

D3.3 Extended

Compiler Prototype

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.1

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 1

Document Description

Previous deliverables already shared the overall and refined system architecture [D2.1, D2.2] as

well as the initial language and compiler designs [D3.1, D+22] and the initial compiler

prototype [D3.2]. This document presents the extended DAPHNE compiler prototype, which is

still based on MLIR (multi-level intermediate representation) [LA+21] as a library of compiler

infrastructure to facilitate a cost-effective development of our domain-specific language, reuse

of compiler infrastructure, and good extensibility. This document shares a snapshot of this

prototype, describes an example scenario of running linear regression model training on a real

dataset, which walks the reader through some of the most decisive steps of DAPHNE’s

optimizing compilation pipeline, and presents the results of some micro benchmarks. The

DAPHNE prototype, including the DAPHNE compiler prototype, has been available as open

source on GitHub since March 2022.

D3.3 Extended Compiler Prototype

WP3 – DSL Abstractions and Compilation

Type of document D Version 1.1

Dissemination level PU M30 (May 2023)

Lead partner TUB

Author(s) Patrick Damme (TUB), Matthias Boehm (TUB),

DAPHNE Development Team

Reviewer(s) Philippe Bonnet (ITU), Mark Dokter (KNOW)

Revision History

Version Revisions and Comments Author / Reviewer

V1.0 Initial structure, write-up, and experiments Patrick Damme (TUB)

V1.1 Incorporated feedback by Philippe Bonnet (ITU), Mark

Dokter (KNOW), and Matthias Boehm (TUB); additional

experiments; various minor improvements

Patrick Damme (TUB)

D3.3 Extended Compiler Prototype

DAPHNE – 957407 2

1 Artifact Access

The extended compiler prototype is publicly accessible as a password-protected snapshot of

the DAPHNE development repository under the following link:

• Link: https://daphne-eu.know-center.at/index.php/s/zzRjX4kJkwXkPoM (~7 MB)

• Password: GZNoXliPEruY

This snapshot is a copy of the DAPHNE open-source repository at https://github.com/daphne-

eu/daphne (commit 63fdf44d24c5ceb72b8800494e02587b72612ae1, May 29, 2023).

Furthermore, the artifact contains a directory daphne/_d3.3/ with some files specific to this

deliverable, such as scripts for executing DAPHNE in a Docker container, the DaphneIR outputs

produced by the demonstration scenario in Section 3, and the scripts for the micro benchmarks

in Section 4, all of which are referenced later in this document.

2 Environment Setup

After you have downloaded the file daphne-d3.3-v1.1.zip from the link above, please open

a terminal in the same directory and execute the following commands to set up the

environment for going along with the demonstration scenario in the next section. You can copy

each command separately into the terminal. Commands that span multiple lines use \ at the

line endings. Alternatively, the DAPHNE documentation in daphne/doc/GettingStarted.md

contains instructions for setting up DAPHNE (but for ease of use, it is recommended to follow

the instructions below). As a fallback, this deliverable contains all output of the commands in

the directory daphne/_d3.3/ir/, such that it can also be understood without running the

system.

 # Unpack the deliverable artifact and cd into it.

 unzip daphne-d3.3-v1.1.zip

 cd daphne-d3.3-v1.1

 # Pull a container image with pre-built dependencies.

 docker pull daphneeu/daphne-dev

 # Run bash in the container for an interactive environment.

 ./_d3.3/run-docker.sh

 # Build DAPHNE in the container (should take only a few minutes).

 ./build.sh --no-deps --installPrefix /usr/local

 # Download a small real data set and slightly pre-process it, such that DAPHNE can use it.

 mkdir data

 wget https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv \

 -O data/wine.csv

 # These sed commands were tested on Ubuntu GNU/Linux. They may not work as expected on

 # other platforms. As a fallback, one can apply these changes manually in a text editor.

 sed -i '1d' data/wine.csv # remove the first line (header)

 sed -i 's/;/,/g' data/wine.csv # replace ; by , (column delimiter)

 echo '{"numRows": 4898, "numCols": 12, "valueType": "f64", "numNonZeros": 58776}' \

 > data/wine.csv.meta

https://daphne-eu.know-center.at/index.php/s/zzRjX4kJkwXkPoM
https://github.com/daphne-eu/daphne
https://github.com/daphne-eu/daphne

D3.3 Extended Compiler Prototype

DAPHNE – 957407 3

3 Demonstration Scenario

3.1 Running Example: Linear Regression Model Training

To demonstrate some of the most important (but not all) features of the extended DAPHNE

compiler prototype, we make use of DaphneDSL scripts that train a linear regression model on

real data from a CSV file on secondary storage. We have already used this example in

deliverable D3.2 [D3.2] on the initial compiler prototype. Meanwhile, we have significantly

extended the DAPHNE compiler support for DaphneDSL scripts like this, as will become clear

in the following. Furthermore, we support two methods for the task of linear regression model

training: the direct solve (DS) method and the conjugate gradient (CG) method (deliverable

D3.2 [D3.2] showed only the DS method). The DS method solves the task by a closed form

computation (typically most efficient on a small number of features), while the CG method is

an iterative numerical algorithm (typically most efficient on a high number of features). The

respective scripts have been translated to DaphneDSL from SystemDS [BA+20]

(https://github.com/apache/systemds) and can be found in Appendix 1 as well as in the files

scripts/algorithms/lmDS_.daph and scripts/algorithms/lmCG_.daph. Note that each

of these scripts defines a single function, which can be imported into any other DaphneDSL

script, thereby offering reusable high-level building blocks for integrated data analysis

pipelines. In the following, we focus on the DS method, which we invoke via the DaphneDSL

script scripts/algorithms/lmDS.daph that imports this function and calls it with the loaded

input data. We will come back to the CG method in the micro benchmarks in Section 4.

3.2 Executing Linear Regression Model Training

To execute the DS method on real input data, a user can call DAPHNE as follows (assuming the

present working directory is the root of the daphne/ source tree):

bin/daphne \

 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=true

The console output shows a few informative statistics on the calculated model as well as the

model itself:

https://github.com/apache/systemds

D3.3 Extended Compiler Prototype

DAPHNE – 957407 4

Calling the Direct Solver...

Computing the statistics...

AVG_TOT_Y, 5.877909

STDEV_TOT_Y, 0.885639

AVG_RES_Y, 0.000000

STDEV_RES_Y, 0.751357

DISPERSION, 0.564537

R2, 0.281870

ADJUSTED_R2, 0.280254

R2_NOBIAS, 0.281870

ADJUSTED_R2_NOBIAS, 0.280254

RESULT

DenseMatrix(12x1, double)

0.0655125

-1.86318

0.0220869

0.0814792

-0.247322

0.00373283

-0.000285785

-150.274

0.68631

0.631463

0.193487

150.183

3.3 Steps of DAPHNE’s Optimizing Compiler

To illustrate what the DAPHNE compiler does to make this script work, we have a look at

selected steps of the compilation chain. To this end, we utilize DAPHNE’s explanation feature,

which prints the DaphneIR at chosen stages.

