
D4.3 Improved DSL Runtime Prototype and Overview

1

DAPHNE – 957407 Public

D4.3 Improved DSL Runtime

Prototype and Overview

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.0

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D4.3 Improved DSL Runtime Prototype and Overview

2

DAPHNE – 957407 Public

Document Description

In this Deliverable, we describe the status of the DAPHNE runtime system and its prototype v2

implementation. Specifically, we overview the current system architecture and continue with

the implementation and integration updates that took place within this reporting period. We

can categorize progress made along the following axes: a) Advances in runtime I/O; b) updates

in runtime communication and c) updates inside the execution engine itself. We provide access

to the DAPHNE Runtime v2 prototype, publicly available in the DAPHNE development

repository. We conclude this report by including examples on how to execute sample DSL

algorithms with various parameters and provide a large set of benchmarking results of the

current version over the VEGA supercomputer.

D4.3 Improved DSL Runtime Prototype and Overview

WP4 – DSL Runtime and Integration

Type of document R Version 1.0

Dissemination level PU

Lead partner ICCS

Author(s) Dimitrios Tsoumakos (ICCS) Stratos Psomadakis (ICCS), Constantinos

Bitsakos (ICCS), Aristotelis Vontzalidis (ICCS), Mark Dokter (KNOW),

Patrick Damme (TUB)

Reviewer(s) Jonas H. Müller Korndörfer (UNIBAS), Philippe Bonnet (ITU)

Revision History

Version Item Comment Author / Reviewer

v0.1 Initial outline 16/10/2023 Dimitrios Tsoumakos

v0.2 Updated outline 25/10/2023 Dimitrios Tsoumakos

v0.3 Introduction content 3/11/2023 Dimitrios Tsoumakos

v0.4 Content on updated runtime

design

6/11/2023 Aristotelis Vontzalidis,

Stratos Psomadakis

v0.5 Content on HDFS integration and

Eigen kernel

8/11/2023 Constantinos Bitsakos

v0.6 Experimental evaluation section 9/11/2023 Aristotelis Vontzalidis

v0.7 Updated experimental results and

commentary

10/11/2023 Aristotelis Vontzalidis,

Dimitrios Tsoumakos

v0.8 Integrate more kernel input 11/11/2023 Patrick Damme, Dimitrios

Tsoumakos

v0.9 Updated content based on

reviews

23/11/2023 Aristotelis Vontzalidis,

Constantinos Bitsakos

v1.0 Updated content 26/11/2023 Dimitrios Tsoumakos

D4.3 Improved DSL Runtime Prototype and Overview

3

DAPHNE – 957407 Public

Table of Contents

1 Introduction ... 6

1.1 Overview of DAPHNE System Architecture .. 6

1.2 Runtime Overview .. 7

1.2.1 DAPHNE Runtime .. 7

1.2.2 DAPHNE Kernels .. 9

1.2.3 DAPHNE Runtime Data Structure Support .. 9

1.2.4 DAPHNE Communication Framework ... 9

1.2.5 DAPHNE Runtime I/O .. 9

1.3 Document Organization .. 10

2 Runtime Design and Implementation Updates .. 11

2.1 Overview .. 11

2.2 I/O in Daphne Runtime .. 11

2.2.1 Daphne Serialization .. 11

2.2.2 FileSystem Integration – HDFS ... 12

2.2.2.1 HDFS Overview .. 12

2.2.2.2 HDFS APIs .. 13

2.2.2.3 Current integration status ... 14

2.3 Runtime Communication Advances .. 16

2.3.1 Communication Backends ... 16

2.3.2 Message Fragmentation ... 17

2.4 Execution Engine .. 17

2.4.1 Metadata Support ... 17

2.4.2 Kernel updates ... 18

2.4.2.1 Eigen .. 18

2.4.2.2 I/O and data-format Support... 18

2.4.2.3 Cuda-specific Kernels .. 18

2.4.3 Monitoring/tracing support .. 19

2.4.4 Compiler support .. 19

3 Daphne Runtime v2 Prototype .. 20

3.1 Artifact Access and use .. 20

3.2 Evaluation Results .. 21

3.2.1 Infrastructure and Inputs .. 21

D4.3 Improved DSL Runtime Prototype and Overview

4

DAPHNE – 957407 Public

3.2.2 Experimental Evaluation ... 22

3.2.2.1 Local Runtime .. 22

3.2.2.2 Distributed Runtime .. 23

3.2.2.3 Communication backends .. 24

3.2.2.4 Message Fragmentation .. 25

3.2.2.5 DAPHNE Serialization ... 26

4 Conclusions & Future Work ... 28

References ... 29

Table of Figures

Figure 1: DAPHNE System Architecture and Runtime involvement. ... 7

Figure 2: DAPHNE Runtime hierarchical approach. ... 8

Figure 3: Example of hierarchical and vectorized execution for the Connected Components

algorithm. .. 9

Figure 4: HDFS Architecture ... 13

Figure 5: Local Runtime performance for Connected Components ... 22

Figure 6: Local Runtime performance for PageRank ... 23

Figure 7: Distributed Runtime performance for Connected Components 24

Figure 8: Distributed Runtime performance for PageRank... 24

Figure 9: MPI and gRPC performance comparison.. 25

Figure 10: Message fragment size effect on communication time.. 26

Figure 11: DAPHNE object vs. CSV Serialization performance .. 27

List of Tables

Table 1: Inputs for Connected Components .. 21

Table 2: Inputs for PageRank ... 21

D4.3 Improved DSL Runtime Prototype and Overview

5

DAPHNE – 957407 Public

List of Abbreviations

Abbreviation Meaning

API Application Programming Interface

CPU Central Processing Unit

CSR Compressed Sparse Row

CSV Comma-seperated Values

CUDA Compute Unified Device Architecture

DSL Domain Specific Language

GPU General Processing Unit

HPC High Performance Computing

HDFS Hadoop Distributed File System

IDA Integrated Data Analysis

I/O Input / Output

JVM Java Virtual Machine

ML Machine learning

MLIR Multi-Level Intermediate Representation

MPI Message Passing Interface

NCCL NVIDIA Collective Communications Library

OpenMP Open Multi-Processing

RPC Remote Procedure Call

D4.3 Improved DSL Runtime Prototype and Overview

6

DAPHNE – 957407 Public

1 Introduction
Complex end-to-end analysis requirements of modern analytics create a definite trend towards

Integrated Data Analysis pipelines (IDAs) where data management, high-performance

computing and ML tasks are arbitrarily “mixed-and-matched”. Distinctive such use-cases or

domains include ML-assisted simulations, exploratory query processing, data cleaning, etc.

