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Document Description 

Previous deliverables already shared the overall and refined system architecture [D2.1, D2.2], 

the language design specification [D3.1], as well as the initial and extended compiler 

prototypes [D3.2, D3.3]. This document presents the DAPHNE compiler design and overview. 

The DAPHNE compiler is based on MLIR (multi-level intermediate representation) [LA+21] as 

a framework for domain-specific compilers to facilitate a cost-effective development of our 

domain-specific language, reuse of compiler infrastructure, and good extensibility. This 

document first provides the necessary background on MLIR. After that, it presents the DAPHNE 

compiler design including a high-level overview, the intermediate representation DaphneIR, 

the compilation chain, and cross-cutting topics of configurability and extensibility. After that, 

it briefly recaps related work. A prototype of the DAPHNE compiler has been publicly available 

as open-source code as a part of the DAPHNE GitHub repository since March 2022. 
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1 Introduction 

Integrated data analysis (IDA) pipelines combine data management and query processing, 

machine learning training and scoring, and high-performance computing workloads. 

Deploying IDA pipelines is still a cumbersome task, since traditionally, dedicated systems, 

frameworks, and libraries have been developed for each of the three areas. To increase user 

productivity and to avoid performance overheads resulting from the combination of multiple 

systems, DAPHNE [DB+22] is an open and extensible system infrastructure for developing and 

executing IDA pipelines. The DAPHNE system architecture includes user-facing language 

abstractions, a domain-specific optimizing compiler, a runtime for local and distributed 

execution, multi-level scheduling, hardware accelerators, and computational storage. This 

deliverable focuses on the DAPHNE compiler as a central component of the overall system, 

with many interaction points to the other components. 

Many systems from the three areas of IDA pipelines employ optimizing compilers [AB+16, 

BA+20, BK99, N11]. Typically, these systems implement a domain-specific compiler to perform 

high-level optimizations that would be very hard to recover using a general programming 

language compiler. In order not to reimplement the entire compiler infrastructure, we decided 

to base the DAPHNE compiler upon MLIR [LA+21], a framework for domain-specific compilers 

from the LLVM [LA04] ecosystem. The optimizing compiler has a global view on the IDA 

pipeline, which offers unique opportunities for optimizing the program in order to improve the 

runtime performance, memory footprint, or runtime-accuracy trade-off. 

Some details on the design of the DAPHNE compiler have already been presented in earlier 

DAPHNE project deliverables [D2.1, D2.2, D3.1, D5.1]. Furthermore, an initial and an extended 

prototype of the DAPHNE compiler have already been delivered [D3.2, D3.3]. In this document, 

we report on the overall design and high-level overview of the internals and key techniques 

used in the DAPHNE compiler. Compared to the previous deliverables, this document is the 

first comprehensive and holistic design document of the DAPHNE compiler. Moreover, since 

the extended compiler prototype [D3.3] we have added support for code generation (besides 

various smaller improvements), which we describe here for the first time. In detail, the 

contributions of this document are: 

1. We recap the necessary background on optimizing compilers in general and MLIR in 

particular, to ease the understanding of the DAPHNE compiler design (Section 2). 

2. We present the design of the DAPHNE compiler, including a high-level overview, the 

intermediate representation DaphneIR, the DAPHNE compilation chain, and cross-

cutting topics like configurability and extensibility (Section 3). 

3. We briefly summarize related work on optimizing compilers in the fields relevant to IDA 

pipelines (Section 4) 

 

Finally, we conclude the document in Section 5. 
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2 Background 

In this section, we briefly provide some necessary background and concepts to understand the 

design of the DAPHNE compiler. We first recap the topic of optimizing compilers in general 

(Section 2.1) and then provide more details on MLIR, the compiler-framework the DAPHNE 

compiler is based on (Section 2.2). 

2.1 Optimizing Compilers 

A compiler is a software system that translates human-readable source code in some high-level 

programming language to executable machine code for some target hardware architecture. 

Intermediate representations. Compilers typically work on an intermediate representation (IR) 

of the input program, which is more suitable for analyses and optimizations than the text-

based input format. An IR normally contains operations to execute plus ways to attach 

additional information to these operations, e.g., types, properties, and any additional attributes. 

There is no standard IR that is used by all compilers, but there are typically some similarities. A 

widely used structure of IRs is the so-called static single assignment (SSA) form. In SSA, 

operations produce values, whereby each value is defined exactly once. Instead of changing an 

existing value, a new value must be created. Values can be read many times. SSA is widely used 

in compilers since it simplifies the analysis of complex programs. Examples of widely known IRs 

include the LLVM IR [LA04] and Java bytecode [LY99]. 

Structure of a compiler. A prototypical structure of a compiler consists of three main 

components. 

• The front end takes the textual representation of a program in a high-level language as 

input. It performs various analyses, such as lexical analysis, syntactic analysis, and 

semantic analysis. In the end, it generates the IR of the program. 

• The middle end takes the IR as input and performs various optimization passes on it. 

The goal of these passes is to improve the program in terms of optimization goals like 

the runtime performance, memory footprint, compiled binary size, or other application-

specific targets. To this end, the passes may add, change, reorder, or remove operations. 

By default, these rewrites retain the semantics of the program. However, there are also 

cases when slight deviations are accepted in the interest of improved performance, e.g., 

for fast mathematical operations or when exploring the runtime-accuracy trade-off. All 

passes applied at this stage are independent of the target hardware platform, and many 

compilers allow to enable/disable concrete optimizations to define a trade-off between 

compilation time and the quality of the generated code. The output is still in the 

compiler’s IR. 

• The back end consumes the IR optimized by the middle end and performs additional 

optimizations specific to the target hardware platform, e.g., the concrete processor 

architecture. Its output is machine code for that target. 

 

In this deliverable, we mainly focus on the middle end of the DAPHNE compiler, since it is the 

most decisive part for us. The front end is an ANTLR-based parser, and for the back end, we 

reuse existing facilities from the MLIR/LLVM compiler stack. 
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2.2 MLIR: A Framework for Domain-specific Compilers 

The DAPHNE compiler is based on the Multi-level Intermediate Representation (MLIR) [LA+21], 

a framework for building domain-specific compilers. The MLIR project was started by a team 

at Google TensorFlow [AB+16] led by Chris Lattner, the creator of LLVM [LA04]. In fact, MLIR is 

strongly influenced by LLVM, but also seeks to avoid certain shortcomings of LLVM. In the 

following, we provide some necessary background on MLIR that will be required to understand 

the DAPHNE compiler’s design. 

Idea and motivation. The authors of MLIR observe that widely used IRs, such as the LLVM IR, 

use a single abstraction level. While this does have advantages, it has also led the developers 

of several programming languages to create their own higher-level IR and compilers on top of 

LLVM, e.g., Swift, Rust, Julia, and Fortran. This “reinvention of the wheel”-approach often leads 

to a lot of extra development time and lower-quality compiler systems. The goals of MLIR are 

thus to (1) make it easy to introduce new abstraction levels, (2) provide the infrastructure to 

solve common compiler engineering problems, and (3) to offer a reusable framework 

supporting the combination of different abstraction levels in one IR. 