Initial DaphneIR after DaphneDSL parsing. The initial, unoptimized IR produced by the

DaphneDSL parser can be inspected by:

bin/daphne --explain parsing \
 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that we also set verbose to false to avoid some unnecessary output. At this stage, the IR

is rather lengthy (~430 lines) and not very comfortable to look at. The complete IR obtained

by the command above can be found in daphne/_d3.3/ir/ir_01_parsing.txt.

Initial simplification. The DAPHNE compiler chain starts by applying a first round of

straightforward simplifications, including constant folding, common sub-expression

elimination, and a few reorderings (e.g., moving constants to the top of the IR). The IR after this

stage can be viewed by:

bin/daphne --explain parsing_simplified \
 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete output can be found in daphne/_d3.3/ir/ir_02_parsing_simplified.txt.

Now the IR has been shortened to ~330 lines, and we can have a first look at it.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 5

IR after parsing and some simplifications:

module {

 func.func @"lmDS-1"(%arg0: !daphne.Matrix<?x?xf64>, %arg1: !daphne.Matrix<?x?xf64>, ...) ->

!daphne.Matrix<?x?xf64> {

 ...

 "daphne.return"(%67) : (!daphne.Matrix<?x?xf64>) -> ()

 }

 func.func @main() {

 ...

 %7 = "daphne.constant"() {value = "data/wine.csv"} : () -> !daphne.String

 %8 = "daphne.read"(%7) : (!daphne.String) -> !daphne.Matrix<?x?xf64>

 ...

 %12 = "daphne.sliceCol"(%8, ...) : (!daphne.Matrix<?x?xf64>, ...) -> !daphne.Matrix<?x?xf64>

 ...

 %17 = "daphne.sliceCol"(%8, ...) : (!daphne.Matrix<?x?xf64>, ...) -> !daphne.Matrix<?x?xf64>

 %18 = "daphne.generic_call"(%12, %17, ...) {callee = "lmDS-1"} : (!daphne.Matrix<?x?xf64>,

!daphne.Matrix<?x?xf64>, ...) -> !daphne.Matrix<?x?xf64>

 ...

 }

}

The IR consists of a single module containing two functions. First, the function lmDS-1 is the

imported lmDS function from DaphneDSL. Second, main is the entry point to the program and

collects all DaphneDSL statements that are not part of any DaphneDSL function. The high-level

steps in the main function are: (1) read the file “data/wine.csv” as a daphne.Matrix, (2) extract

the feature matrix (X in DaphneDSL) and labels vector (y in DaphneDSL) using the

daphne.sliceCol operation, and (3) call the function lmDS-1 with these two. Furthermore, we

can see that at this stage of the IR, information on the shapes (the number of rows and the

number of columns of a matrix or frame) of the matrices is still unknown, indicated by the type

!daphne.Matrix<?x?xf64>.

Type and property inference. One of the next steps in the compilation chain is the inference

and propagation of data types and value types as well as interesting data properties (such as

the shape, i.e., the number of rows and the number of columns of a matrix or frame). We

interleave the inference with constant folding and other simplification rewrites, which are

expressed as canonicalizations in MLIR. The reason is that type/property inference and constant

propagation cyclically depend on each other: e.g., nrow(X) can only be constant-folded once

the shape of X is known, and the shape of fill(1.0, n, 1) can only be inferred once the

constant n is known. The IR after this stage can be viewed by:

bin/daphne --explain property_inference --no-ipa-const-propa \
 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that by --no-ipa-const-propa, we turn off a feature of inter-procedural analysis, we

will come back to shortly. The complete IR still has a length of ~310 lines and can be found in

daphne/_d3.3/ir/ir_03_property_inference.txt.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 6

IR after inference:

module {

 func.func @"lmDS-1-1"(%arg0: !daphne.Matrix<4898x11xf64>, %arg1: !daphne.Matrix<4898x1xf64>, ...) ->

!daphne.Matrix<?x1xf64> {

 ...

 %46 = scf.if %44 -> (!daphne.Matrix<4898x?xf64>) {

 %72 = "daphne.colBind"(%arg0, %39) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<4898x12xf64>

 %73 = "daphne.cast"(%72) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<4898x?xf64>

 scf.yield %73 : !daphne.Matrix<4898x?xf64>

 } else {

 %72 = "daphne.cast"(%arg0) : (!daphne.Matrix<4898x11xf64>) -> !daphne.Matrix<4898x?xf64>

 scf.yield %72 : !daphne.Matrix<4898x?xf64>

 }

 ...

 "daphne.return"(%71) : (!daphne.Matrix<?x1xf64>) -> ()

 }

 func.func @main() {

 ...

 %9 = "daphne.constant"() {value = "data/wine.csv"} : () -> !daphne.String

 %10 = "daphne.read"(%9) : (!daphne.String) -> !daphne.Matrix<4898x12xf64:sp[1.000000e+00]>

 %11 = "daphne.sliceCol"(%10, %2, %0) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, index, index)

-> !daphne.Matrix<4898x11xf64>

 %12 = "daphne.sliceCol"(%10, %0, %1) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, index, index)

-> !daphne.Matrix<4898x1xf64>

 %13 = "daphne.generic_call"(%11, %12, ...) {callee = "lmDS-1-1"} : (!daphne.Matrix<4898x11xf64>,

!daphne.Matrix<4898x1xf64>, ...) -> !daphne.Matrix<?x?xf64>

 ...

 }

}

In this step, we apply both intra-procedural and inter-procedural analyses. In terms of intra-

procedural analysis, the shapes inside the main function have now become known by

propagating the known shapes of the input data over the involved operations. That way, the

shapes of the inputs to the lmDS-1 function have become known, too. This knowledge enables

inter-procedural analyses. In particular, the lmDS-1 function has been specialized for the given

input shapes. This is visible in the slightly changed function name (lmDS-1-1) and in the fact

that the shapes of the parameters are known now. Note that, being unused, the original lmDS-

1 function has been removed. Inside of the lsDS-1-1 function, the DAPHNE compiler performs

intra-procedural analysis again. Thus, properties like shapes are known inside this function as

well. Nevertheless, especially in the presence of conditional control flow, the shape of a data

object might not be unambiguously known. As an example, consider the intercept mode of

lmDS. In lmDS_.daph, line 56ff, a column of ones is appended to the feature matrix if the

intercept mode is 1 or 2, but not if the intercept mode is 0. The number of columns after this

if-statement is either 11 or 12 with the given input data. In such a case of disagreement, the

DAPHNE compiler conservatively assumes the number of columns to be unknown after the

branching. Therefore, the shape of the result of the scf.if operation is 4898x?. To illustrate

this situation, we explicitly added the DAPHNE compiler flag --no-ipa-const-propa above.

However, by default, DAPHNE also propagates compile-time constants into functions. To see

the effect, we next invoke DAPHNE by:

bin/daphne --explain property_inference \
 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

D3.3 Extended Compiler Prototype

DAPHNE – 957407 7

Note that we omitted the flag --no-ipa-const-propa. The complete IR can be found in

daphne/_d3.3/ir/ir_04_property_inference_alternative.txt, as well as in Appendix

2. Now, the constant arguments icpt (1) and verbose (false) have been inserted while

specializing the lmDS-1 function to obtain the lmDS-1-1 function. In combination with

constant folding, the knowledge of the constants unlocked a range of traditional compiler

optimizations DAPHNE directly inherits from MLIR, most importantly (in this case) branch

removal. We can see that the entire body of the lmDS-1-1 function is now a purely sequential

program since all conditional control flow depending on the intercept and verbosity level has

been resolved at compile-time. This does not only make the IR more human-readable at ~60

lines, but can also make the program execution more efficient by unlocking further

optimization opportunities as we will see later. As a result of the full intra- and inter-procedural

analysis, the shape of the output of the lmDS-1-1 function is now also known to be 12x1 (for

the intercept 1).