Nevertheless, the deployment of IDA pipelines is currently hindered by integration challenges

among different systems and hardware issues [D+22].

The DAPHNE project1 is building an open and extensible system infrastructure for such

integrated data analysis pipelines. DAPHNE is built on top of MLIR [L+21], allowing seamless

integration with existing applications and runtime libraries while also enabling extensibility for

specialized data types, hardware-specific compilation chains and custom scheduling

algorithms. Its technical contributions are available as open source under the Apache-2.0

license2.

In this deliverable we present the advances in design and implementation relative to the

DAPHNE Runtime that have been achieved during the past year. We share a snapshot of the

latest DAPHNE Runtime prototype, detail how users can use it and provide detailed

benchmarking results on its performance across important input, resource and configuration

dimensions. Previous relative deliverables include the refined DAPHNE system architecture

[D+22a] and the DSL Runtime Prototype [V+22]. We also note that this prototype and

document are the result of the collaborative work that is performed by consortium partners

that participate in WP4.

1.1 Overview of DAPHNE System Architecture

Figure 1 shows the DAPHNE system architecture [D+22a]. In short, users specify their IDA

pipelines in the DaphneDSL (a language similar to Julia, PyTorch, or R) or DaphneLib (a high-

level Python API that internally compiles to DaphneDSL scripts as well). These scripts are then

compiled, by a multi-level compilation chain, into executable runtime plans, which can be

executed in a local or distributed environment. DAPHNE is constantly getting updated with

diverse tools, e.g., for getting insights into the compiler and runtime.

The multiple compiler passes lower the IR from high-level operations to specialized operator

and data levels (C++ Kernels), allowing just-in-time compilation. Optimization passes improve

runtime and memory consumption, including common subexpression elimination, constant

propagation, and more. This system infrastructure also supports cardinality and sparsity

estimation.

The compiler generates an execution plan with calls to C++ host kernels for local, distributed,

or accelerator operations. At DAPHNE Runtime, the kernels are executed according to the

1 https://daphne-eu.eu/
2 https://github.com/daphne-eu/daphne

https://daphne-eu.eu/
https://github.com/daphne-eu/daphne

D4.3 Improved DSL Runtime Prototype and Overview

7

DAPHNE – 957407 Public

provided execution plan. Besides this basic execution mode, DAPHNE adopts state-of-the-art

optimizations in the Runtime that include: task-parallel loops and operations, data-parallelism

across nodes, devices, and cores and vector-instruction-parallelism where operations can be

adaptively fused and seamless integration of heterogeneous computing devices and

distributed operations occurs. In Figure 1, we denote the different architecture levels of

DAPHNE where the Runtime integrates/participates in with a green line. With respect to the

other DAPHNE components (and corresponding work packages – WPs), the runtime system

lies in the heart of the architecture, as it leverages the compiler’s output (WP3: “DSL

Abstractions and Compilation”) to execute kernels based on the various levels of the scheduling

logic (WP5: “Scheduling and Resource Sharing”) on the available hardware resources (WP6:

“Computational Storage” and WP7: “Hardware Accelerator Integration”).

Figure 1: DAPHNE System Architecture and Runtime involvement.

1.2 Runtime Overview

The DAPHNE Runtime system is a crucial component of DAPHNE. It supports the execution of

user-defined workflows and operations specified in DaphneDSL or DaphneLib. Below, we

identify the different components/integration points that constitute parts of the DAPHNE

Runtime efforts together with a brief description for each one:

1.2.1 DAPHNE Runtime

The DAPHNE Runtime is responsible for efficiently executing user-defined IDAs. The runtime

system is designed hierarchically: The coordinator receives DaphneDSL user code and

generates an execution plan. The compiler determines whether each workload should be

executed locally or across multiple worker nodes. This is pictorially shown in Figure 2.

D4.3 Improved DSL Runtime Prototype and Overview

8

DAPHNE – 957407 Public

Figure 2: DAPHNE Runtime hierarchical approach.

The local runtime is responsible for the execution of complex pipelines in a single compute

node. Note that the compute node may consist of multiple heterogeneous resources, e.g.,

multicore CPUs, GPUs, FPGAs, and computational storage devices. The distributed runtime

system coordinates the distribution of work among worker nodes and collects the results. Work

performed by the compiler determines the code to be executed by each node. This code is

sent to the workers in the form of an MLIR snippet, which can be compiled in an architecture-

aware manner at the individual workers. The distribution of the data and spawning of

distributed jobs is done at the beginning of a fused pipeline.

The “heart” of the runtime is its vectorized execution engine, operating as the central means of

parallelism for both the local (e.g., multi-threading and multi-device) and the distributed (e.g.,

multiple worker nodes) runtime. It allows fine-grained operator fusion and parallelism across

hardware devices.

In distributed execution mode, the DAPHNE Runtime uses distribution primitives (such as

broadcast, all-reduce, ring-reduce, scatter/gather, etc.) to distribute data and code to worker

nodes. Instead of CPUs, there are multiple distributed nodes that receive chunks of data and

perform computations on them. Each worker locally compiles and executes the generated code

through the local runtime system via the vectorized execution engine. This is pictorially

described in Figure 3 for the Connected Components algorithm.

DAPHNE Worker

Local Runtime

DAPHNE Worker

Local Runtime

DAPHNE Worker

Local Runtime

DAPHNE Coordinator

Distributed Runtime

DAPHNE

DSL script

CPUs/

NUMA

GPUs

FPGAs/

ASICs

Harness data parallelism and locality via vectorized execution

D4.3 Improved DSL Runtime Prototype and Overview

9

DAPHNE – 957407 Public

Figure 3: Example of hierarchical and vectorized execution for the Connected Components algorithm.

1.2.2 DAPHNE Kernels

Kernels are the actual code that is executed on a device’s hardware, such as a CPU or GPU, and

is used to perform a specific operation. In DAPHNE, kernels are written in C++ and are used

for local, distributed or accelerator operations. The kernels are specialized for different types

of input and output data. In [K21], a summary of the main categories of operations that are

supported has been detailed. A full list of available kernels can be found in the project’s GitHub

page3.