IR elements. The main unit of semantics in MLIR is the operation, which can represent anything 

from an instruction over a loop or a function to a module. Operations consume and produce 

zero or more values, whereby the input values are called operands and the output values are 

called results. Values are maintained in SSA form and represent data at run-time. Each value is 

either the result of an operation or a block argument. Furthermore, each value has a type. To 

express complex programs, operations can be nested in MLIR. An operation can have zero or 

more regions. A region contains one or more blocks, which are the units of complex control 

flow. A block is a linear sequence of operations, concluded by a terminator operation that 

specifies how to select the next block for execution. This nesting paradigm can be applied to 

express, e.g., loops, functions, or any domain-specific nesting of code. Operations can carry 

additional compile-time information in the form of typed attributes. Finally, for extensibility 

purposes, MLIR introduces the concept of dialects. A dialect provides a namespace for logically 

related operations, types, attributes etc. 

 

Table 1: Overview of a few MLIR dialects that are used in the DAPHNE compiler. 

Dialect Summary Example operations 

scf Structured control flow if, while, for, yield 

affine Affine loops for, if, load, store 

arith Arithmetic operations addi, addf, muli, mulf 

math Complex mathematical operations sin, atan, log, floor 

memref Memory access operations alloc, realloc, load, store 

llvm Almost 1:1 mapping to LLVM IR add, fadd, call, br 
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Existing MLIR dialects. Off-the-shelf, MLIR ships with a multitude of existing dialects1 for 

various purposes and at various abstraction levels from domain-specific operations for linear 

algebra down to operations for dedicated kinds of hardware accelerators. Table 1 gives an 

overview of some of the dialects that play a noteworthy role in the DAPHNE compiler. 

Compilation chain. Being a framework for building compilers, MLIR provides the infrastructure 

to create and apply reusable compiler passes to rewrite the IR. Compilers based on MLIR can 

define their own modular pass pipelines that can contain custom compiler passes, but also 

various commonly used passes given by MLIR, such as common subexpression elimination and 

loop-invariant code motion. To allow existing MLIR passes to interact with custom operations 

with unknown semantics, traits and interfaces can be attached to new operations. Traits express 

that an operation has a certain property (e.g., that it has no side effects), and can be checked 

and reacted to by compiler passes. Interfaces must be implemented by the operation and 

provide custom logic that is invoked by compiler passes (e.g., operations can provide logic to 

fold them if the operands are compile-time constants). 

MLIR ecosystem. When the DAPHNE project started, MLIR was still a relatively young project. 

Meanwhile, MLIR has grown significantly and received adoption in academia and industry by 

many domain-specific compilers and systems [AB+16, PG+19, JKG22]. There is a vivid 

developer community around the framework2. This community, in combination with the high-

quality compiler infrastructure MLIR provides, makes it a solid foundation for the DAPHNE 

compiler. 

 

3 DAPHNE Compiler Design 

In this section, we describe the design of the DAPHNE compiler in detail. We start with a high-

level overview of the compiler (Section 3.1). After that, we present individual components in 

more detail: the intermediate representation DaphneIR (Section 3.2), the compilation chain 

(Section 3.3), and the aspects of configurability and extensibility (Section 3.4). 

3.1 Overview 

Integration into the DAPHNE system architecture. The DAPHNE compiler is situated 

between the user-facing language abstractions and the DAPHNE runtime. The design of 

DAPHNE’s language abstractions DaphneDSL and DaphneLib has been described in detail in a 

previous deliverable [D3.1], just like the DAPHNE runtime [D4.1, D4.3]. The DAPHNE compiler 

plays a central role in the overall system architecture since it connects the other components 

and since most features of the system require at least some degree of compiler support. 

High-level overview. Figure 1 shows a high-level overview of the DAPHNE compiler in the 

context of the remaining system components, the important internal components of the 

compiler itself, as well as their interactions with each other. The DaphneDSL program specifying 

the user’s IDA pipeline is first processed by an ANTLR-based parser, which outputs an initial, 

 
1 https://mlir.llvm.org/docs/Dialects/ 
2 https://discourse.llvm.org/c/mlir/31 

https://mlir.llvm.org/docs/Dialects/
https://discourse.llvm.org/c/mlir/31
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unoptimized DaphneIR representation of the program. DaphneIR is DAPHNE’s intermediate 

representation and is a domain-specific MLIR dialect. The task of the DAPHNE compiler is 

twofold: On the one hand, it simplifies and optimizes the IR in numerous ways to improve the 

runtime behavior with respect to a certain optimization goal, such as runtime performance, 

(peak) memory footprint, compiled binary size, or a combination thereof (multi-objective 

optimization). On the other hand, it lowers the IR from high-level domain-specific operations 

to low-level LLVM IR. The LLVM IR representation of the program is finally compiled just-in-

time (JIT) to executable code, whereby pre-compiled DAPHNE runtime libraries are linked. The 

output of the DAPHNE compiler is an executable code artifact including control flow, scalar 

operations, and calls into DAPHNE runtime components, such as device kernels [D7.1], the 

vectorized engine [D2.1, D2.2], and routines for I/O and memory management. 

 

 

 

Figure 1: Overview of the DAPHNE compiler in the context of the system architecture. 
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Compilation chain overview. Internally, the DAPHNE compiler consists of a compilation chain 

comprising various compiler passes as well as separate compiler components that are used by 

these passes and other components of the system. Each compiler pass is either a custom 

DAPHNE pass or a standard MLIR pass. DAPHNE passes may utilize components from MLIR, 

and MLIR passes may call into custom DAPHNE compiler code made available through 

standard MLIR interfaces. Furthermore, expert users may inject IR into the compilation chain 

and extract the IR at any point. In the following, we describe the design of major components 

of the DAPHNE compiler in more detail. 

3.2 Intermediate Representation DaphneIR 

DaphneIR dialect. Being based on MLIR as a framework for domain-specific compilers, the 

DAPHNE compiler uses MLIR as its intermediate representation. More specifically, DAPHNE 

defines its own new MLIR dialect, DaphneIR. There are several reasons why we decided to 

create a new MLIR dialect rather than solely building upon existing ones: First, targeting 

integrated data analysis pipelines, we need to ensure seamless interoperability between matrix 

operations from linear algebra and frame operations from relational algebra. To this end, we 

need to be able to represent both at compatible abstraction levels. Second, creating our own 

dialect guarantees a required level of independence from the evolution of high-level standard 

MLIR dialects, such as linalg, which is especially important since MLIR was still a relatively 

young project when we started using it in late 2020. 

Like every MLIR dialect, DaphneIR consists of custom types, operations, traits, and interfaces. 

All of these are defined declaratively in TableGen3, a compact text-based representation from 

the LLVM ecosystem allowing the generation of C++ source code in the MLIR/LLVM compiler 

frameworks. 

DaphneIR types. Table 2 provides an overview of all types used in DaphneIR. DaphneIR defines 

data types and value types, which are essentially a 1:1 mapping to the types supported by 

DaphneDSL [D3.1]. In terms of data types, DaphneIR supports Matrix (parameterized with a 

value type) and Frame (parameterized with a value type per column). Regarding value types, 

DaphneIR reuses signed and unsigned integer types and floating-point types of different bit 

widths from MLIR. Besides that, DaphneIR defines its own String type, since MLIR does not 

offer that off-the-shelf. Furthermore, DaphneIR explicitly supports an Unknown type, which is 

used to express that the type of some SSA value is not known (yet) at the current stage of the 

compilation chain. This Unknown type can be used as both a data type and a value type. All 

DaphneIR operations allow inputs of the Unknown type, and all DaphneIR operations 

supporting more than one result type allow the Unknown type for their result. Additionally, at 

the lower abstraction levels, DaphneIR also offers some more technical types for special 

purposes, such as DaphneContext and VariadicPack. 