IR after inference:

module {

 func.func @"lmDS-1-1"(%arg0: !daphne.Matrix<4898x11xf64>, %arg1: !daphne.Matrix<4898x1xf64>, ...) ->

!daphne.Matrix<12x1xf64> {

 ...

 "daphne.return"(%32) : (!daphne.Matrix<12x1xf64>) -> ()

 }

 func.func @main() {

 ...

 %10 = "daphne.read"(%9) : (...) -> !daphne.Matrix<4898x12xf64:...>

 %11 = "daphne.sliceCol"(%10, %2, %0) : (!daphne.Matrix<4898x12xf64:...>, index, index) ->

!daphne.Matrix<4898x11xf64>

 %12 = "daphne.sliceCol"(%10, %0, %1) : (!daphne.Matrix<4898x12xf64:...>, index, index) ->

!daphne.Matrix<4898x1xf64>

 %13 = "daphne.generic_call"(%11, %12, ...) {callee = "lmDS-1-1"} : (!daphne.Matrix<4898x11xf64>,

!daphne.Matrix<4898x1xf64>, ...) -> !daphne.Matrix<12x1xf64>

 ...

 }

}

Physical operator selection. After type and property inference have yielded more information

on the intermediate results and simplification rewrites have simplified the IR, the DAPHNE

compiler moves on to more physical steps. Depending on the properties of the input data,

some DaphneIR operations can be executed by specific physical operators for better efficiency

than a default operator. The result of this operator selection can be viewed by

bin/daphne --explain phy_op_selection \

 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete IR can be found in daphne/_d3.3/ir/ir_05_phy_op_selection.txt.

Compared to the previous step, there are two decisive changes: The bulk of the work in lmDS

is done by two matrix multiplications A = t(X) @ X; and b = t(X) @ y; in lmDS_.daph.

Interestingly, for both there are more specialized physical operators available: t(X) @ X can

be executed by a symmetric rank-k operation, and t(X) @ y does not require a matrix-matrix

multiplication, but just a less expensive matrix-vector multiplication. The DAPHNE compiler

successfully selects these physical operators.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 8

IR after inference:

...

%16 = "daphne.colBind"(%arg0, %14) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<4898x12xf64>

...

%27 = "daphne.transpose"(%16) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<12x4898xf64>

%28 = "daphne.matMul"(%27, %16, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x12xf64>,

i1, i1) -> !daphne.Matrix<12x12xf64>

%29 = "daphne.matMul"(%27, %arg1, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x1xf64>,

i1, i1) -> !daphne.Matrix<12x1xf64>

IR after selecting physical operators:

...

%15 = "daphne.colBind"(%arg0, %13) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<4898x12xf64>

...

%26 = "daphne.syrk"(%15) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<12x12xf64>

%27 = "daphne.gemv"(%15, %arg1) : (!daphne.Matrix<4898x12xf64>, !daphne.Matrix<4898x1xf64>) ->

!daphne.Matrix<12x1xf64>

While such decisions could also be made by the MatMul-kernel at runtime in certain cases,

doing it already at the compiler-level allows further optimization, e.g., w.r.t. the access pattern

in vectorized execution, which we illustrate next and see again in Section 3.4.

Vectorized execution. As one of the next steps, DAPHNE routinely identifies sequences of

DaphneIR operations for fine-grained operator fusion and vectorized/tiled execution in so-

called vectorized pipelines. For this purpose, DaphneIR operations supporting vectorized

execution implement a DAPHNE-custom MLIR interface to provide information on how each

argument can be split and how each result can be combined. In a special vectorization pass,

the DAPHNE compiler identifies these operations through their interface as well as producer-

consumer-relationships between them through MLIR's means for querying the def-use-chains

of values in the IR. In the beginning, each vectorizable operation constitutes a separate pipeline.

Then, pipelines are greedily fused together if there is a consumer-producer-relationship

between them and the result of the producing pipeline is combined along the same axis as the

argument of the consuming pipeline is split. The output of this step can be viewed by

bin/daphne --vec --explain vectorized \

 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that we added the --vec flag to turn on vectorization. The resulting IR can be found in

daphne/_d3.3/ir/ir_06_vectorized.txt. Inside the body of the function lmDS-1-1 we

now find three daphne.vectorizedPipeline operations, the most interesting of which is

shown below.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 9

IR after vectorization:

...

func.func @"lmDS-1-1"(...) -> ... {

 ...

 %25:2 = "daphne.vectorizedPipeline"(%arg0, %13, %arg1, ...) ({

 ^bb0(%arg5: !daphne.Matrix<?x11xf64>, %arg6: !daphne.Matrix<?x1xf64>, %arg7:

!daphne.Matrix<?x1xf64>):

 %30 = "daphne.colBind"(%arg5, %arg6) : (!daphne.Matrix<?x11xf64>, !daphne.Matrix<?x1xf64>) ->

!daphne.Matrix<?x?xf64>

 %31 = "daphne.gemv"(%30, %arg7) : (!daphne.Matrix<?x?xf64>, !daphne.Matrix<?x1xf64>) ->

!daphne.Matrix<?x?xf64>

 %32 = "daphne.syrk"(%30) : (!daphne.Matrix<?x?xf64>) -> !daphne.Matrix<?x?xf64>

 "daphne.return"(%31, %32) : (!daphne.Matrix<?x?xf64>, !daphne.Matrix<?x?xf64>) -> ()

 }, {

 }) {combines = [3, 3], ..., splits = [1, 1, 1]} : (...) -> (!daphne.Matrix<12x1xf64>,

!daphne.Matrix<12x12xf64>)

 ...

}

Here, the concatenation (colBind) of the feature matrix and the intercept vector, the

symmetric rank-k operation, and the general matrix-vector multiplication have been fused

together into one pipeline, since each of them can be vectorized by splitting the arguments

into row segments and by combining the results through row segment concatenation. This

pipeline scans over the large feature matrix once and processes cache-conscious chunks in

parallel. The creation of vectorized pipelines resembles one of the most important connection

points between the DAPHNE compiler (WP3) and the runtime (WP4). Moreover, inside a

pipeline, the shapes of the data objects may be unknown since they are subject to efficient

runtime scheduling (WP5).