1.2.3 DAPHNE Runtime Data Structure Support

The Daphne Runtime supports data structures such as matrices (both dense and sparse formats

of various extensions) and frames that have a schema and rely on column-oriented storage. In

the distributed case, these become distributed collections of tiles and federated

matrices/frames. These two abstractions provide a great balance of flexibility and control [K21].

1.2.4 DAPHNE Communication Framework

Communication between cluster nodes is commonly required in multiple DAPHNE operations

such as data and code transfer and intra-cluster communication. DAPHNE’s extensible

architecture allows for easy integration with different communication frameworks, each with

different capabilities and performance trade-offs. Currently, DAPHNE Runtime can successfully

utilize gRPC (both in synchronous and asynchronous mode) as well as the openMPI library in

order to support the required communication.

1.2.5 DAPHNE Runtime I/O

Efficient I/O support for DAPHNE Runtime is of high importance, as most IDA pipelines

routinely involve both large and possibly multiple input/output datasets with iterative

distributed computations that require large numbers of I/O operations.

Supporting efficient I/O spans different aspects of the runtime:

3 https://github.com/daphne-eu/daphne/blob/main/src/runtime/local/kernels/kernels.json

https://github.com/daphne-eu/daphne/blob/main/src/runtime/local/kernels/kernels.json

D4.3 Improved DSL Runtime Prototype and Overview

10

DAPHNE – 957407 Public

Storage backends: DAPHNE Runtime has the ability to utilize different storage backends in

order to read and write data from/to. It has been initially deployed with local file system

support for each node. During this period, we have opted for integration with the Hadoop

Distributed File System (HDFS) [Ha].

(De)Serialization formats: A category of kernels relative to I/O provide support for the

DAPHNE user to read and store files in popular formats such as CSV, Arrow and Matrix Market.

It is also noteworthy to mention that a DAPHNE-specific file format along with custom

(de)serialization support has been devised for more efficient I/O and network communication.

1.3 Document Organization

The remainder of this document is organized as follows: Section 2 describes all the updates

performed during the past year, categorized. In Section 3, we first present the artifact for the

v2 runtime prototype and how to use it. Then, we detail a set of benchmarking results over

different important dimensions that affect the runtime performance. We conclude this

document in Section 4.

D4.3 Improved DSL Runtime Prototype and Overview

11

DAPHNE – 957407 Public

2 Runtime Design and Implementation Updates
This section describes the updates in the design and implementation of the DAPHNE Runtime

system that took place within the last reporting period (i.e., since D4.2 [V+22] in November

2022). Moreover, it provides information regarding the current status of the prototype, where

applicable.

2.1 Overview

We can categorize progress made in this period along the following axes: a) Advances in I/O;

b) updates in runtime communication and c) updates inside the execution engine itself.

Relative to I/O in DAPHNE Runtime: We have updated the DAPHNE serialization library to

support DenseMatrices and CSRMatrices. Three serialization methods are implemented,

offering flexibility in preserving and reconstructing DAPHNE objects. This not only improves

I/O performance but also broadens support for distributed execution to various data types. We

have also commenced an integration of the runtime with HDFS. We are leveraging the Libhdfs3

library for efficient interfacing with HDFS from C++ code. The workflow involves file upload,

serialization, data distribution, information gathering, deserialization, and inter-node write and

read. This integration is planned to greatly enhance data locality and establish a scalable

distributed computing environment.

Relative to Runtime Communication advances: DAPHNE's communication capabilities are

enhanced with the full incorporation of MPI and the introduction of synchronous gRPC

alongside asynchronous gRPC. To overcome the limitation of message size in both frameworks

(as well other possible future integrations), we have introduced message fragmentation. This

enables the system to handle larger data volumes by breaking them into manageable

segments, seamlessly facilitated by the serialization library.

Execution Engine Updates: The execution engine underwent several updates, including

metadata support for both gRPC and MPI, integration with the Eigen library for eigenvalue and

eigenvector calculations, CSR support for PageRank, and CUDA-specific kernels. Moreover,

basic monitoring support for the runtime is added through the PAPI library, allowing fine-

grained event information extraction.

2.2 I/O in Daphne Runtime

2.2.1 Daphne Serialization

We have implemented a DAPHNE serialization library4 for DenseMatrices and

CSRMatrices (sparse matrices). This serialization library transforms Daphne objects into byte

streams in a fast and efficient manner, leveraging the underlying structure. We have

implemented three distinct serialization methods, as described below:

4https://github.com/daphne-eu/daphne/blob/main/src/runtime/local/io/DaphneSerializer.h

https://github.com/daphne-eu/daphne/blob/main/src/runtime/local/io/DaphneSerializer.h

D4.3 Improved DSL Runtime Prototype and Overview

12

DAPHNE – 957407 Public

• The first method is a straightforward approach that serializes the entire object into a byte

array. This method provides a complete snapshot of the object's state, making it ideal

for situations where the entire object needs to be preserved and reconstructed in its

entirety. It simplifies the process by encapsulating the object in a compact byte array.

• The second method introduces the concept of serialization in chunks, utilizing C++

iterators to break down the serialized object into smaller, manageable segments, instead

of a single compact byte array. This approach allows for the creation of smaller segments

(i.e., chunks) of the serialized object one at a time, when dealing with exceptionally large

objects or cases where creating a byte array in its entirety would lead to excessive

memory usage. This method is particularly useful when it is essential to manage memory

efficiently. The implementation is based around C++ iterators; the DAPHNE programmer

can create Serialization objects that can be iterated via a C++ for loop, producing chunks

in each iteration.

• The third method takes serialization in chunks a step further by allowing out-of-order

(de)serialization. Each chunk contains sufficient header information, enabling them to be

stored or transmitted independently. The header is the same as the one used for the

DAPHNE binary format5, necessary for reconstructing the DAPHNE object, plus an index,

which is used to identify each individual chunk. This means that the chunks can be used

to reconstruct the object in any order, providing a high degree of flexibility in managing

serialized data. This method is particularly valuable in scenarios where chunks may be

processed, stored, or transmitted separately and reassembled later as needed.