 

 
3 https://llvm.org/docs/TableGen/index.html 

https://llvm.org/docs/TableGen/index.html
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Table 2: Overview of types used in DaphneIR. 

Data types 

Matrix A matrix with a common value type for all elements 

Frame A frame with an individual value type per column 

Value types 

UI8, UI32, UI64, 
SI8, SI32, SI64 

Unsigned and signed integer types of various bit widths 

F32, F64 Floating-point types of various bit widths 

I1 Boolean type 

String Character string type 

Unknown type 

Unknown A hitherto unknown data/value type 

Technical types 

DaphneContext Runtime context passed to all kernels 

VariadicPack Auxiliary type for variadic kernel arguments 

 

 

Operations. Table 3 gives an overview of the classes of operations in DaphneIR, along with 

some example operations. As an entry point from the DaphneDSL parser, DaphneIR defines 

several (classes of) operations which map 1:1 to DaphneDSL built-in functions and DaphneDSL 

operators. For instance, the DaphneDSL built-in function sqrt(), which calculates the 

elementwise square root of a matrix, corresponds to the DaphneIR operation daphne.ewSqrt; 

and the DaphneDSL operator ==, which calculates the elementwise equality of two matrices, 

corresponds to the DaphneIR operation daphne.ewEq. Furthermore, DaphneIR contains 

(classes of) operations which do not correspond directly to any DaphneDSL construct, but are 

only created by the DAPHNE compiler during the optimization and lowering of the IR. As an 

example, for memory management purposes, DAPHNE uses reference counting to ensure that 

each allocated data object is freed exactly once. This is achieved in collaboration between the 

compiler and runtime, whereby the compiler inserts daphne.incRef and daphne.decRef 

operations to increase and decrease the reference counter at the right points in the IR. 

Traits and interfaces. DaphneIR defines its own traits and interfaces on operations to interact 

with DAPHNE compiler passes. DAPHNE extensively uses traits and interfaces for various 

purposes, most importantly for: (1) type and property inference, (2) pipeline fusion, (3) 

heterogeneous hardware support, and (4) compiler hints by the user. More details can be found 

with the respective passes of the compilation chain in Section 3.3. 
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Table 3: Overview of the classes of operations in DaphneIR, along with example operations. 

Class of operations Example operations (mnemonics) 

1:1 mapping to DaphneDSL 

Constants constant, matrixConstant 

Data generation fill, seq, rand, ... 

Properties numRows, isSymmetric, ... 

Matrix multiplication matmul 

Elementwise unary/binary ewSqrt, ewAdd, ewEq, ... 

Generalized outer product outerAdd, outerEq, ... 

Aggregation (full, row-wise, column-wise, 

cumulative, grouped) 

allAggSum, rowAggMean, colAggMin, 
cumAggProd, grpAggMax, ... 

Left/right indexing insertRow, extractRow, sliceCol, ... 

Reorganization transpose, reshape, order, ... 

Matrix decompositions eigen, svd, ... 

Deep neural network conv2dForward, biasAddForward, 
avgPoolForward, ... 

Miscellaneous matrix operations replace, upperTri, solve, ... 

SQL support sql, registerFrame 

Extended relational algebra filterRow, thetaJoin, group, 
intersect, ... 

Conversions cast, copy, quantize, ... 

Preprocessing oneHot, ... 

Input/output print, readMatrix, readFrame, write, ... 

2nd order map, paramserv, ... 

Control flow conditional, genericCall 

Not available in DaphneDSL 

Parallelism vectorizedPipeline, distributedPipeline 

Context createDaphneContext, destroyDaphneContext 

Memory management incRef, decRef 

Profiling startProfiling, stopProfiling 

Kernel call callKernel 

 

Integration with existing MLIR dialects. DaphneIR seamlessly integrates with and relies on 

several existing MLIR dialects. Regarding types, as stated above, DaphneIR reuses several scalar 

types from MLIR. In terms of operations, DaphneIR is complemented by MLIR’s dialect for 

structural control flow (SCF) to add support for if-then-else constructs and loops. Furthermore, 

as one alternative compilation route through the DAPHNE compiler, the lowering of 

DaphneIR’s domain-specific operations to lower-level MLIR dialects like affine, arith, and 
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memref is supported. Concerning traits and interfaces, DaphneIR operations possess certain 

standard MLIR traits and implement certain MLIR interfaces to allow processing by standard 

MLIR compiler passes. For instance, most DaphneIR operations have the Pure trait, which tells 

MLIR’s pass for common sub-expression elimination (CSE) that two instances of this operation 

with the same operands can safely be deduplicated by removing one instance. Furthermore, 

many DaphneIR operations implement MLIR’s canonicalization interface, whose code is then 

called by MLIR’s canonicalizer pass. As a final remark, we could have split DaphneIR into 

multiple dialects at different abstraction levels. However, we consciously decided against that 

since it would have complicated the IR design with no clear benefit if these dialects are used 

only within DAPHNE. 

3.3 Compilation Chain 

In this section, we give an overview of the DAPHNE compiler’s compilation chain, focusing on 

the most important compiler features. We present the steps in the order they are applied 

(whereby some general programming language rewrites are applied at multiple points in the 

compilation chain). 

3.3.1 General Programming Language Rewrites 

Motivation. Like most compilers, the DAPHNE compiler applies various well-known general 

programming language rewrites that are useful at all levels of abstraction. Examples include 

common sub-expression elimination (CSE), dead code elimination (DCE), constant folding, 

constant propagation, branch removal, code motion, loop unrolling, and function inlining. 

These rewrites can simplify the structure of the IR and thereby reduce the amount of work for 

subsequent compiler passes and enable additional optimization opportunities. 

Reusing MLIR. One of the reasons why we decided to base the DAPHNE compiler on MLIR is 

that MLIR already provides passes for these general programming language rewrites. The 

DAPHNE compiler employs these passes at several points in the compilation chain to tidy up 

the IR. To allow the existing MLIR passes to handle DaphneIR operations, we attach existing 

MLIR traits and interfaces to DaphneIR operations, which is the intended way of informing MLIR 

passes of the characteristics of custom operations. For instance, most DaphneIR operations 

have the Pure trait (formerly NoSideEffects), which allows MLIR’s CSE/DCE pass to remove 

repeated operations on the same operands. Furthermore, many DaphneIR operations 

implement the fold() interface, which evaluates operations at compile-time, if their operands 

are compile-time constants. MLIR applies several general programming language rewrites 

during its canonicalization pass, such as constant folding and branch removal. Other rewrites 

are performed by separate passes, such as loop-invariant code motion and function inlining. 

3.3.2 Type and Property Inference 

Motivation. All DAPHNE data objects (matrices and frames) have a data type and a value type 

as well as general and data type-specific interesting (data) properties. Knowing the data/value 

type of an object at compile-time is crucial for dispatching to the right runtime kernel. 

Furthermore, interesting properties are the basis for various compiler and runtime decisions. 

The DAPHNE compiler exploits interesting properties for, e.g., algebraic rewrites, operator 

ordering, and physical operator selection. The DAPHNE runtime can exploit interesting 
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properties for selecting dedicated code paths in pre-compiled kernels. For this purpose, 

compile-time information on interesting properties can be passed on to runtime kernels. 