At this point, we briefly come back to inter-procedural constant propagation again, as

promised above. If we turn off this feature, the control flow cannot fully be resolved at compile-

time, which limits the fusion opportunities. Indeed, the three operations colBind, syrk, and

gemv end up in separate pipelines, which the interested reader can verify by running the

following command or by viewing the complete IR, which can be found in the file

daphne/_d3.3/ir/ir_07_vectorized_alternative.txt.

bin/daphne --vec --no-ipa-const-propa --explain vectorized \
 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Memory management. In close collaboration of WP3 and WP4, DAPHNE manages its memory

usage and makes sure all allocations are ultimately freed. DAPHNE's memory management

concerns two levels: One the one hand, DAPHNE data objects like DenseMatrix, CSRMatrix,

and Frame are shallow objects containing meta data and pointers to the underlying data

buffers. On the other hand, the underlying data buffers contain the actual data. The data buffers

(or ranges thereof) can reside on the host memory and/or the memories of hardware

accelerators and remote nodes in a distributed setup. The existence of data buffers is always

tied to a data object holding C++ std::shared_ptr’s to them, whereby one data buffer can

be shared by multiple data objects (e.g., a Frame that was created from multiple DenseMatrix’s

for its columns or a zero-copy view into a DenseMatrix). While the level of the data buffers is

D3.3 Extended Compiler Prototype

DAPHNE – 957407 10

managed entirely by the DAPHNE runtime, the level of the data objects needs assistance from

the DAPHNE compiler. Each data object has a reference counter that is initially one. The decisive

challenge is to identify the point when a data object is not needed anymore and can safely be

freed. For this purpose, the DAPHNE compiler exploits its global view on the program to insert

operations to increase the reference counter (incRef) each time an object is passed to a new

scope (e.g., in a function call), and to decrease the reference counter (decRef) after the last use

of a data object in each scope. Once the reference counter becomes zero, the object is freed.

The IR after this step can be viewed by:

bin/daphne --explain obj_ref_mgnt \

 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that, for better readability, we omit the --vec flag again. The complete IR can be found

in daphne/_d3.3/ir/ir_08_obj_ref_mgnt.txt. In the main function, we can see that the

matrix read from the CSV file is freed right after the two sliceCol operations which separate

features from labels. As the feature matrix and labels are passed to the function lmDS-1-1,

their references are increased to avoid double-frees, since the runtime objects also get

memory-managed inside that function. Afterwards, their references are decreased to free them.

The result of the function call is freed only after it has been printed to the console.

IR after managing object references:

...

func.func @main() {

 ...

 %12 = "daphne.read"(...) : (...) -> ...

 %13 = "daphne.sliceCol"(%12, ...) : (...) -> ...

 %14 = "daphne.sliceCol"(%12, ...) : (...) -> ...

 "daphne.decRef"(%12) : (...>) -> ()

 "daphne.incRef"(%13) : (...) -> ()

 "daphne.incRef"(%14) : (...) -> ()

 %15 = "daphne.generic_call"(%13, %14, ...) {callee = "lmDS-1-1"} : (...) -> ...

 "daphne.decRef"(%14) : (...) -> ()

 "daphne.decRef"(%13) : (...) -> ()

 ...

 "daphne.print"(%15, ...) : (...) -> ()

 "daphne.decRef"(%15) : (...) -> ()

 ...

}

Lowering DaphneIR operations to kernel calls. By default, DAPHNE lowers all domain-

specific operations (e.g., from linear algebra and relational algebra) to calls to pre-compiled

kernel functions written in C++. This is done as one of the last steps of the compilation chain.

The IR after this step can be viewed by:

bin/daphne --explain kernels \

 scripts/algorithms/lmDS.daph \

 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

The complete IR can be found in daphne/_d3.3/ir/ir_09_kernels.txt. As an example, the

syrk operation has been lowered to:

D3.3 Extended Compiler Prototype

DAPHNE – 957407 11

IR after kernel lowering:

...

%28 = "daphne.call_kernel"(%17, %14) {callee = "_syrk__DenseMatrix_double__DenseMatrix_double"} :

(!daphne.Matrix<4898x12xf64>, !daphne.DaphneContext) -> !daphne.Matrix<12x12xf64>

Here, _syrk__DenseMatrix_double__DenseMatrix_double is a specific kernel function that

internally calls a BLAS routine. The lowering to kernel calls is one of the most decisive

connections to the DAPHNE runtime and WP4.

Lowering DaphneIR operations by low-level code generation. As an alternative to lowering

to C++ kernels, we are currently exploring the on-the-fly generation of low-level MLIR code

for DaphneIR domain-specific operations, by relying on MLIR dialects such as linalg, affine,

arith, and memref. Details on code generation will be provided in deliverable D3.4, which

follows in six months.

Lowering to LLVM and JIT-compilation. The last step of DAPHNE’s compilation chain is the

lowering to MLIR’s llvm dialect. The IR after this step can be viewed by

bin/daphne --vec --explain llvm \

 scripts/algorithms/lmDS.daph \
 XY=\"data/wine.csv\" reg=0.0000001 icpt=1 verbose=false

Note that we reinserted the --vec flag to show some interesting aspects. The complete IR can

be found in daphne/_d3.3/ir/ir_10_llvm.txt. The lowering is largely done by existing

MLIR conversion patterns. Nevertheless, some DaphneIR operations require special treatment.

For instance, the body of a daphne.vectorizedPipeline is turned into an llvm.func and a

pointer to this functions is passed to the vectorizedPipeline kernel of the DAPHNE runtime.

This can only be done at such a low level as the llvm dialect. As an example, consider the

pipelines consisting of colBind, syrk, and gemv mentioned above.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 12

IR after llvm lowering:

module {

 llvm.func @_vect2(%arg0: !llvm.ptr<ptr<ptr<i1>>>, %arg1: !llvm.ptr<ptr<i1>>, %arg2: !llvm.ptr<i1>) {

 ...

 llvm.call @_colBind__DenseMatrix_double__DenseMatrix_double__DenseMatrix_double(...) : (...) -> ()

 ...

 llvm.call @_gemv__DenseMatrix_double__DenseMatrix_double__DenseMatrix_double(...) : (...) -> ()

 ...

 llvm.call @_syrk__DenseMatrix_double__DenseMatrix_double(...) : (...) -> ()

 ...

 }

 ...

 llvm.func @"lmDS-1-1"(...) -> ... attributes {...} {

 ...

 %118 = llvm.mlir.addressof @_vect2 : ...

 ...

 %168 = llvm.bitcast %118 : ...> to ...

 llvm.store %168, %166 : ...

 ...

 llvm.call

@_vectorizedPipeline__DenseMatrix_double_variadic__size_t__bool__Structure_variadic__size_t__int64_t__i

nt64_t__int64_t__int64_t__size_t__void_variadic(...) : (...) -> ()

 ...

 }

 ...

 llvm.func @main() attributes {...} {

 ...

 }

 ...

}

The body of this pipeline now became the _vect2 function and a pointer to this function is

obtained and passed to the _vectorizedPipeline__… kernel inside the function lmDS-1-1.

4 Micro Benchmarks

To illustrate the impact of the compiler passes presented above on the compilation and

execution time of DAPHNE, we conducted a series of micro benchmarks comparing the DS and

CG method of linear regression model training on two randomly generated double-precision

input data sets with 1 million rows and either 100 (800 MB) or 1000 (8 GB) columns as well as

all three options for the intercept.

The experiments were conducted on a server equipped with an Intel Xeon Gold 6338 CPU

clocked at 2 GHz. This processor has two sockets with 32 physical cores each, resulting in 128

logical cores due to hyper-threading. The L1 data, L1 instruction, L2, and L3 caches have a total

size of 3 MiB (32 KiB per core), 2 MiB (48 KiB per core), 80 MiB (1.25 MiB per core), and 96 MiB.