The DAPHNE serialization library not only enhances I/O performance but also facilitates faster

communication for the distributed runtime. This is achieved by eliminating the need to employ

protobuf semantics for transferring DAPHNE objects.

Furthermore, it enables us to utilize the distributed runtime with a wider range of data types.

Up to this point (as described in [V+22]), our support for distributed execution has been limited

to DenseMatrices of type double. However, we can now transfer any object type that is

supported by the library, from the coordinator to the workers (note that the transfer from

workers back to the coordinator is still in development and limited to DenseMatrix<double>

only).

2.2.2 FileSystem Integration – HDFS

2.2.2.1 HDFS Overview

The Hadoop Distributed File System (HDFS) is a scalable, fault-tolerant file system used by

Hadoop applications to efficiently distribute large datasets across multiple nodes. By design,

HDFS facilitates data locality, thereby minimizing network congestion and improving system

throughput.

5 https://github.com/daphne-eu/daphne/blob/main/doc/BinaryFormat.md

https://github.com/daphne-eu/daphne/blob/main/doc/BinaryFormat.md

D4.3 Improved DSL Runtime Prototype and Overview

13

DAPHNE – 957407 Public

HDFS is a sophisticated file system framework designed to store large datasets across

numerous commodity machines. HDFS follows a master/slave architecture comprising a single

NameNode for managing the file system metadata and regulating access, and multiple

DataNodes to handle data storage on individual cluster nodes. Files are split into large blocks,

which are grouped at datacenter racks, distributed and replicated among DataNodes, ensuring

high fault tolerance. The NameNode orchestrates the block storage, while DataNodes serve

read and write requests from the clients. These are pictorially described in Figure 4. This design

allows for high throughput and the capability to handle thousands of nodes and petabytes of

data, positioning HDFS as a basic “go-to” big data storage platform.

Figure 4: HDFS Architecture (https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

hdfs/HdfsDesign.html)

2.2.2.2 HDFS APIs

In interfacing with HDFS from C++ code, several libraries are available, each with unique

advantages and limitations. The traditional JNI-based C library, libhdfs, requires deployment of

HDFS JARs on every machine, which leads to a longer startup time. Alternatively, WebHDFS

provides a REST API for HDFS interaction. However, crafting HTTP requests in C/C++ is

relatively cumbersome, and not particularly open to performance optimizations. libwebhdfs, a

C library designed for WebHDFS requests, provides a way to interact with Hadoop's HDFS using

a REST API, avoiding the need for Hadoop Java libraries on each machine. This approach

simplifies deployment in large-scale environments by eliminating the requirement to install

Java JARs everywhere. Additionally, it bypasses the Java Virtual Machine (JVM) startup time,

offering quicker and more efficient access to HDFS. Consequently, libwebhdfs is preferrable in

cases where reducing Java overhead and streamlining HDFS access are essential.

The Libhdfs3 library offers a significant advancement as a native C/C++ HDFS client. It operates

independently of the JVM, providing seamless support for non-JVM languages like Python and

eliminating the necessity for Hadoop JARs or JVM system libraries. This independence from

the Java environment not only streamlines the process but also enhances performance by

avoiding JNI overhead.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

D4.3 Improved DSL Runtime Prototype and Overview

14

DAPHNE – 957407 Public

For this project, Libhdfs3 was selected due to its native implementation that offers a more

direct, and thus faster, interaction with HDFS. It streamlines deployment and execution by

removing the dependency on Java infrastructure, which can be a substantial advantage in

environments where Java is not the primary runtime. Moreover, Libhdfs3 generally provides a

more idiomatic C/C++ development experience, which can be beneficial for C/C++ developers.

These reasons, coupled with its robustness and efficiency, make Libhdfs3 the preferred choice

for our HDFS-related operations.

2.2.2.3 Current integration status

The integration of DAPHNE with HDFS signifies a strategic advancement in managing

distributed data processing tasks. In terms of the DAPHNE Runtime, our primary goal is to

enhance its performance by taking advantage of data locality. Additionally, we wish to

showcase DAPHNE’s extensibility by integrating a state-of-the-art distributed file system with

it. The use of Libhdfs3 is instrumental in bridging DAPHNE with HDFS, ensuring that the runtime

leverages its strengths. The following outlined workflow, not only promotes data locality but

also paves the way for a scalable and robust distributed computing environment.

1. File Upload: Users initiate the process by uploading a file to HDFS. This action sets the stage

for distributed data handling by our system.

2. Serialization: The DAPHNE coordinator serializes the contents of the file into fixed-size

DAPHNE chunks6. This serialization is a preparatory step for aligning the data with HDFS's block

structure.

3. Data Distribution: Corresponding to the DAPHNE chunks, the data is then sharded into

fixed-size HDFS chunks with size instructed by the coordinator. This ensures that the data

distribution mirrors our chunking performed in step 2 above. The size of DAPHNE and HDFS

chunks is dynamically determined during execution, based on the number of nodes and the

size of the original matrix. This adjustment aims to achieve load balancing, ensuring that each

node can efficiently deserialize the bytestream objects it receives for performing its

computations.

4. Information Gathering: Each worker node, after being prompted by the coordinator, reports

back detailing which file blocks are stored in its local disk. This information is crucial for tracking

data and scheduling tasks.

5. Deserialization and Matrix Formation: Each node proceeds to deserialize its respective

blocks, resulting in the formation of a corresponding DAPHNE data format usable for

computation. In this manner, each node reads only the portions of the original matrix stored

on its local disk from HDFS, thereby achieving data locality and minimizing intercommunication

overhead.

6. Inter-node Write and Read: Each node is capable of writing its output directly back to HDFS.

The master node can then read these outputs without the necessity of a collect function,

streamlining the data aggregation process.

6 The term chunks refers to its definition from Section 2.2.1 – the Daphne serializer. These are

essentially segments of the original matrix represented as bytestream chunks.

D4.3 Improved DSL Runtime Prototype and Overview

15

DAPHNE – 957407 Public

7. Task Assignment: The final step (currently under development), will see the coordinator

dispatching job details to each node. Each node will be responsible for a specific portion of the

initial file, facilitating parallel processing and efficiency.