Interesting properties. The DAPHNE compiler supports a rich and extensible set of interesting 

properties. These properties can range from simple boolean properties (such as isSymmetric 

or hasNaN) over scalar numeric properties (such as numRows/numCols (shape), sparsity, 

min/max) to complex structured properties (such as value histograms for cardinality estimation 

or sketches for sparsity estimation). Value types and interesting properties are represented as 

parameters of DaphneIR’s MLIR types Matrix and Frame, i.e., properties are technically 

attached to the types of SSA values. To enable reuse in the DAPHNE runtime, all interesting 

properties are bundled in a custom structure, whereby Matrix and Frame have a single 

parameter of that structure type. 

Inference pass. DAPHNE’s compilation chain includes an inference pass, which is responsible 

for all type and property inference. Individual instances of the pass can be configured with the 

subset of properties to infer, since the inference of certain properties (e.g., number of rows and 

sparsity) can be computationally expensive. The inference pass performs a single pass over the 

entire IR in each MLIR function. For each operation, it infers all requested but hitherto unknown 

properties of the results based on the properties of the operands (and, for certain operations, 

the operand values themselves). Combining the inference of multiple or all properties in a 

single pass is important since a particular property of an operation’s result may depend on 

different properties of the operands. Furthermore, the inference pass is interleaved with the 

MLIR canonicalizer pass, which is also responsible for constant folding, since certain properties 

of certain operations’ results depend on the values of the operand (e.g., the minimum and 

maximum values in the result matrix of the daphne.rand operation depend on the values of 

the min and max operands of that operation), while the result values of certain operations 

depend on their operands’ properties (e.g., the value of daphne.numRows on a matrix X is the 

inferred number of rows of X). 

The inference pass interacts with DaphneIR operations via custom traits and interfaces, which 

are defined in the inference component of the DAPHNE compiler. Traits are used for frequently 

occurring cases, such as ValueTypeFromFirstArg or ValueTypeFromArg. The program logic 

for interpreting these traits is situated in the compiler’s inference component as well. Besides 

that, custom interfaces are used to cover more complex and non-reoccurring cases as well as 

all DaphneIR operations with multiple results. The inferred value of a property can be unknown 

after the inference in case of insufficient information on the operation’s operands. 

Handling unknowns. The data/value type as well as each interesting property can be unknown 

(at a particular point) at compile-time. For data/value types, DaphneIR defines the dedicated 

Unknown type (see Section 3.2). For interesting properties, either a particular value (e.g., -1) or 

a nullptr is used to indicate that the value of the property is unknown. At the beginning of 

the compilation chain, virtually all data/value types and properties of all SSA values are 

unknown. During type and property inference, most of these unknowns can be replaced by 

inferred or estimated values. Unknowns can also arise from conditional control flow. For 

instance, if a certain property of the i-th result of the then-branch and the else-branch of an 

scf.if operation differs, this property is set to unknown after the scf.if. Likewise, a property 

of a loop-carried variable changes inside a for/while loop’s body, we reset the value to 
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unknown. In fact, data/value types and interesting properties may remain unknown at compile-

time. However, knowing types and properties is important, e.g., when they are the basis for 

memory estimates that decide whether an operation can be executed locally or requires 

distributed computations. In this case, the DAPHNE compiler takes measures to exploit the 

information once it becomes available at run-time. In the simplest case, this can be achieved 

by generating alternative code paths at compile-time and choosing the one to take based on 

the actual type or property information at runtime. For the general cases, the DAPHNE compiler 

identifies and flags IR regions for dynamic recompilation [BB+14], i.e., it generates calls back 

into the compilation chain, which are triggered at run-time and allow the recompilation and 

reoptimization of these code regions based on actual type and property information. 

3.3.3 Inter-procedural Analysis 

Up to here, type and property inference took place only intra-procedurally, i.e., within a single 

function. However, complex IDA pipelines are typically assembled out of numerous user-

defined functions to handle the code complexity. Calls to user-defined functions constitute 

natural boundaries to type and property inference. To pass information from the call sites to 

the function definitions, the DAPHNE compiler performs inter-procedural analyses of the IR by 

analyzing the function call graph. After determining the types and properties of the arguments 

to a function call, it creates a new instantiation of the entire user-defined function, whereby 

information on types, interesting properties, and constant values is made available inside the 

newly created variant of the function. This extra information allows for additional optimizations 

inside the function body, which are done by a new round of intra-procedural type and property 

inference. At the current state of the implementation, we specialize all encountered variants of 

a function. Ultimately, we are going to apply this instantiation of functions in a conscious way, 

to balance the potential benefits and costs, e.g., by restricting the code size or checking if 

decisive optimizations are enabled by a specialization. 

3.3.4 Algebraic Simplification Rewrites and Operator Ordering 

Motivation. While the initial DaphneIR program already specifies what to calculate, it may not 

be an efficient way to do that. Both linear and relational algebra offer numerous algebraic 

equivalences, i.e., pairs of different algebraic expressions yielding the same result. Two 

equivalent expressions may have vastly different computational costs or memory requirements. 

Algebraic equivalences are normally exploited by domain-specific compilers to optimize the 

program [BB+14]. Typical optimization goals include reducing the number of operations and 

intermediate results, reducing the size of intermediates and the computational effort for the 

operations on them, and improving the asymptotic complexity of the expression. The DAPHNE 

compiler employs various kinds of such optimization rewrites, which we elaborate on next. 

 

Table 4: Examples of static simplification rewrites. 

X / 1 → X trace(XY) → sum(X * t(Y)) 

X * 1 → X sum(X + Y) → sum(X) + sum(Y) 

X – 0 → X sum(t(X)) → sum(X) 

X + X → 2 * X sum(alpha * X) → alpha * sum(X) 
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Table 5: Examples of dynamic simplification rewrites. 

t(X) → X, iff X is symmetric rowSums(X) → X, iff ncol(X) = 1 

 

Algebraic simplification rewrites. The DAPHNE compiler applies an extensive and easily 

extensible set of static and dynamic simplification rewrites [BB+14]. Static rewrites exploit 

algebraic equivalences that always hold without any conditions on the operands’ properties 

and are assumed to be always beneficial. Some examples can be found in Table 4. Dynamic 

simplification rewrites can only be applied (or are only beneficial) when the operands of the 

expression to rewrite meet certain conditions in terms of their interesting properties, especially 

their shape. A few examples are given in Table 5. MLIR, as a framework for domain-specific 

compilers, supports the definition of custom rewrite patterns that match certain sub-DAGs of 

operations, optionally check a condition, and replace the original sub-DAG with a new, 

rewritten one. These rewrite patterns can be applied with a custom compiler pass or as a part 

of MLIR’s canonicalizer pass. Since the latter is generally used to unify and simplify the IR, we 

integrate simple, inexpensive simplification rewrites as canonicalizations in the DAPHNE 

compiler and apply them at multiple points in the compilation chain. This is important, since 

new opportunities to apply these rewrites can arise from changes to the IR in other passes. 