The system is further equipped with 1 TiB of DDR4 memory, and during the experiments, all

data resides in main memory. The operating system is Ubuntu 20.04.5 LTS GNU/Linux with

kernel 5.4.0-144-generic. We compiled DAPHNE with g++ version 9.4. We repeated all time

measurements 10 times and report the means of all repetitions.

The experiments presented in the following can be reproduced using the scripts _d3.3/exp.sh

(within the container) and _d3.3/dia.py. The original results can be found in _d3.3/res.csv.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 13

Non-vectorized vs. vectorized execution. In the first experiment, we compare the execution

time of the non-vectorized execution to the vectorized execution. We report only the execution

times of the lmDS and lmCG functions here, i.e., the time for DaphneDSL parsing (negligible),

compilation, and the random data generation are not included. The results are shown in the

figure below. With non-vectorized processing (blue bars), we can see that for 100 columns

(upper row of diagrams), DS performs significantly better than CG, while for 1000 columns

(lower row of diagrams) the advantage of DS is not as pronounced, which is expected.

Vectorized processing is always faster than non-vectorized processing for the same method

and data size. However, there is still room for improvement in terms of speed up, which can

partly be attributed to the DAPHNE compiler and partly to the DAPHNE runtime. Indeed, DS

benefits more from vectorization than CG at the moment.

The next figure shows the compilation times, including all optimizations and lowering

performed by the DAPHNE compiler as well as the LLVM just-in-time compilation. The

compilation times are far lower than the execution times. Even more importantly, the

compilation time does not depend on the input data size. Finally, vectorization does not have

a significant impact on the compilation time; indeed, any additional cost is outweighed by the

improvements in execution time, given non-trivial data sizes.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 14

Impact of compiler flags. In the second experiment, we revisit some remarks made in Section

3.3. For this purpose, we execute DAPHNE with different compiler flags. The results for the

execution time of the lmDS and lmCG functions are shown in the figure below. More precisely,

we compare the default vectorized processing (blue bars) to two cases where we explicitly

turned off decisive features of the DAPHNE compiler, namely inter-procedural constant

propagation (orange bars, --no-ipa-const-propa, we mentioned before that this can result

in less pipeline fusion opportunities) and physical operator selection (green bars, --no-phy-

op-selection, we mentioned before that this can result in suboptimal access patterns in

vectorized processing). The figure below shows that turning off these compiler features can

indeed cause a significantly worse performance, especially for the DS method.

Next, we also show the impact of these compiler flags on the compilation time. The results are

shown in the figure below. Omitting inter-procedural constant-propagation leads to an

increased compilation time, since the IR stays unnecessarily verbose that way, thereby causing

more effort for subsequent compiler passes. Omitting physical operator selection can slightly

improve the compilation time; nevertheless, the extra effort is by far outweighed by the

improvements in execution time.

D3.3 Extended Compiler Prototype

DAPHNE – 957407 15

5 Overview of the Extended Compiler Prototype Source Code

A general overview of the DAPHNE code base has already been provided in deliverable D3.2

[D3.2]. Here, we focus on the source code relevant to the DAPHNE compiler, which can be

found in the following directories of the DAPHNE repository:

• src/ir/daphneir/: This directory contains the source code of the DaphneIR. Most

interestingly, all DaphneIR operations are defined in DaphneOps.td in LLVM TableGen

notation. Furthermore, specific parts of the type and property inference can be found

in the files DaphneInfer*.td/h/cpp, such as DaphneInferShapeOpInterface.cpp.

DaphneIR is the basis for both, the DaphneDSL parser and the DAPHNE compiler.

• src/compiler/: This directory contains all compiler passes of the DAPHNE compiler

(except for the standard MLIR passes we reuse). Most interestingly,

execution/DaphneIrExecutor.cpp defines the overall DAPHNE compilation chain,

lowering/ contains all passes for lowering and optimizations, and inference/

contains passes related to type and property inference.

• src/parser/daphnedsl/: This directory contains the source code of the DaphneDSL

parser, which creates the initial, unoptimized DaphneIR representation of the given

DaphneDSL script. This initial IR is the starting point for the DAPHNE compiler.

References

[BA+20] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert

Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,

Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, Sebastian Benjamin Wrede:

SystemDS: A Declarative Machine Learning System for the End-to-End Data

Science Lifecycle. CIDR 2020

[D2.1] DAPHNE: D2.1 Initial System Architecture, EU Project Deliverable, 08/2021

[D2.2] DAPHNE: D2.2 Refined System Architecture, EU Project Deliverable, 08/2022

[D3.1] DAPHNE: D3.1 Language Design Specification, EU Project Deliverable, 11/2021

[D3.2] DAPHNE: D3.2 Compiler Prototype, EU Project Deliverable, 02/2022

[D+22] Patrick Damme et al.: DAPHNE: An Open and Extensible System Infrastructure for

Integrated Data Analysis Pipelines, CIDR 2022

[LA+21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques

A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, Oleksandr Zinenko:

MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. CGO

2021

D3.3 Extended Compiler Prototype

DAPHNE – 957407 16

Appendix 1: DaphneDSL Scripts

In the following, we present the complete DaphneDSL scripts used for linear regression model

training in the demonstration scenario. These files can also be found in the DAPHNE repository

in the directory scripts/algorithms/. We omit the license headers to save some space.

File lmDS_.daph

This script has been manually translated from Apache SystemDS.

The lmDC function solves linear regression using the direct solve method

INPUT:
--

X Matrix of feature vectors.

y 1-column matrix of response values.
icpt Intercept presence, shifting and rescaling the columns of X

reg Regularization constant (lambda) for L2-regularization. set to nonzero

for highly dependant/sparse/numerous features
verbose If TRUE print messages are activated

--

OUTPUT:

B The model fit

def lmDS(X:matrix<f64>, y:matrix<f64>, icpt:si64, reg:f64,

 verbose:bool) -> matrix<f64> {

 intercept_status = icpt;
 regularization = reg;

 n = nrow (X);
 m = ncol (X);

 ones_n = fill (1.0, n, 1);

 zero_cell = [0.0];

 # Introduce the intercept, shift and rescale the columns of X if needed

 m_ext = m;

 if (intercept_status == 1 || intercept_status == 2) # add the intercept column
 {

 X = cbind (X, ones_n);
 m_ext = ncol (X);

 }

 scale_lambda = fill (1.0, m_ext, 1);

 if (intercept_status == 1 || intercept_status == 2)

 {
 scale_lambda [m_ext - 1, 0] = [0.0];

 }

 scale_X = [0.0]; # TODO this should not be necessary

 shift_X = [0.0]; # TODO this should not be necessary

 if (intercept_status == 2) # scale-&-shift X columns to mean 0, variance 1
 { # Important assumption: X [, m_ext - 1] = ones_n

 avg_X_cols = t(sum(X, 1)) / n;

 var_X_cols = (t(sum (X ^ 2.0, 1)) - n * (avg_X_cols ^ 2.0)) / (n - 1);
 is_unsafe = (var_X_cols <= 0);

 scale_X = 1.0 / sqrt (var_X_cols * (1 - is_unsafe) + is_unsafe);
 scale_X [m_ext - 1, 0] = [1.0];