In the current development, we have successfully established an HDFS cluster deployed

alongside our distributed DAPHNE Runtime. The cluster comprises of a central master node,

referred to as the 'coordinator' – in a manner analogous to the NameNode in HDFS parlance –

and multiple worker nodes, serving as DataNodes. The currently implemented methods are:

• Connection Establishment Method: A robust mechanism to initiate a stable connection

with the HDFS, facilitating subsequent file operations.

• File Read Method: Enables the reading of files stored within the HDFS, ensuring seamless

data retrieval operations.

• File Write Method: Provides the functionality to write data to files in HDFS, an essential

operation for data persistence.

• Block Write Method: A specialized method to write data blocks to the HDFS with specific

size parameters and a predefined replication factor, enhancing data redundancy and

reliability.

• CSV-to-DenseMatrix Method: This method efficiently reads CSV files from HDFS and

converts them into DAPHNE DenseMatrix format, optimizing for in-memory data

manipulation.

• DenseMatrix-to-CSV Method: Complements the previous method by converting and

writing DAPHNE DenseMatrix objects back to CSV format in HDFS, enabling both

storage and interchange of processed data.

• CSV Serialization Method: A method dedicated to reading and serializing .CSV files from

the HDFS into DAPHNE objects, streamlining the process of data transformation and

preparation for analysis.

• ByteStream Deserialization Method: This method deserializes an HDFS bytestream,

which currently is assumed to contain matrix data, into DAPHNE DenseMatrix, allowing

for the reconstruction of matrix data into a usable format for our ecosystem.

Currently, what remains to be implemented is the precise mapping of DAPHNE matrix rows to

the respective bytes within the HDFS bytestream. This mapping is critical for leveraging HDFS's

inherent data locality features. For instance, the rows from 4 to 20 in the DAPHNE matrix

correlate to bytes 36 to 122 in the HDFS bytestream. Realizing this mapping allows us to

harness the full potential of HDFS's data distribution without necessitating alterations to the

foundational HDFS code. By doing so, we can optimize data access patterns and performance,

ensuring that our system can efficiently process large datasets by reading only the necessary

data from HDFS, thereby reducing I/O and network overhead.

D4.3 Improved DSL Runtime Prototype and Overview

16

DAPHNE – 957407 Public

2.3 Runtime Communication Advances

2.3.1 Communication Backends

A significant enhancement in DAPHNE's communication capabilities is the incorporation of MPI

(Message Passing Interface). MPI enables efficient communication and coordination with

DAPHNE’s distributed workers, making it an ideal choice for complex, high-performance

computing tasks. We use the blocking implementation of MPI which means each message

needs to be received by the recipient (worker) before the sender (coordinator) can send

additional messages to the rest of the cluster. To overcome this constraint during data

distribution, we utilize threads to concurrently transfer data to multiple workers.

However, it is worth noting that the advantages of MPI come hand in hand with certain

complexities and challenges. Deploying MPI can be more intricate compared to traditional

communication mechanisms, such as gRPC. Users may encounter hurdles during the

installation and configuration of MPI libraries, which can vary depending on the specific

computing environment and system configurations.

Moreover, MPI's communication model introduces a different set of programming

complexities for DAPHNE developers and contributors. Unlike the more straightforward

request-response pattern of gRPC, MPI operates on a lower level, requiring explicit message

passing and synchronization. While this may initially pose challenges, it also provides a

significant improvement in terms of fine-grained control over distributed processes. This level

of control empowers DAPHNE developers to optimize performance with precision, making it

particularly advantageous for those seeking a deeper understanding of parallel programming.

DAPHNE can be launched using MPI with the mpi command “mpirun” and providing the flag

“--dist_backend=MPI” to the daphne binary (default distributed backend is MPI so the

“--dist_backend” flag is optional in this case). An example with 4 instances of DAPHNE

communicating with MPI is displayed below (one of them will be the coordinator and three will

be distributed workers):

mpirun -n 4 ./bin/daphne –distributed --dist_backend=MPI ./script.daph

In addition to MPI, we have recently introduced support for the synchronous gRPC version,

complementing our existing asynchronous gRPC capabilities. In the past, we have experienced

performance issues with asynchronous gRPC. However, it is worth mentioning that

asynchronous gRPC gives significantly more responsibility to the DAPHNE developer to

manage resources. As such, there is a need for more experimentation/development in order to

fully utilize this specific implementation.

Synchronous gRPC facilitates simpler, blocking communication patterns, which can be

beneficial in scenarios where tight control over request-response interactions is necessary. In

synchronous gRPC, calls to distributed workers are made in a blocking manner, meaning that

a call will pause and wait for the response before proceeding. To ensure that this blocking

nature does not hinder the overall system's performance, we have implemented a threading

mechanism. By leveraging threads, DAPHNE can concurrently make calls to distributed workers,

effectively avoiding any bottlenecks that might occur when waiting for responses.

D4.3 Improved DSL Runtime Prototype and Overview

17

DAPHNE – 957407 Public

The introduction of synchronous gRPC also has the advantage of simplifying the codebase. It

offers a more intuitive and linear approach to handling requests and responses, making it

accessible to new contributors and developers who may be less familiar with the intricacies of

asynchronous programming. Moreover, gRPC is responsible for handling resources for

requests and responses making it behave in a more reliable and performant manner.

Similarly to the existing asynchronous gRPC implementation, to start a distributed computation

using sync-gRPC, we must first launch distributed workers executable that use synchronous-

gRPC workers. Note that, since we now support more than one way to start a gRPC worker, we

now pass an additional flag specifying which implementation of gRPC to use:

./bin/DistributedWorker --dist_backend=sync-gRPC IP:port

We must first set the environment variable DISTRIBUTED_WORKERS and then we invoke

DAPHNE:

export DISTRIBUTED_WORKERS=IP:Port,IP2:Port2,…

./bin/daphne --distributed --dist_backend=sync-gRPC ./script.daph

2.3.2 Message Fragmentation

In conventional communication frameworks there exists a strict upper limit on the size of

messages, typically around 2GB. However, the nature of DAPHNE often demands the

transmission of significantly larger data volumes. To overcome this limitation, we have

extended our communication operations to accommodate larger message sizes with message

fragmentation. This mechanism enables us to break down oversized data payloads into smaller,

manageable segments that can be effectively transmitted and subsequently reconstructed by

distributed workers. This concept is seamlessly facilitated by our recently implemented

serialization library, as mentioned earlier.