Operator ordering. As a special kind of algebraic rewrites, the DAPHNE compiler reorders 

sequences of operations. Two of the most decisive examples are matrix multiplication chain 

optimization from linear algebra and join ordering from relational algebra. Both rewrites exploit 

that the respective operation (matrix multiplication and join) is associative, i.e., the 

parenthesization, and thereby the order of evaluation, can be chosen arbitrarily. However, 

different orders can result in vastly different sizes of intermediate results and computational 

effort for the operations. The goal of typical operator ordering is, thus, to minimize the size of 

intermediates, and there are several approaches for doing so for both matrix multiplication 

chain optimization and joins. Besides operator ordering for these specific operations, the 

DAPHNE compiler aims to find a good data-flow graph linearization, in general. To this end, 

independent operations in the IR can be reordered to minimize, e.g., the time for which 

intermediates need to be kept, to reduce the peak memory footprint. All these operator 

orderings are integrated into the DAPHNE compiler as separate compiler passes as they 

typically incur a higher cost. 

3.3.5 Physical data type selection 

Motivation. One of the design principles of DaphneDSL is data independence [D3.1], i.e., users 

work with abstract matrix and frame data types, while the physical data representation (such 

as dense or a particular sparse format) is chosen automatically by the system. This 

independence is reflected in DaphneIR by defining a logical Matrix and Frame type, as 

mentioned above. Automatically selecting the physical data type is important, since the optimal 

data representation depends on the data properties, which are hard to oversee manually. 

Physical data type selection. Off-the-shelf, DAPHNE supports multiple physical data types, 

such as a dense matrix and a compressed sparse row (CSR) matrix, and offers extension hooks 

for adding new physical data types. The compilation chain contains a pass that selects a suitable 
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physical data type for each matrix or frame-typed intermediate result. This decision is based 

primarily on memory estimates, which in turn depend on the interesting data properties. For 

instance, sparsity is a key property estimated by the DAPHNE compiler and can be used to 

decide if a matrix should be represented in a dense or a sparse format. Since physical data 

types added through extensibility mechanisms could be domain-specific and exploit any data 

property (e.g., isSymmetric), dedicated size estimation functions can be registered in the 

extension catalog along with a physical data representation. The DAPHNE compiler evaluates 

those and selects a representation with low or low enough memory requirement. Besides the 

data properties, the access patterns of the operations processing the data objects are also 

considered. For instance, a CSR representation of a matrix supports the inexpensive extraction 

of row segments, while compressed sparse column (CSC) better supports column segments. 

These characteristics can be exploited in the context of DAPHNE’s vectorized pipelines 

described below. The decision is stored in form of an MLIR type parameter attached to the 

Matrix or Frame type instance and is respected by subsequent passes. 

3.3.6 Physical operator selection 

Motivation. The domain-specific operations in DaphneIR primarily express what result shall 

be calculated at the logical level, but not how to calculate the result in detail at the physical 

level. In fact, many operations from linear and relational algebra can be computed by different 

algorithms, i.e., physical operators. A physical operator may not be applicable in all cases but 

yield an improved runtime behavior in the cases it supports. For instance, the relational join 

operator can be computed by a nested-loops join (applicable on all data and join predicates), 

a hash-join (applicable on all data, but only equivalence predicates), and a sort-merge join 

(applicable only on sorted data, and equivalence predicates). Likewise, there are different 

physical operators for matrix multiplications, such as a general matrix-matrix multiplication, a 

symmetric rank-k operation, and various forms of matrix-vector multiplications, most of them 

with special cases for transposed inputs matrices. 

Physical operator selection. Physical operators are represented as dedicated DaphneIR 

operations, and the DAPHNE compiler has a pass that rewrites a DaphneIR operation to 

another one representing a physical operator. The decision on the rewrite is based on 

interesting properties and parameters of the operation. Besides that, runtime kernels may also 

select different code paths based on the same information. Making the decision at compile-

time has the advantage that the compiler can, e.g., calculate costs more accurately when it 

knows the physical algorithm, while making the decision at run-time enables the access to the 

actual property information, which may not be available at compile-time. Thus, DAPHNE 

combines both approaches. 

3.3.7 Generation of Fused Operator Pipelines 

Motivation. Basic runtime plans of kernels with materialized intermediates offer good 

performance and simplify debugging. Although this model is commonly used in existing ML 

systems [AB+16, PG+19, BA+20] and column stores [BK99], it suffers from several limitations, 

such as large temporary memory and memory-bandwidth requirements through the 

materialization of intermediate results, too fine-grained synchronization barriers per operator 

through multi-threaded kernels, and a too coarse-grained device placement of entire 
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operators. To address these limitations, DAPHNE is equipped with a vectorized execution 

engine for compiled operator pipelines, which is at the same time the central means for 

parallelism in both the local (e.g., multi-threading and multi-device) and distributed (e.g., 

multiple worker nodes) runtime. We have already described the overall design of the vectorized 

engine in a previous deliverable [D2.2] and, thus, focus primarily on its compiler aspects here. 

Vectorizable operations. DaphneIR defines the custom Vectorizable MLIR interface, which 

indicates that an operation can be processed by splitting the inputs into segments, processing 

segments independently, and combining the results in the end. DAPHNE supports either 

splitting an operand into row or column segments or broadcasting an operand. Individual 

results can be combined by concatenating rows or column segments or by aggregation. To 

mention some examples, (1) for elementwise unary operations, the input matrix can be split 

into row segments, the operation can be performed on each row segment individually, and the 

resulting row segments can be concatenated to obtain the result; (2) for column-wise 

summation, the input matrix can be split into row segments, the operation can be performed 

on each row segment individually resulting in a single row per segment, the individual results 

can be combined by elementwise summation. 

Pipeline fusion. The compilation chain contains a dedicated pass for fusing vectorizable 

operations into pipelines. Initially, each vectorizable operation constitutes a separate pipeline. 

By that, the operation can already be executed in parallel. However, to unfold the full potential, 

we create longer pipelines. The pass identifies producer-consumer relations between existing 

pipelines, i.e., cases where the result of the last operation A in one pipeline serves as an operand 

to the first operation B in another pipeline. If the result of A is combined along the same axis 

as the operand of B is split, the two pipelines can be stitched together. That way, we avoid the 

full materialization of the intermediate result between operations A and B and enable a cache-

conscious processing. Note that we use the definition-use chain for this analysis. However, 

since the operations in a block always have a particular order in MLIR, we need to move 

independent operations between A and B before or after the pipeline. Finally, a 

daphne.vectorizedPipeline operation is created and all operations in the pipeline are 

moved into a nested region inside this operation. To the outside, the vectorized pipeline 

operation reveals all inputs and outputs of the entire pipeline, which can be arbitrarily many. 

The split mode for each input as well as the combine mode for each result are captured as 

MLIR attributes of the daphne.vectorizedPipeline operation. At this stage of the 

compilation chain, pipelines are merely created, while the lowering takes place in later compiler 

passes. Pipelines executed locally are ultimately lowered to a runtime call into the vectorized 

engine, whereby a pointer to a function containing the compiled pipeline body is passed. 