 # TODO unary minus

 shift_X = (0 - avg_X_cols) * scale_X;
 shift_X [m_ext - 1, 0] = [0.0];

 } else {

 scale_X = fill (1.0, m_ext, 1);
 shift_X = fill (0.0, m_ext, 1);

 }

 # Henceforth, if intercept_status == 2, we use "X @ (SHIFT/SCALE TRANSFORM)"

 # instead of "X". However, in order to preserve the sparsity of X,

 # we apply the transform associatively to some other part of the expression
 # in which it occurs. To avoid materializing a large matrix, we rewrite it:

 #

 # ssX_A = (SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:
 # ssX_A = diagMatrix (scale_X) @ A;

 # ssX_A [m_ext - 1,] = ssX_A [m_ext - 1,] + t(shift_X) @ A;

 #
 # tssX_A = t(SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:

 # tssX_A = diagMatrix (scale_X) @ A + shift_X @ A [m_ext - 1,];

 lambda = scale_lambda * regularization;

 # BEGIN THE DIRECT SOLVE ALGORITHM (EXTERNAL CALL)
 A = t(X) @ X;

 b = t(X) @ y;

 if (intercept_status == 2) {
 A = t(diagMatrix (scale_X) @ A + shift_X @ A [m_ext - 1,]);

 A = diagMatrix (scale_X) @ A + shift_X @ A [m_ext - 1,];

 b = diagMatrix (scale_X) @ b + shift_X @ b [m_ext - 1,];
 }

 A = A + diagMatrix (lambda);

 if (verbose)

 print ("Calling the Direct Solver...");

 beta_unscaled = solve (A, b);

 # END THE DIRECT SOLVE ALGORITHM
 beta = [0.0]; # TODO this should not be necessary

 if (intercept_status == 2) {
 beta = scale_X * beta_unscaled;

 beta [m_ext - 1,] = beta [m_ext - 1,] + t(shift_X) @ beta_unscaled;

D3.3 Extended Compiler Prototype

DAPHNE – 957407 17

 } else {

 beta = beta_unscaled;

 }

 if (verbose) {

 print ("Computing the statistics...");
 avg_tot = sum (y) / n;

 ss_tot = sum (y ^ 2);

 ss_avg_tot = ss_tot - n * avg_tot ^ 2;
 var_tot = ss_avg_tot / (n - 1);

 y_residual = y - X @ beta;

 avg_res = sum (y_residual) / n;
 ss_res = sum (y_residual ^ 2);

 ss_avg_res = ss_res - n * avg_res ^ 2;

 R2 = 1 - ss_res / ss_avg_tot;

 dispersion = (n > m_ext) ? (ss_res / (n - m_ext)) : nan;
 adjusted_R2 = (n > m_ext) ? (1 - dispersion / (ss_avg_tot / (n - 1))) : nan;

 R2_nobias = 1 - ss_avg_res / ss_avg_tot;
 deg_freedom = n - m - 1;

 var_res = 0.0; # TODO this should not be necessary

 adjusted_R2_nobias = 0.0; # TODO this should not be necessary
 if (deg_freedom > 0) {

 var_res = ss_avg_res / deg_freedom;

 adjusted_R2_nobias = 1 - var_res / (ss_avg_tot / (n - 1));
 } else {

 var_res = nan;

 adjusted_R2_nobias = nan;
 print ("Warning: zero or negative number of degrees of freedom.");

 }

 R2_vs_0 = 1 - ss_res / ss_tot;

 adjusted_R2_vs_0 = (n > m) ? (1 - (ss_res / (n - m)) / (ss_tot / n)) : nan;

 print ("AVG_TOT_Y, " + avg_tot + # Average of the response value Y

 "\nSTDEV_TOT_Y, " + sqrt (var_tot) + # Standard Deviation of the response value Y
 "\nAVG_RES_Y, " + avg_res + # Average of the residual Y - pred(Y|X), i.e. residual bias

 "\nSTDEV_RES_Y, " + sqrt (var_res) + # Standard Deviation of the residual Y - pred(Y|X)

 "\nDISPERSION, " + dispersion + # GLM-style dispersion, i.e. residual sum of squares / # d.f.
 "\nR2, " + R2 + # R^2 of residual with bias included vs. total average

 "\nADJUSTED_R2, " + adjusted_R2 + # Adjusted R^2 of residual with bias included vs. total average

 "\nR2_NOBIAS, " + R2_nobias + # R^2 of residual with bias subtracted vs. total average<Paste>
 "\nADJUSTED_R2_NOBIAS, " + adjusted_R2_nobias); # Adjusted R^2 of residual with bias subtracted vs. total average

 if (intercept_status == 0) {

 print ("R2_VS_0, " + R2_vs_0 + # R^2 of residual with bias included vs. zero constant
 "\nADJUSTED_R2_VS_0, " + adjusted_R2_vs_0); # Adjusted R^2 of residual with bias included vs. zero constant

 }

 }

 B = beta;

 return B;
}

File lmDS.daph

import "lmDS_.daph";

Command-line arguments:

XY ... file name of the input file
icpt ... intercept, must be in [0, 1, 2]

reg ... regularization, recommended: 0.0000001

verbose ... whether to print verbose output, must be in [false, true]

XY = readMatrix($XY);

X = XY[, :(ncol(XY) - 1)];
y = XY[, ncol(XY) - 1];

b = lmDS_.lmDS(X, y, $icpt, $reg, $verbose);

print("");
print("RESULT");
print(b);

File lmCG_.daph
This script has been manually translated from Apache SystemDS.

The lmCG function solves linear regression using the conjugate gradient algorithm

INPUT:

--
X Matrix of feature vectors.

y 1-column matrix of response values.

icpt Intercept presence, shifting and rescaling the columns of X
reg Regularization constant (lambda) for L2-regularization. set to nonzero

for highly dependant/sparse/numerous features
tol Tolerance (epsilon); conjugate gradient procedure terminates early if L2

norm of the beta-residual is less than tolerance * its initial norm

maxi Maximum number of conjugate gradient iterations. 0 = no maximum
verbose If TRUE print messages are activated

--

OUTPUT:

B The model fit

def lmCG(X:matrix<f64>, y:matrix<f64>, icpt:si64, reg:f64, tol:f64,
 maxi:si64, verbose:bool) -> matrix<f64> {

 intercept_status = icpt;

 regularization = reg;
 tolerance = tol;

 max_iteration = maxi;

 n = nrow (X);

 m = ncol (X);
 ones_n = fill (1.0, n, 1);

 zero_cell = [0.0];

D3.3 Extended Compiler Prototype

DAPHNE – 957407 18

 # Introduce the intercept, shift and rescale the columns of X if needed

 m_ext = m;
 if (intercept_status == 1 || intercept_status == 2) # add the intercept column

 {

 X = cbind (X, ones_n);
 m_ext = ncol (X);

 }

 scale_lambda = fill (1.0, m_ext, 1);

 if (intercept_status == 1 || intercept_status == 2)

 {
 scale_lambda [m_ext - 1, 0] = [0.0];

