems. The 

distributed version introduces a novel component referred to as the coordinator, which 

interfaces with multiple instances of the shared-memory schedulers. The coordinator acts as 

the primary entry point used by the DAPHNE runtime system. In other words, the DAPHNE 

runtime system communicates with the coordinator to manage the division, distribution, and 

collection of tasks and results from the various local scheduler instances. The modifications 

made to the local scheduler instances are minimal, primarily involving their ability to listen to 

incoming messages from the coordinator. 

The coordinator is responsible for transmitting diverse messages and data. These include, 

for example, 1) distributed pipeline inputs, 2) broadcast pipeline inputs, and 3) MLIR code. On 

the receiving end, the worker component accepts and stores incoming data items as they 

arrive. Once a DAPHNE worker receives the MLIR code, it initiates the process of generating 

local tasks and executing them. Currently, the inter-node DAPHNE coordinator scheduler only 

supports STATIC scheduling and work partitioning, while the local schedulers support different 

dynamic strategies (see Section 2, and [D5.2]). Support for inter-node dynamic (and 

automated) scheduling and work partitioning is under development. Section 3.1 shows an 

example of how to execute a DAPHNE script using the inter-node scheduler and MPI. 
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…

DM CM BM
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Manager

DM CM BM

Local DaphneSched

Communication 

Manager

DM CM BM

BM: Broadcast Message
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4.1 Inter-node Scheduling Usage 

To execute a DAPHNE script using the Inter-node scheduling implementation using MPI, 

one can use the following steps: 

 

Step 1 It is necessary to compile DAPHNE with MPI support 

One can use the following command: 

 

For this example, another DAPHNE script called matrix_addition.daph is used. This is also 

available in the snapshot discussed in Section 1. The script can be found in the folder 

/scripts/examples/. 

Step 2 Execute the matrix_addition.daph DAPHNE script  

The following command executes the example with the distributed runtime: 

 

 

The option --distributed activates the distributed runtime, and the option --

dist_backend=MPI indicates that it should use MPI as backend. The output of the above 

command will be similar to the following: 

 

 

 

 

 

 

 

 

 

In the example above, only 1 thread per process (--num-threads=1) was used. In total, this 

execution used 2 workers (mpirun -np 2, 1 worker thread per process). It is also possible to 

combine multiple levels of parallelism and scheduling to increase performance. For example, it 

is possible to use a combination of number of processes and workers per process that fits the 

requirements of the workload. This example can scale up to approximately 6 workers.  

The following command shows an example of how to combine parallelism and scheduling 

options at thread and MPI process level in DAPHNE: 

./build.sh --mpi 

 

mpirun -np 2 ./bin/daphne --timing –vec --num-threads=1 --distributed --dist_backend=MPI ./example-

D5.3/matrix_addition.daph 

part of random matrix m1 

DenseMatrix(4x4, double) 

198.775 920.847 442.355 743.048 

601.304 666.923 172.892 546.055 

979.946 88.0811 397.535 150.133 

812.155 529.164 351.775 790.783 

part of random matrix m2 

DenseMatrix(4x4, double) 

462.339 818.61 471.804 154.84 

787.252 293.225 572.014 161.88 

420.559 56.6451 95.3896 165.118 

246.444 415.208 386.613 489.65 

m3 = m1 + m2 

DenseMatrix(4x4, double) 

661.114 1739.46 914.158 897.888 

1388.56 960.148 744.906 707.935 

1400.5 144.726 492.925 315.25 

1058.6 944.372 738.388 1280.43 

{"startup_seconds": 0.0290332, "parsing_seconds": 0.00473754, "compilation_seconds": 0.0601155, 
"execution_seconds": 14.7998, "total_seconds": 14.8937} 

First matrix 

Second matrix 

Result matrix 
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With the command above, 3 MPI processes will be created, each with 2 threads that will 

execute the workload. This results in a total of 6 workers. Also, at thread level, the local DAPHNE 

scheduler will partition and schedule the local workload using the newly introduced AUTO 

strategy to achieve execution load balancing (see Section 2 for more information regarding 

AUTO). The output of the command above will be similar to the first example using the 

matrix_addition_for_mpi.daph DAPHNE script with 2 processes. The only difference is the 

performance improvement as one can see below: 

 

 

 

5 Parameter Server 
Data- and model-parallel parameter servers, and similar distribution strategies, are the 

predominant system architecture for mini-batch training of deep neural networks (DNN) and 

other expensive ML models. In a classical data-parallel parameter server [S+10, D+12, Li+14], 

we have M parameter servers (collectively holding the model weights), and N workers (each 

holding a disjoint partition of the data). Starting from a randomly initialized model, the workers 

pull the current model from the parameter server(s), perform one or multiple forward and 

backward passes on data batches to compute gradients, and push these gradients or local 

models back to the parameter server(s) where the gradients are aggregated and models are 

updated accordingly. Similar architectures apply to multi-threaded training [ZR14], multi-

device training [TF19], distributed training [D+12], as well as federated training [KMS20]. 