3.3.8 Execution Type Selection and Device Placement 

Motivation. Besides the local multi-threaded execution that is applied by default in DAPHNE’s 

vectorized pipelines, we also want to employ parallelism by distributing computations over 

multiple nodes in the distributed runtime and by offloading work to heterogeneous hardware 

accelerators. While most of the complexity of that relates to WP4 and WP7, the DAPHNE 

compiler provides the infrastructure for making fundamental decisions in that context. 
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Distributed execution. The compilation chain contains a custom pass that decides, for each 

fused pipeline, if it shall be executed in the distributed runtime. This decision is based on (a) 

the interesting properties of the pipeline inputs, intermediates, and outputs, especially their 

data sizes, (b) the way the inputs need to the split and the outputs need to be combined, (c) 

the operations in the pipeline, (d) the availability of distributed kernel variants, and (e) the 

available distributed nodes. In general, we distribute a pipeline if the data involved is too large 

for purely local execution. While the details of the decision are developed in cooperation with 

WP4, the DAPHNE compiler provides all necessary infrastructure for easily integrating complex 

decision-making strategies. When a distributed execution is chosen, the 

daphne.vectorizedPipeline operation is replaced by a daphne.distributedPipeline 

operation with the same operands/results and pipeline body. This rewrite is done since 

pipelines must be lowered in a slightly different way for distributed execution. Passing a pointer 

to the MLIR function created from the pipeline body to the runtime is not helpful, since the 

distributed nodes cannot access this function on the coordinator. Instead, the textual 

representation of the IR is given to the runtime when calling the distributedPipeline kernel 

to allow the transmission of the code to each worker where it is parsed and locally optimized. 

Hardware accelerators and computational storage. Likewise, the compilation chain entails 

a pass that decides, for each fused pipeline, if it shall be executed on a particular hardware 

accelerator, e.g., GPU or FPGA. This decision is based on (a) the interesting properties of the 

pipeline inputs, intermediates, and outputs, (b) the way the inputs need to be split and the 

outputs need to be combined, (c) the operations in the pipeline, and (d) the available 

accelerator devices including their characteristics, especially the capacity of the device memory. 

In general, we offload a pipeline if the involved data is neither too small (dominant offloading 

overhead) nor too large (cannot be processed on the device) and all necessary operations are 

supported on the target device. While the details of the decision are developed in cooperation 

with WP7, the DAPHNE compiler provides all necessary infrastructure for easily integrating 

complex decision-making strategies. When offloading to a device is chosen, the compiler adds 

an MLIR attribute to the pipeline as a hint for later lowering passes. The decision for a hardware 

accelerator is not exclusive, i.e., one pipeline can be executed on multiple heterogeneous 

accelerators in parallel, at the granularity of tasks in the vectorized engine [D2.2]. In later 

lowering steps, one MLIR function is generated per accelerator and all function pointers are 

passed to the vectorizedPipeline runtime kernel. 

3.3.9 Memory Management 

Motivation. DAPHNE manages memory automatically, such that DaphneDSL users do not 

need to think about it manually. Memory management is generally accomplished by a 

collaboration between the DAPHNE compiler and the DAPHNE runtime, whereby the compiler 

is required for its global view on the program, and the runtime for its ability to cover dynamic 

aspects, which are not predictable at compile-time. In the following, we highlight two 

important features related to memory management in DAPHNE. 

Garbage collection. DAPHNE data objects (matrices and frames) are created by runtime 

kernels. The task of garbage collection is to ensure that every data object and its underlying 

data buffers are freed exactly once, to avoid memory leaks and double frees. To this end, 

DAPHNE employs reference counters at the level of both data objects and data buffers. Initially, 
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the reference counter of a newly created data object or data buffer is one. The DAPHNE runtime 

offers the decRef and incRef kernels to manipulate an object’s reference counter. The decRef 

kernel decreases the reference counter by one; if the counter becomes zero, the data object is 

destroyed, which triggers decreasing the underlying data buffers’ reference counters as well, 

leading to their deallocation unless they are shared with other data objects. The incRef kernel 

simply increases an object’s reference counter by one. The DAPHNE compilation chain contains 

a dedicated compiler pass that inserts special operations that are later lowered to calls to these 

kernels at the right points. This pass finds all SSA values by iterating over all blocks of each 

function in the IR, processing all block arguments, walking the operations in each block, and 

processing each result value of an operation. 

• Ensure free at least once: For each SSA value to process, the compiler traverses the 

definition-use chain to find the last user of the value in the current block and inserts a 

daphne.decRef operation directly after that operation. For unused SSA values, the 

daphne.decRef operation is inserted directly after the value’s defining operation for 

operation results and directly in the beginning of the block for block arguments, 

respectively. The only exceptions are SSA values that are used as operands to block 

terminators (such as daphne.return at the end of a function, or scf.yield at the end 

of a loop’s body), because these values are passed on to another block and keep 

existing there. 

• Ensure free at most once: Additionally, each time an SSA value is passed as an operand 

to an operation that contains a region where the value effectively becomes a block 

argument, the compiler inserts a daphne.incRef operation right before the use of the 

value. That way, it compensates for the daphne.decRef operation that will be created 

for the block argument inside the nested block. For instance, a daphne.incRef 

operation is needed before a value is passed to a user-defined function or to a loop 

operation. 

 

In combination, these two strategies ensure that each data object is freed exactly once. 

Update-in-place optimization and reuse of allocations. By default, all runtime kernels create 

a fresh data object (matrix or frame) for each of their results. The only exceptions are kernels 

that can directly reuse their input data object, e.g., sorting an already sorted matrix. For more 

efficient memory usage, DAPHNE supports an update-in-place optimization that allows a 

kernel to reuse one of its input data objects for its result if certain conditions are met. The 

benefits of that are (1) saving the allocation of a new object, and (2) improving the cache 

behavior, since load and store operation will access the same memory locations, thereby 

increasing the hit rates in the CPU cache and the translation look-aside buffer. In the simplest 

case, the following must hold: (a) the input and output objects have the same logical and 

physical data type, value type, and shape, (b) the input object is not used again later in the IR, 

(c) the input’s underlying data buffers are not shared with any other data objects that are still 

in use, and (d) the kernel’s access pattern ensures that individual elements of the input data 

are overwritten only when they are not needed anymore for the calculation. This is, for instance, 

the case for elementwise unary and binary operations. While criteria (a) and (b) can be 

determined at compile-time (assuming that all required types and properties could be 

inferred), criteria (c) and (d) can only be determined at run-time. Thus, for each DaphneIR 

operation supporting in-place updates, the DAPHNE compiler checks, for each operand, if it is 
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still used afterwards and attaches this information as MLIR attributes to the operation. These 

attributes later become parameters to the runtime kernels. Then, it is the kernels’ task to 

evaluate the remaining criteria and to overwrite the input if applicable. 

3.3.10 Pre-compiled Kernels and Code Generation 

Motivation. So far, the compilation chain has worked on DaphneIR’s domain-specific 

operations. As we are approaching the end of the compilation chain, these operations must be 

lowered to some executable representation. To this end, the DAPHNE compiler offers multiple 

alternative routes. By default, each DaphneIR operation is lowered to a special operation called 

daphne.callKernel, which represents a call to a pre-compiled kernel function. Alternatively, 

for most operations, the DAPHNE compiler can generate code on-the-fly, whereby multiple 

code generation back ends are supported. In fact, these different routes can be taken for each 

operation individually, whereby it is especially meaningful to treat all operations within a fused 

pipeline the same way. In the following, we present these approaches in more detail. 