With our serialization library, we create fragments that are then transmitted to the intended

recipients. Each fragment is accompanied by sufficient metadata and header information to

facilitate proper reassembly. We provide an additional flag to DAPHNE that specifies the

maximum fragment size that can be used, in case there are limited memory resources:

--max-distr-chunk-size=N (where N in bytes).

2.4 Execution Engine

2.4.1 Metadata Support

In [D+22a] we described DAPHNE’s data object metadata. Local and distributed data structures

store metadata, including shape, sparsity, symmetry, and data placement. This information can

be known at compile-time or determined at runtime, providing flexibility. Metadata helps

optimize operations, such as choosing efficient algorithms for sorted data. Data placement is

crucial, especially in hybrid runtime plans utilizing distributed workers and heterogeneous

hardware. Matrices and frames reference data across various devices, and for federated data,

metadata includes partition details and data location at the coordinator.

D4.3 Improved DSL Runtime Prototype and Overview

18

DAPHNE – 957407 Public

We extended DAPHNE's metadata implementation for the distributed runtime by

incorporating support for both gRPC and MPI communication frameworks. Each framework

necessitates distinct metadata due to their unique requirements. For instance, gRPC relies on

worker addresses (IPs and ports), while MPI uses rank ids. These metadata implementations

also include details about the distribution of rows and columns among workers, along with

other runtime information.

2.4.2 Kernel updates

2.4.2.1 Eigen

Eigenvalues and eigenvectors are foundational concepts in linear algebra with pivotal

applications in various computational algorithms. Eigenvalues and eigenvectors are crucial in

numerous algorithms that require dimensionality reduction, optimization, and solving systems

of differential equations. For instance, the Principal Component Analysis (PCA) algorithm, which

is widely used for reducing the dimensionality of large data sets by transforming them into a

new set of variables, relies on eigenvalues and eigenvectors to identify the principal

components. Other algorithms that utilize these concepts include Singular Value

Decomposition (SVD), Latent Semantic Analysis (LSA), Linear Discriminant Analysis (LDA), many

Spectral Clustering algorithms, etc.

To facilitate these operations within our system, we have integrated the Eigen C++ library with

DAPHNE. This allows us to construct a specialized kernel capable of computing the eigenvalues

and eigenvectors of a given Daphne matrix. Leveraging this kernel, we have developed a

custom operator (a DaphneOp), which enables Daphne users to compute eigenvalues and

eigenvectors directly within the DaphneDSL. This integration empowers users to incorporate

these calculations seamlessly into their algorithms.

2.4.2.2 I/O and data-format Support

In order to support a DaphneDSL PageRank implementation, we needed to extend the

implementation and specialization of various runtime kernels (MatMul, Gemv), especially with

regard to supporting CSR matrices for various operations. We have also added kernels for:

• Outer binary operations (generalized outer product) on DenseMatrix.

• Cumulative aggregation on DenseMatrix.

• CSV file writer for frames.

2.4.2.3 Cuda-specific Kernels

During this past year, the support of CUDA instructions in the DAPHNE runtime has seen

several advances in functionality as well as bug fixes and usability improvements.

The Connected Components algorithm, which is featured in several deliverables and

publications as a simplified use case scenario, has now relevant operations implemented with

a CUDA kernel. Some of the needed operations were already there, whereas the newly added

ones contain a number of element-wise operations, row aggregates and full aggregates.

Additional CUDA operations that were implemented are the fill instruction and a launcher

instruction for run-time generated and compiled fused operations. The former is used to fill

data objects with single value data directly in GPU memory, thereby avoiding the need to

D4.3 Improved DSL Runtime Prototype and Overview

19

DAPHNE – 957407 Public

generate that data in host memory and then transferring it to the devices' memory in a separate

step. The latter is used to launch CUDA kernels that have been compiled at run-time if the

DAPHNE compiler has been able to fuse operations according to certain patterns. This

"codegen" operation is discussed further in Deliverable D7.3.

On the improvements and bug fixes side, the DNN operations were fixed to accommodate

refactorings in DAPHNE's code base and the transpose operation now correctly handles vector

transpose in case of vectorized (tiled) processing.

Lastly, the use of Docker-based container images with CUDA support avoids the need to have

all the correct versions of third-party dependencies installed on the host system, which

improves ease of use considerably.

2.4.3 Monitoring/tracing support

We added basic monitoring support for the Daphne Runtime System via the PAPI library7. PAPI

lets the DAPHNE runtime interact with the PMU / PMC (performance monitoring unit /

counters) of the underlying CPU, in order to extract fine-grained architectural and micro-

architectural event information, e.g., cycles, instructions, cache misses, branch misses etc. It also

provides support for other monitoring plugins (e.g., GPU monitoring, power consumption, etc.).

We implement this support via two monitoring kernels (StartProfiling and

StopProfiling), which can be used to instrument either other kernels or the entirety of the

DAPHNE script. We currently use these kernels for the latter, injecting them at the start and

end of the execution of the user-provided DAPHNE script. These kernels are enabled by a user-

provided CLI option (--enable-profiling) and then configured by setting the relevant

PAPI environmental variables (e.g., PAPI_EVENTS=’cycles, instructions’).

Additionally, we support exposing these collected metrics, as well as coarse-grained timing

information (enabled by the --timing CLI option) to Prometheus, via the text file collector of

the Prometheus node exporter. This is work done for our demonstrator UI [V+23] and is

currently not included in the artifact.

2.4.4 Compiler support

In [V+22], we described a limitation where pipelines with duplicate inputs within the pipeline

could not be executed. This limitation has been addressed by enhancing the optimization pass

responsible for generating distributed pipelines. If a pipeline input appears multiple times, we

simply remove the duplicates and create references to the same argument within the

intermediate representation (IR).

However, we still do not support pipelines in cases where the arguments exist multiple times

but are distributed in different schemas across workers (e.g., distributed by rows and columns).

7 https://icl.utk.edu/papi/

https://icl.utk.edu/papi/

D4.3 Improved DSL Runtime Prototype and Overview

20

DAPHNE – 957407 Public

3 Daphne Runtime v2 Prototype

3.1 Artifact Access and use

The DAPHNE DSL runtime prototype described in this deliverable is publicly accessible as a

snapshot of the DAPHNE development repository (created in November 9th, 2023) under the

following link: https://daphne-eu.know-center.at/index.php/s/arrNCQGiSmKid5s

Note that the DAPHNE development repository is publicly available at

https://github.com/daphne-eu/daphne under Apache License v2.0.