Synchronization Strategies: Commonly applied update strategies for when to update the 

models include Bulk Synchronous Parallel (BSP), Asynchronous Parallel (ASP), and Synchronous 

with backup workers [D+12, A+16, J+17]. BSP introduces barriers and waits for updates from 

all workers which ensures consistency but is prone to stragglers (slow workers) because workers 

wait for the slowest. In contrast, ASP avoids barriers by immediately updating and returning 

the model for every worker update. However, in case of slow workers, there is the problem of 

working on stale models which can slow down the learning process, and in extreme cases, even 

lead to divergence. Synchronous with backup workers combines the advantages of BSP and 

ASP by waiting only for N updates of the N+b workers, and thus ignoring the b slowest workers 

on every synchronization step (i.e., model update). Further strategies bound the maximum 

staleness (i.e., differences between the fastest and slowest worker) [Ho+13]. 

Reduced Communication Overhead: Given the broad applicability of the parameter 

server architecture and importance of fast communication, existing work extensively studied 

reducing the communication overhead. Commonly applied techniques include larger batch 

sizes [G+17] (i.e., fewer communications steps), more advanced optimizers [GKS18] (i.e., fewer 

model updates until convergence), decentralized training [L+17] (i.e., barriers among sub-

groups of workers), prefetching and overlapping computation with communication [TF19] (e.g., 

mpirun -np 3 ./bin/daphne --timing --vec --num-threads=2 --partitioning=AUTO --distributed --dist_backend=MPI 

./example-D5.3/matrix_addition.daph 

 

. . .  

{"startup_seconds": 0.0288519, "parsing_seconds": 0.00471287, "compilation_seconds": 0.0713904, 

"execution_seconds": 6.84299, "total_seconds": 6.94794} 
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layer-wise All-Reduce overlapped with backward pass computation), lossless and lossy-

compressed communication [S+14, J+18], sparse communication [R+22], different 

communication primitives, direct device communication, and even in-network aggregation 

[S+21]. 

BAGUA Demonstrator:  In order to enable researchers to explore combined 

configurations of such techniques for reducing communication overhead, the ETH team 

(around Ce Zhang who meanwhile left ETH Zurich and the DAPHNE project) created the 

standalone BAGUA system [G+21]. BAGUA provides well-defined communication alternatives 

at extension hooks and thus, allows experimenting with different combinations of optimization 

algorithms, communication primitives, and system relaxations. In detail, BAGUA includes 

parameter servers, collective operations like All-Reduce (MPI and NCCL), and decentralized 

learning; techniques for overlapping communication and computation, synchronous and 

asynchronous updates; and means of lossy compression and sparsification. A user specifies the 

network architecture, an optimizer, and a BAGUA wrapper with additional configurations. 

BAGUA then provides a dedicated optimization framework for automatic scheduling and 

batching. This optimization framework applies overlapping communication and computation 

(via dynamic profiling), fusion and flattening of intermediates into continuous objects (batched 

communication), and hierarchical communication across nodes and multiple devices per node. 

The demonstrator artifact is available at:  

https://daphne-eu.know-center.at/index.php/s/N6YJ3oScY7rS3tp  

It can be tested through the prepared tutorials at:  

https://tutorials.baguasys.com/.  

Integration into DAPHNE: We aim to eventually integrate the lessons learned and 

selected components from BAGUA into a parameter-server primitive in the DAPHNE system as 

well: 

  Mp = paramserv(M, X, y, updateGrad, updateModel, ASP, BATCH, 200, 64, ...) 

Here, the parameter server is invoked through a built-in function to which we pass a list of 

initialized weight matrices M, the feature matrix X, the labels y, two function pointers for 

computing gradients and updating the model, as well as a synchronization strategy and 

frequency, number of epochs, batch size, and other parameters. While BAGUA focuses on 

variability (selecting and combining prepared communication alternatives), DAPHNE further 

aims for extensibility allowing the integration and experimentation with new communication 

and synchronization primitives. This DAPHNE integration will reuse existing functionality for 

second order functions (e.g., map(X, fun)) but needs additional infrastructure for extensibility. 

 

 

 

https://daphne-eu.know-center.at/index.php/s/N6YJ3oScY7rS3tp
https://tutorials.baguasys.com/
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6 Conclusion and Outlook 
 

This deliverable provides a comprehensive overview of the improved DAPHNE scheduling 

prototype. It describes key enhancements in usability, automated scheduling and work 

partitioning, and scheduling with distributed data developments. Automated scheduling solves 

the problem of relying on extensive experimentation or user expertise to select efficient 

scheduling algorithms. The developments regarding scheduling with distributed data enhance 

the scalability of DAPHNE. Finally, all these implementations together improve user experience 

and expand the scheduling capabilities of DAPHNE. 

Further thread-pinning strategies and interfacing with resource managers are subject to 

improvement in future versions of the prototype. The automated grain size selection presented 

in this deliverable can be extended for the automated selection of scheduling and work 

partitioning strategies. This is part of ongoing work in WP5. Finally, support for dynamic and 

automated scheduling and work partitioning at MPI process level is an immediate next step. 

These forthcoming enhancements will provide users with even more adaptable and efficient 

scheduling solutions in DAPHNE. 
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