Pre-compiled kernels. Lowering DaphneIR operations to pre-compiled kernels is the default 

behavior, in contrast to other MLIR-based systems []. Kernels are hand-written C++ functions 

that perform coarse-grained operations, i.e., they process entire matrices or frames (or views 

thereof within a vectorized pipeline). The advantages of this approach are manifold: (1) 

implementing kernels in a high-level language like C++ is much more convenient than 

implementing a code generation back end, for most developers, (2) all kinds of hardware 

accelerators typically offer some kind of C/C++ interface, which can directly be used in a C/C++ 

kernel, (3) the effort for low-level kernel code optimization and compilation is spent just once 

in advance. Writing kernels in C/C++ offers a high degree of flexibility. That way, kernels can 

target a multitude of hardware devices, e.g., CPUs (scalar and data-parallel SIMD processing), 

GPUs, and FPGAs; a multitude of hardware abstractions, e.g., CUDA [SK10], TVL [UP+20], and 

oneAPI [R+21]; and various existing libraries of highly optimized device kernels, e.g., BLAS and 

LAPACK. Pre-compiled kernels are also used for calls into the DAPHNE runtime in general. 

Mapping operations to pre-compiled kernels. The DAPHNE compiler is informed of the 

available pre-compiled kernels via the kernel extension catalog. This catalog contains essential 

information on each kernel including the DaphneIR operation it belongs to, the combination 

of input/output data/value types it is specialized for (most standard kernels are implemented 

in a type-generic way using C++ templates, but concrete instantiations of these templates are 

pre-compiled), the hardware back end it targets, the shared library file containing the kernel, 

and (optionally) cost models. This catalog is populated from configuration entries at system 

start-up or at DaphneDSL compile-time from dedicated DaphneDSL commands. DAPHNE’s 

compilation chain contains a dedicated pass that rewrites DaphneIR operations to the 

daphne.callKernel operation. For each DaphneIR operation, the compiler searches the 

kernel extension catalog for corresponding registered kernels. These kernels are filtered by the 

hardware back end. Then, the compiler selects the kernel that best matches the input/output 

data/value types of the operation. Ideally, there is a pre-compiled kernel for this combination. 

However, due to the exponential number of variants, it is infeasible to pre-compile all 

combinations of data/value types for all inputs/outputs of an operation (in terms of both pre-

compilation time and kernels library footprint). If there is no ideal match, the compiler chooses 

the kernel that incurs the least cost for cast operations on the operands and results. As the 
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casts shall not lead to a loss of precision, we generally pre-compile all kernels for the largest 

floating-point and integer types, i.e., f64 and si64, for all operands and results. Additional 

specializations for other type combinations can be added as desired. During the lowering to 

LLVM, each daphne.callKernel operation becomes an LLVM function call, and the required 

shared libraries containing the kernels are linked during JIT-compilation. 

Code generation. As an alternative to pre-compiled kernels, the DAPHNE compiler also 

supports on-the-fly code generation for individual DaphneIR operations and entire fused 

pipelines. For this purpose, multiple code generation back ends can be used and easily added 

to the compiler. In the following, we describe the three code generation back ends we are 

currently supporting or aiming for. 

MLIR code generation. As the DAPHNE compiler is based on MLIR, it is only natural to support 

MLIR-based generation of low-level code for individual DaphneIR operations. Via MLIR code 

generation, we can target CPUs, or any hardware device supported by the MLIR/LLVM compiler 

stacks (e.g., GPUs via MLIR dialects like gpu, nvvm, and spirv). 

The basic idea consists in generating MLIR operations to express the semantics of the DaphneIR 

operations at a lower abstraction level (MLIR’s progressive lowering principle). For instance, 

most DaphneIR operations result in a pair of loops from MLIR’s affine dialect, that iterate 

over the elements of a matrix or frame, operations from MLIR’s arith or math dialects to 

operate on individual elements, as well as operations from MLIR’s memref dialect for loading 

and storing individual values from and to memory. While this resembles the default lowering 

approach in most MLIR-based systems, DAPHNE solves some special challenges to ensure the 

byte-compatibility of pre-compiled and generated kernels as well as the interoperability of 

generated kernels with DAPHNE’s C++ data structures like DenseMatrix, CSRMatrix, and 

Frame. For this purpose, we introduce dedicated DaphneIR operations and corresponding 

runtime kernels for converting (in both directions) between, e.g., DAPHNE’s DenseMatrix and 

MLIR’s StridedMemref types, which are essentially meta data operations not copying any data. 

The potential benefits of MLIR-based code generation are manifold, and mainly relate to 

instruction-level optimizations exploiting knowledge from the overall DaphneIR program, 

which is not available during the pre-compilation of isolated kernels. These benefits include (1) 

inlining UDFs in map() operations, where a pre-compiled map kernel can only call a function 

pointer, (2) the utilization of known constant operands for further optimizations, e.g., x % y 

can be rewritten to the more efficient x & (y – 1) if y is a power of two, (3) fine-grained 

operator fusion can be achieved through MLIR loop fusion on the affine loop generated for 

individual DaphneIR operations, where intermediates can be passed through CPU registers 

similar to code-generating DBMSs [N11], and (4) kernel code can be generated for any 

combination of input/output data/value types as actually required, whereby casts take place 

only at the value level. 

CUDA code generation. Given DAPHNE’s focus on heterogeneous hardware accelerators and 

sparsity exploitation, we also include a CUDA-based code generation back end targeting 

CUDA-compatible GPUs. Following the ideas of [BB+14], hand-written templates of CUDA C++ 

code with textual placeholders are applied to patterns of DaphneIR operations detected by the 

DAPHNE compiler. The resulting source code is compiled with CUDA’s nvrtc run-time 
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compiler, which produces Nvidia’s Parallel Thread Execution (PTX) IR, which is finally compiled 

by the Nvidia driver. The generated CUDA C++ code can use DAPHNE’s runtime data structures 

directly. We primarily apply CUDA code generation for sparsity exploitation across chains of 

operations to avoid dense intermediates. More details on CUDA code generation can be found 

in deliverable D7.3 [D7.3]. 

eBPF code generation. To enable offloading the data processing to computational storage 

devices such as the Daisy board [D6.3], we are also planning to support the generation of eBPF 

bytecode on the host, which is transferred to and executed by the device. eBPF code can be 

interpreted or JIT-compiled. That way, sequences of operations can be pushed down to 

computational storage to reduce the data volume early on, e.g., through quantization, filtering, 

or input file parsing. 

3.3.11 Lowering to LLVM and JIT-Compilation 

Motivation. After the DAPHNE compiler has performed all custom and domain-specific 

optimizations on the IR, the final step of the compilation chain is to lower the IR to a dialect 

that can be compiled to executable code. We choose MLIR’s llvm dialect for that purpose. 

Lowering to LLVM. On the one hand, only a few distinct DaphneIR operations still exist after 

lowering to pre-compiled kernels and code generation. We apply custom rewrite patterns to 

lower these operations to llvm dialect operations. For instance, for each daphne.callKernel 

operation, we generate the declaration of the respective kernel function (to be linked with 

during JIT-compilation) and replace the operation by an llvm.call operation. Moreover, for 

the daphne.vectorizedPipeline and daphne.map operations, we need to retrieve a function 

pointer to the function(s) they must call at run-time, which we postpone until now since it can 

only be done at the LLVM abstraction level. On the other hand, we employ various existing 

MLIR conversions to progressively lower operations from existing MLIR dialects like scf, 

affine, arith, math, and memref to the llvm dialect. After that, the entire program is 

represented in MLIR’s llvm dialect. Thus, it is now possible to generate actual LLVM IR and JIT-

compile it to obtain the executable code, which is all done by existing MLIR and LLVM facilities. 