In [V+22] we provided detailed guidelines on how to build DAPHNE and run a simple DSL

script. The same steps can be repeated to build the latest version of DAPHNE provided in the

current artifact. MPI can now be used with DAPHNE, however is not installed by default. After

installing the required dependencies on the system, we need to re-build DAPHNE and provide

the MPI flag:

 $./build.sh --mpi

One additional important change is that now we support more than one communication

framework, therefore we need to specify the distributed backend when running DAPHNE. This

applies to the distributed gRPC workers as well, since we support two different versions of

gRPC backends (synchronous and asynchronous).

To execute DAPHNE using different communication frameworks we use the “dist_backend”

flag:

 $ export DISTRIBUTED_WORKERS=IP1PORT1,IP2:PORT2

 $./bin/daphne --distributed --dist_backend=sync-

gRPC ./scripts/examples/hello-world.daph

and in a similar way to start distributed gRPC workers:

 $./DistributedWorker --dist_backend=sync-gRPC IP:Port

For MPI, we use the mpirun command to start multiple instances of DAPHNE:

 $ mpirun -n 4 ./bin/daphne --distributed --

dist_backend=MPI ./scripts/examples/hello-world.daph

In Section 3.2 we present results from two DSL scripts: PageRank and Connected Components.

Both of these algorithms can be found in the artifact at scripts/algorithms/. They require a

graph as an input. The input used in the examples below is the Amazon product co-purchasing

network8 and can be found inside the artifact under “datasets” directory. Example use (for

Connected Components):

8 https://snap.stanford.edu/data/amazon0601.html

https://daphne-eu.know-center.at/index.php/s/arrNCQGiSmKid5s
https://github.com/daphne-eu/daphne
https://snap.stanford.edu/data/amazon0601.html

D4.3 Improved DSL Runtime Prototype and Overview

21

DAPHNE – 957407 Public

 $. ./bin/daphne --select-matrix-

repr ./scripts/algorithms/components.daph G=\"datasets/amazon.mtx\"
C=\"outDistr.csv\"

For PageRank:

 $./bin/daphne --select-matrix-

repr ./scripts/algorithms/pagerank.daph G=\"datasets/amazon.mtx\"
alpha=0.85 center=true scale=false maxiter=50

3.2 Evaluation Results

In this Section we present benchmarking results for the DAPHNE Runtime as included in the

latest artifact.

3.2.1 Infrastructure and Inputs

We use the VEGA supercomputer for benchmarking. VEGA consists of a total of 960 nodes

(including both CPU and GPU partitions) and uses Ceph. The CPU partition which we use has

768 nodes, each with a total of 256GB RAM and AMD Epyc 7H12 two socket processors. SLURM

is used to submit jobs and allocate resources. For our experiments, we assign 80GB of RAM to

each node. We are able to request multiple nodes as well as multiple CPUs per node, in various

configurations. We evaluate the DAPHNE Runtime executing two different algorithms,

Connected Components and PageRank.

In Table 1 and Table 2 we detail the different graphs that were used as inputs for each

algorithm. All the datasets are publicly available. The Amazon sets refer to Amazon product

co-purchasing network, June 01, 2003, SNAP Library, Stanford University. The other datasets

(uk-2002, delaunay_n24, kmer_V2a and kmer_P1a) are downloaded from the SuiteSparse

Matrix Collection9.

Table 1: Inputs for Connected Components

Name Dimensions (#nodes) Non zero values Disk size

Amazon x30 12101820 101621640 2GB

Amazon x100 40339400 338738800 6.8GB

uk-2002 18520486 298113762 4.7GB

delaunay_n24 16777216 50331601 0.8GB

Table 2: Inputs for PageRank

Name Dimensions (#nodes) Non zero values Disk Size

kmer_V2a 55042369 58608800 0.98GB

kmer_P1a 139353211 148914992 2.6GB

9 https://sparse.tamu.edu/

https://sparse.tamu.edu/

D4.3 Improved DSL Runtime Prototype and Overview

22

DAPHNE – 957407 Public

3.2.2 Experimental Evaluation

In this Section, we present a selected subset of benchmarking results in order to register the

performance of the current runtime version under the dimensions of:

• Scalability of the local and distributed runtime over the number of available CPUs and

workers respectively.

• Choice of different communication backends (gRPC and MPI).

• Message fragmentation (as described in Section 2.3.2) performance.

• DAPHNE serialization versus traditional CSV I/O.

All the reported datapoints are the average of three runs. Moreover, we note that the runtime

uses the default STATIC scheduling for all these experiments.

3.2.2.1 Local Runtime

We first focus on the local runtime, comparing normal execution vs. the vectorized engine

which leverages multiple cores in a system. Figure 5 shows results for the Connected

Components algorithm while Figure 6 shows results for PageRank.

Figure 5: Local Runtime performance for Connected Components

D4.3 Improved DSL Runtime Prototype and Overview

23

DAPHNE – 957407 Public

Figure 6: Local Runtime performance for PageRank

In both cases (algorithms), we notice how increasing the number of CPUs from 1 to 32 allows

the vectorized engine to scale its performance, achieving a 17x speedup in the large Amazon

graph and a 12x speedup in uk-2002 relative to the execution time for the Connected

Components. For PageRank, the respective speedup reaches 13x (for kmer_P1a).

3.2.2.2 Distributed Runtime

In our next experiment, we present the distributed runtime with the gRPC backend, where each

distributed node utilizes 32 CPUs. In the following plots, we describe time spent for

communication and computation. Figure 7 shows results for the Connected Components

algorithm while Figure 8 for PageRank.

D4.3 Improved DSL Runtime Prototype and Overview

24

DAPHNE – 957407 Public

Figure 7: Distributed Runtime performance for Connected Components

Figure 8: Distributed Runtime performance for PageRank

In all cases, the distributed mode successfully divides computation across available nodes,

reducing the pure execution time between 3x and 12x (for the Connected Components) and

between 7x and 11.5x (for PageRank) compared to the local runtime execution time. It is also

evident that a “sweet-spot” in the optimal number of deployed DAPHNE worker nodes exists:

Scaling up to that point (around 8 workers in these experiments) reduces the total execution

time. Beyond that (and relative to the executed script), the communication overhead increases.