 }

 scale_X = [0.0]; # TODO this should not be necessary

 shift_X = [0.0]; # TODO this should not be necessary
 if (intercept_status == 2) # scale-&-shift X columns to mean 0, variance 1

 { # Important assumption: X [, m_ext - 1] = ones_n

 avg_X_cols = t(sum(X, 1)) / n;
 var_X_cols = (t(sum (X ^ 2.0, 1)) - n * (avg_X_cols ^ 2.0)) / (n - 1);

 is_unsafe = (var_X_cols <= 0.0);

 scale_X = 1.0 / sqrt (var_X_cols * (1.0 - is_unsafe) + is_unsafe);
 scale_X [m_ext - 1, 0] = [1.0];

 shift_X = (0 - avg_X_cols) * scale_X;

 shift_X [m_ext - 1, 0] = [0.0];
 } else {

 scale_X = fill (1.0, m_ext, 1);

 shift_X = fill (0.0, m_ext, 1);
 }

 # Henceforth, if intercept_status == 2, we use "X @ (SHIFT/SCALE TRANSFORM)"
 # instead of "X". However, in order to preserve the sparsity of X,

 # we apply the transform associatively to some other part of the expression
 # in which it occurs. To avoid materializing a large matrix, we rewrite it:

 #

 # ssX_A = (SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:
 # ssX_A = diagMatrix (scale_X) @ A;

 # ssX_A [m_ext - 1,] = ssX_A [m_ext - 1,] + t(shift_X) @ A;

 #
 # tssX_A = t(SHIFT/SCALE TRANSFORM) @ A --- is rewritten as:

 # tssX_A = diag (scale_X) @ A + shift_X @ A [m_ext - 1,];

 lambda = scale_lambda * regularization;

 beta_unscaled = fill (0.0, m_ext, 1);

 if (max_iteration == 0) {

 max_iteration = as.si64(m_ext);

 }
 i = 0;

 # BEGIN THE CONJUGATE GRADIENT ALGORITHM
 if (verbose) print ("Running the CG algorithm...");

 r = (0.0 - t(X)) @ y;

 if (intercept_status == 2) {
 r = scale_X * r + shift_X @ r [m_ext - 1,];

 }

 p = 0.0 - r;

 norm_r2 = sum (r ^ 2.0);

 norm_r2_initial = norm_r2;
 norm_r2_target = norm_r2_initial * tolerance ^ 2.0;

 if (verbose) print ("||r|| initial value = " + sqrt (norm_r2_initial) + ", target value = " + sqrt (norm_r2_target));

 while (i < max_iteration && norm_r2 > norm_r2_target)

 {

 ssX_p = [0.0]; # TODO this should not be necessary
 if (intercept_status == 2) {

 ssX_p = scale_X * p;
 ssX_p [m_ext - 1,] = ssX_p [m_ext - 1,] + t(shift_X) @ p;

 } else {

 ssX_p = p;
 }

 q = t(X) @ (X @ ssX_p);

 if (intercept_status == 2) {

 q = scale_X * q + shift_X @ q [m_ext - 1,];
 }

 q = q + lambda * p;
 a = norm_r2 / sum (p * q);

 beta_unscaled = beta_unscaled + a * p;

 r = r + a * q;
 old_norm_r2 = norm_r2;

 norm_r2 = sum (r ^ 2);

 p = (0.0 - r) + (norm_r2 / old_norm_r2) * p;
 i = i + 1;

 if (verbose) print ("Iteration " + i + ": ||r|| / ||r init|| = " + sqrt (norm_r2 / norm_r2_initial));
 }

 if (i >= max_iteration) {
 if (verbose) print ("Warning: the maximum number of iterations has been reached.");

 }

 # END THE CONJUGATE GRADIENT ALGORITHM

 beta = [0.0]; # TODO this should not be necessary

 if (intercept_status == 2) {
 beta = scale_X * beta_unscaled;

 beta [m_ext - 1,] = beta [m_ext - 1,] + t(shift_X) @ beta_unscaled;

 } else {
 beta = beta_unscaled;

 }

 if (verbose) {

 print ("Computing the statistics...");

 avg_tot = sum (y) / n;

 ss_tot = sum (y ^ 2);
 ss_avg_tot = ss_tot - n * avg_tot ^ 2;

D3.3 Extended Compiler Prototype

DAPHNE – 957407 19

 var_tot = ss_avg_tot / (n - 1);

 y_residual = y - X @ beta;

 avg_res = sum (y_residual) / n;
 ss_res = sum (y_residual ^ 2);

 ss_avg_res = ss_res - n * avg_res ^ 2;

 R2 = 1 - ss_res / ss_avg_tot;

 dispersion = (n > m_ext) ? (ss_res / (n - m_ext)) : nan;

 adjusted_R2 = (n > m_ext) ? (1 - dispersion / (ss_avg_tot / (n - 1))) : nan;

 R2_nobias = 1 - ss_avg_res / ss_avg_tot;

 deg_freedom = n - m - 1;
 var_res = 0.0; # TODO this should not be necessary

 adjusted_R2_nobias = 0.0; # TODO this should not be necessary

 if (deg_freedom > 0) {
 var_res = ss_avg_res / deg_freedom;

 adjusted_R2_nobias = 1 - var_res / (ss_avg_tot / (n - 1));
 } else {

 var_res = nan;

 adjusted_R2_nobias = nan;
 print ("Warning: zero or negative number of degrees of freedom.");

 }

 R2_vs_0 = 1 - ss_res / ss_tot;

 adjusted_R2_vs_0 = (n > m) ? (1 - (ss_res / (n - m)) / (ss_tot / n)) : nan;

 print ("AVG_TOT_Y, " + avg_tot + # Average of the response value Y

 "\nSTDEV_TOT_Y, " + sqrt (var_tot) + # Standard Deviation of the response value Y
 "\nAVG_RES_Y, " + avg_res + # Average of the residual Y - pred(Y|X), i.e. residual bias

 "\nSTDEV_RES_Y, " + sqrt (var_res) + # Standard Deviation of the residual Y - pred(Y|X)

 "\nDISPERSION, " + dispersion + # GLM-style dispersion, i.e. residual sum of squares / # d.f.
 "\nR2, " + R2 + # R^2 of residual with bias included vs. total average

 "\nADJUSTED_R2, " + adjusted_R2 + # Adjusted R^2 of residual with bias included vs. total average
 "\nR2_NOBIAS, " + R2_nobias + # R^2 of residual with bias subtracted vs. total average<Paste>

 "\nADJUSTED_R2_NOBIAS, " + adjusted_R2_nobias); # Adjusted R^2 of residual with bias subtracted vs. total average

 if (intercept_status == 0) {
 print ("R2_VS_0, " + R2_vs_0 + # R^2 of residual with bias included vs. zero constant

 "\nADJUSTED_R2_VS_0, " + adjusted_R2_vs_0); # Adjusted R^2 of residual with bias included vs. zero constant

 }
 }

 B = beta;
 return B;
}

File lmCG.daph

import "lmCG_.daph";
Command-line arguments:

XY ... file name of the input file
icpt ... intercept, must be in [0, 1, 2]

reg ... regularization, recommended: 0.0000001

tol ... tolerance, recommended: 0.0000001
maxi ... maximim number of iterations, recommended: 0 (no maximum)

verbose ... whether to print verbose output, must be in [false, true]

XY = readMatrix($XY);

X = XY[, :(ncol(XY) - 1)];

y = XY[, ncol(XY) - 1];

b = lmCG_.lmCG(X, y, $icpt, $reg, $tol, $maxi, $verbose);

print("");

print("RESULT");
print(b);

Appendix 2: Example of a Complete DaphneIR

Here, we provide the complete DaphneIR after type/property inference as an example.