 

3.4 Configurability and Extensibility 

Configurability. The default DAPHNE compilation pipeline defines a reasonable set of features 

in a sensible order and is usable on all DaphneDSL scripts. Nevertheless, users may optionally 

modify the pass pipeline in certain ways. First, individual non-essential compiler features like 

individual optimizations can be turned on or off by means of command-line arguments and 

configuration files, while it is still guaranteed that a valid executable program is generated in 

the end. Second, the start and end points of the compilation chain can be modified, which is 

especially useful for testing and debugging purposes as well as for explanation and sideways 

entry described below. Third, expert users, developers, and researchers, may define a 

completely custom order of the existing compiler passes or even add their own compiler passes 

via means for extensibility. 
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Explanation. The DAPHNE compilation chain consists of numerous passes, many of which 

make complex decisions to rewrite the IR. Thus, understanding the IR at any stage of the 

pipeline is important for testing and debugging. Inspired by the SQL EXPLAIN command 

supported in most DBMSs, DAPHNE offers a --explain command-line argument that can be 

used to print the IR after selected passes. This feature has been used extensively in the 

demonstrator deliverable on the extended compiler prototype [D3.3]. It can be used for 

debugging and fine-tuning an IDA pipeline but is also employed for automated test cases of 

the DAPHNE code base, where we check the IR before and after the pass under test for certain 

conditions. 

Sideways entry. DaphneDSL scripts (possibly generated internally by DaphneLib, DAPHNE’s 

Python API) are the main entry point into the DAPHNE compilation chain. However, the 

DAPHNE compiler also offers means for sideways entry by accepting MLIR files, which contain 

a textual representation of the IR, as input and starting the compilation chain at a given point. 

This feature is intended for developers and researchers, especially in combination with the 

explanation feature. An IR fragment obtained via explanation can be manually changed and 

reinserted into the system to try the effect of certain rewrites. Besides that, a form of sideways 

entry is used in the worker nodes of the distributed runtime, which receive IR fragments from 

the coordinator node. These fragments are further optimized and compiled at the worker. 

Compiler hints. The DAPHNE compiler facilitates user productivity by making many low-level 

decisions automatically, e.g., on the physical data types, kernels, and device placement. 

However, expert users may optionally use compiler hints in DaphneDSL [D2.2], e.g., to enforce 

a certain physical data representation, kernel, or device. These hints are materialized as MLIR 

attributes attached to the DaphneIR operations in the initial IR produced by the DaphneDSL 

parser. The DAPHNE compiler respects these hints as much as possible. 

 

4 Related Work 

Optimizing compilers in related systems. In the fields relevant to IDA pipelines, there are 

several systems that also have optimizing compilers. In terms of languages, systems, and 

libraries for numerical computations, Julia [BE+17] has its own domain-specific IR, while it relies 

on LLVM as a compilation back end, Dask [R15] is a drop-in replacement for numpy with lazy 

evaluation, which builds an operator DAG and optimizes it, and Mojo4 is a recently introduced 

superset of the Python language, which has an MLIR-based compilation stack and focuses on 

efficiency through multi-threading and hardware accelerators. Regarding ML systems, 

SystemDS [BA+20] (formerly SystemML [GK+11]) has its own domain-specific compiler with 

high-level operators and low-level operators as two abstraction levels. The design of SystemDS 

had a strong influence on DAPHNE. TensorFlow [AB+16] and PyTorch [PG+19] support MLIR-

based compilation back ends. TVM [CM+18] compiles ML models to heterogeneous hardware 

systems. In the area of database management systems (DBMSs), the optimization of 

declaratively specified SQL queries has been an active research field for decades [SA+79]. 

Similarities to compiler systems have been explored, e.g., in MonetDB with its SSA-based IR for 

 
4 https://www.modular.com/ 

https://www.modular.com/
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columnar data processing [BK99]. Efficient data-centric code generation based on the LLVM 

compiler framework has first been investigated in HyPer [N11], which later also started 

supporting adaptive compilation by compiling long-running and interpreting short-running 

queries [KLN18]. Recently, query compilation for non-x86 architectures such as RISC 

architectures by ARM has gained attention [GB+23]. At same time, researchers have started 

looking for alternatives to LLVM to compile queries even faster [HD23b]. Like many of the 

systems mentioned above, the DAPHNE compiler also ultimately builds upon LLVM [LA04]. 

However, being focused on long-running analytical workloads, DAPHNE’s requirements for 

top-speed compilation to machine code may not be as pressing as for transactional systems, 

even though dynamic recompilation in DAPHNE also demands high performance compilation. 

There are also systems whose optimizers can handle and optimize linear and relational algebra 

together [KK+19, JKG22], which is also a goal of DAPHNE. 

Extensible optimizing compilers. The DAPHNE compiler can be extended by custom data 

and value types, kernels, and compiler passes. Extensibility has been a hot topic in database 

research in the 1980s and 90s [CH90]. For instance, the Volcano optimizer generator [GM93] 

could generate an entire DBMS optimizer from components specified succinctly by developers. 

Recently, the topic of extensibility gained new traction in research. User-defined operators 

[SN22] were presented as an approach to add new set-operators to an existing DBMS. The 

component-based DBMS mutable [HD23a] goes even a step further by making every 

component of the system interchangeable. 

Individual techniques. The DAPHNE compiler adopts several techniques that have been 

presented in the literature before. For instance, pipeline fusion has been presented in the 

context of HyPer [N11] and vectorized execution has been pioneered by MonetDB/X100 

[BKM08] and is still used in recent systems like DuckDB [RM19]. Interesting properties play an 

important role in the DAPHNE compiler. The Volcano optimizer generator [GM93] already 

allowed developers to define a custom set of interesting properties as an abstract data type 

(ADT). Sparso [RP+16] can exploit interesting properties of sparse matrices. Finally, there exist 

works on estimating sparsity in linear algebra programs [SB+19]. 

Extensibility of kernels, data types, and value types. As described in previous deliverables 

[D2.2, D3.1], DAPHNE (expert) users may extend DAPHNE by their custom kernels, data types, 

and value types [DB23]. The DAPHNE compiler is informed of these extensions through its 

extension catalogs. These catalogs store essential information on the custom kernels, data 

types, and value types, such as their name, shared library file, and more specific information 

and optional cost models. During physical data type selection, the DAPHNE compiler 

automatically selects data types from the catalog. Likewise, during the lowering of domain-

specific DaphneIR operations to calls to pre-compiled kernels, these kernels are found in the 

catalog. In contrast to that, custom value types need to be applied consciously by the user, 

since they are a part of the IDA pipeline’s semantics. However, in the future we could also 

investigate the automatic selection of custom value types, e.g., to explore the runtime-accuracy 

trade-off. 
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5 Conclusions 

In this document, we have presented the design of DAPHNE’s MLIR-based optimizing compiler. 

After a high-level overview of the compiler’s role in the context of the overall DAPHNE system 

architecture, we have focused on the individual compiler components like the intermediate 

representation DaphneIR and various compiler features reflected in the compilation chain. 

Furthermore, we have commented on cross-cutting aspects of configurability and extensibility 

of the DAPHNE compiler. In the past three years since the project start, we have already 

implemented an initial and an extended prototype of the DAPHNE compiler, which have been 

demonstrated in earlier deliverables [D3.2, D3.3] and are part of the DAPHNE open-source 

repository5. Most of the compiler features mentioned above are already included in the current 

version of the DAPHNE compiler, and we are still actively working on making the compiler 

more feature-complete, robust, and efficient. 

 
5 https://github.com/daphne-eu/daphne 
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