These results also showcase that there exists plenty of room for improvement in reducing

communication overhead via algorithmic and/or systemic methods in DAPHNE.

3.2.2.3 Communication backends

In the next experiment, we showcase the performance of gRPC and MPI used in the distributed

runtime. We create a benchmark where we repeatedly call the Distribute.h10 kernel for each

communication backend in order to compare their performance. The dataset being distributed

10Artifact path: src/runtime/distributed/coordinator/kernels/Distribute.h

D4.3 Improved DSL Runtime Prototype and Overview

25

DAPHNE – 957407 Public

is delaunay_n24 (1.7G in memory, in CSRMatrix format), for 100 iterations. In addition, we use

a fragment size of 10MB per message sent, from the coordinator to the workers. In Figure 9,

we show the communication time for clusters of 2 up to 32 worker nodes.

Figure 9: MPI and gRPC performance comparison

We notice how communication time is scaled as we increase the number of workers. As the

cluster size increases, MPI proves to be more advantageous in terms of communication.

Increasing the number of nodes results in less communication time, since, for both

implementations, we spawn a number of threads, equal to the number of nodes, each one

responsible for transmitting data to a worker node. Moreover, the size of data received by each

node is decreasing as we distribute data to more nodes.

3.2.2.4 Message Fragmentation

In this benchmarking scenario, we study how the performance of DAPHNE distributed runtime,

and specifically communication time, is affected by different fragment sizes. We range the user-

defined size from 50KB up to 1GB, and execute the Connected Components algorithm over an

8-worker (8 CPUs each) cluster. Results are shown in Figure 10 for both the gRPC and MPI

backends.

D4.3 Improved DSL Runtime Prototype and Overview

26

DAPHNE – 957407 Public

Figure 10: Message fragment size effect on communication time

Increasing the fragment size from very small values is highly beneficial to the communication

time, resulting in more than ten-fold reduction. Yet, after some value (around 1MB in our

experiments) the cost only decreases slightly, with the communication stabilizing or even

marginally increasing – its minimum value taken around a 10MB fragment size for both

backends. These findings will be further investigated in the future: The current scale of our

algorithms/inputs require small processing times which could easily produce misleading

conclusions.

3.2.2.5 DAPHNE Serialization

In the final experiment, we compare the I/O performance for DAPHNE Objects, using our newly

implemented Serialization library vs. the traditional CSV representation. We create a random

generated matrix (10K rows by 50K columns), with a size of 4.2GB stored as CSV and 3.8G

stored as DAPHNE binary format. Figure 11 shows the time it takes for a read or write operation

of this matrix using our serialization method compared to the CSV ones.

D4.3 Improved DSL Runtime Prototype and Overview

27

DAPHNE – 957407 Public

Figure 11: DAPHNE object vs. CSV Serialization performance

DAPHNE serializer proves faster by a factor of about 30x in reading and 93x in writing. The

performance difference is due to that fact that the CSV implementation has to iterate for all

matrix elements in order to read or write them, whereas DAPHNE serializer simply writes or

reads bytes from disk, in the same format as stored in memory without the need for parsing or

conversions to text format. Nevertheless, similarly to the previous paragraph, this finding will

be further investigated and tested against our constantly updated serialization functions. Many

factors, such as the deployment platform’s filesystem (Ceph in the VEGA case) play a big role

in such benchmarking results.

D4.3 Improved DSL Runtime Prototype and Overview

28

DAPHNE – 957407 Public

4 Conclusions & Future Work
In this deliverable, we described the current design and implementation status of the DAPHNE

Runtime. During the last year, there has been significant progress that has been registered in

multiple dimensions of the system: a) In commencing the integration with a new storage

backend, HDFS; b) in optimizing I/O in DAPHNE Runtime, by providing an efficient serialization

library; c) in providing support for existing kernels as well as introducing new ones, both for

more ML operations as well as ones that support an increasing number of formats; d) in adding

MPI as a possible communication backend, and optimizing both existing options via message

fragmentation, and e) in enhancing the runtime’s usability by providing monitoring and tracing

support.

In the upcoming months, we plan on performing and testing the full integration with HDFS, as

well as benchmark its performance gains/conditions under which this is possible. Integrating

with HPC-preferred filesystems (such as Lustre [Lu]) is a desirable direction. We also plan on

investigating the use of the NVIDIA Collective Communication Library (NCCL) as a possible

communication backend, but, most importantly, considering a hybrid communication

technique in DAPHNE Runtime, namely one that utilizes existing backends adaptively.

D4.3 Improved DSL Runtime Prototype and Overview

29

DAPHNE – 957407 Public

References
[B21] M. Boehm. DAPHNE Deliverable D2.1 “Initial System Architecture”, 2021.

[D+22] P. Damme et al. “An Open and Extensible System Infrastructure for Integrated Data

Analysis Pipelines”. In CIDR 2022.

[D+22a] P. Damme et al. DAPHNE Deliverable D2.2 “Refined System Architecture”, 2022.

[Ha] The Apache® Hadoop® project. https://hadoop.apache.org/

[K21] V. Karakostas et al., DAPHNE Deliverable 4.1 “DSL Runtime Design”, 2021.

[L+20a] C. Lattner et al., “MLIR: A Compiler Infrastructure for the End of Moore’s Law.” 2020.

[L+20b] S. Li et al., “PyTorch Distributed: Experiences on Accelerating Data Parallel Training.”

2020. In Proceedings of the VLDB Endowment, 2020. Vol. 13, No. 12, pp. 3005-3018.

[L+21] C. Lattner et al., "MLIR: Scaling Compiler Infrastructure for Domain Specific

Computation," 2021 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO), 2021, pp. 2-14.

[Lu] Lustre® file system. Lustre

[V+22] A. Vontzalidis et al., DAPHNE Deliverable D4.2 “DSL Runtime Prototype”, 2022.

[V+23] A. Vontzalidis et al., “DAPHNE Runtime: Harnessing Parallelism for Integrated Data

Analysis Pipelines”. In the 29th International European Conference on Parallel and Distributed

Computing (Euro-Par), 28 August – 1 September 2023, LIMASSOL, CYPRUS (2023)

https://hadoop.apache.org/
https://www.lustre.org/