IR after inference:

module {

 func.func @"lmDS-1-1"(%arg0: !daphne.Matrix<4898x11xf64>, %arg1: !daphne.Matrix<4898x1xf64>, %arg2: si64, %arg3: f64, %arg4: i1) -> !daphne.Matrix<12x1xf64> {
 %0 = "daphne.constant"() {value = false} : () -> i1

 %1 = "daphne.constant"() {value = 11 : index} : () -> index
 %2 = "daphne.constant"() {value = 12 : index} : () -> index

 %3 = "daphne.constant"() {value = 4898 : index} : () -> index

 %4 = "daphne.constant"() {value = 9.9999999999999995E-8 : f64} : () -> f64
 %5 = "daphne.constant"() {value = 0 : index} : () -> index

 %6 = "daphne.constant"() {value = 1 : index} : () -> index

 %7 = "daphne.constant"() {value = 93916474695824 : ui64} : () -> ui64
 %8 = "daphne.constant"() {value = 93916474637328 : ui64} : () -> ui64

 %9 = "daphne.constant"() {value = 93916474631232 : ui64} : () -> ui64

 %10 = "daphne.constant"() {value = 93916474611760 : ui64} : () -> ui64
 %11 = "daphne.constant"() {value = 93916474428544 : ui64} : () -> ui64

 %12 = "daphne.constant"() {value = 0.000000e+00 : f64} : () -> f64

 %13 = "daphne.constant"() {value = 1.000000e+00 : f64} : () -> f64
 %14 = "daphne.fill"(%13, %3, %6) : (f64, index, index) -> !daphne.Matrix<4898x1xf64>

 %15 = "daphne.matrixConstant"(%11) : (ui64) -> !daphne.Matrix<1x1xf64>

 %16 = "daphne.colBind"(%arg0, %14) : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>) -> !daphne.Matrix<4898x12xf64>
 %17 = "daphne.fill"(%13, %2, %6) : (f64, index, index) -> !daphne.Matrix<12x1xf64>

 %18 = "daphne.matrixConstant"(%10) : (ui64) -> !daphne.Matrix<1x1xf64>
 %19 = "daphne.sliceRow"(%17, %1, %2) : (!daphne.Matrix<12x1xf64>, index, index) -> !daphne.Matrix<1x1xf64>

 %20 = "daphne.insertCol"(%19, %18, %5, %6) : (!daphne.Matrix<1x1xf64>, !daphne.Matrix<1x1xf64>, index, index) -> !daphne.Matrix<1x1xf64>

 %21 = "daphne.insertRow"(%17, %20, %1, %2) : (!daphne.Matrix<12x1xf64>, !daphne.Matrix<1x1xf64>, index, index) -> !daphne.Matrix<12x1xf64>
 %22 = "daphne.matrixConstant"(%9) : (ui64) -> !daphne.Matrix<1x1xf64>

 %23 = "daphne.matrixConstant"(%8) : (ui64) -> !daphne.Matrix<1x1xf64>

 %24 = "daphne.fill"(%13, %2, %6) : (f64, index, index) -> !daphne.Matrix<12x1xf64>
 %25 = "daphne.fill"(%12, %2, %6) : (f64, index, index) -> !daphne.Matrix<12x1xf64>

D3.3 Extended Compiler Prototype

DAPHNE – 957407 20

 %26 = "daphne.ewMul"(%21, %4) : (!daphne.Matrix<12x1xf64>, f64) -> !daphne.Matrix<12x1xf64>

 %27 = "daphne.transpose"(%16) : (!daphne.Matrix<4898x12xf64>) -> !daphne.Matrix<12x4898xf64>

 %28 = "daphne.matMul"(%27, %16, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x12xf64>, i1, i1) -> !daphne.Matrix<12x12xf64>
 %29 = "daphne.matMul"(%27, %arg1, %0, %0) : (!daphne.Matrix<12x4898xf64>, !daphne.Matrix<4898x1xf64>, i1, i1) -> !daphne.Matrix<12x1xf64>

 %30 = "daphne.diagMatrix"(%26) : (!daphne.Matrix<12x1xf64>) -> !daphne.Matrix<12x12xf64:sp[0.083333333333333329]>

 %31 = "daphne.ewAdd"(%28, %30) : (!daphne.Matrix<12x12xf64>, !daphne.Matrix<12x12xf64:sp[0.083333333333333329]>) -> !daphne.Matrix<12x12xf64>
 %32 = "daphne.solve"(%31, %29) : (!daphne.Matrix<12x12xf64>, !daphne.Matrix<12x1xf64>) -> !daphne.Matrix<12x1xf64>

 %33 = "daphne.matrixConstant"(%7) : (ui64) -> !daphne.Matrix<1x1xf64>

 "daphne.return"(%32) : (!daphne.Matrix<12x1xf64>) -> ()
 }

 func.func @main() {

 %0 = "daphne.constant"() {value = 11 : index} : () -> index
 %1 = "daphne.constant"() {value = 12 : index} : () -> index

 %2 = "daphne.constant"() {value = 0 : index} : () -> index

 %3 = "daphne.constant"() {value = "RESULT"} : () -> !daphne.String
 %4 = "daphne.constant"() {value = true} : () -> i1

 %5 = "daphne.constant"() {value = ""} : () -> !daphne.String
 %6 = "daphne.constant"() {value = false} : () -> i1

 %7 = "daphne.constant"() {value = 9.9999999999999995E-8 : f64} : () -> f64

 %8 = "daphne.constant"() {value = 1 : si64} : () -> si64
 %9 = "daphne.constant"() {value = "data/wine.csv"} : () -> !daphne.String

 %10 = "daphne.read"(%9) : (!daphne.String) -> !daphne.Matrix<4898x12xf64:sp[1.000000e+00]>

 %11 = "daphne.sliceCol"(%10, %2, %0) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, index, index) -> !daphne.Matrix<4898x11xf64>
 %12 = "daphne.sliceCol"(%10, %0, %1) : (!daphne.Matrix<4898x12xf64:sp[1.000000e+00]>, index, index) -> !daphne.Matrix<4898x1xf64>

 %13 = "daphne.generic_call"(%11, %12, %8, %7, %6) {callee = "lmDS-1-1"} : (!daphne.Matrix<4898x11xf64>, !daphne.Matrix<4898x1xf64>, si64, f64, i1) ->

!daphne.Matrix<12x1xf64>
 "daphne.print"(%5, %4, %6) : (!daphne.String, i1, i1) -> ()

 "daphne.print"(%3, %4, %6) : (!daphne.String, i1, i1) -> ()

 "daphne.print"(%13, %4, %6) : (!daphne.Matrix<12x1xf64>, i1, i1) -> ()
 "daphne.return"() : () -> ()

 }
}

