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1 Introduction 
Benchmarking tools are essential to evaluate systems and their capabilities. The current 

landscape of data processing systems consists of multi-faceted architectures that incorporate 

methods from big data management (BD), high-performance computing (HPC), and machine 

learning (ML). While the systems in these domains are converging in the ways they handle data 

and perform computation, the tools currently available for their evaluation remain specialized 

for measuring individual aspects of the workloads. Such limited measurements cannot provide 

wider scope insights into the systems’ functionality and their end-to-end performance.   

In a survey on big data, high performance computing, and machine learning benchmarking 

frameworks, we have observed that the state of the art only partially reflects the convergence 

of the systems in the respective domains [10]. In order to evaluate the performance of such 

data processing systems fairly, there is a need for a benchmarking framework that can 

altogether measure the data management, computation, and statistical aspects of a system. 

There exist several benchmarks covering the BD, HPC and ML domains. Most BD benchmarks 

focus on the system performance on data analysis tasks. Some benchmarks also evaluate the 

performance on either data collection or storage. However, only few benchmarks, such as 

BigBench [8] cover all tasks of a BD system. Convergence towards other domains can be 

observed in Big Bench and Big Data Bench [7], allowing to measure the system performance 

on statistical computations.  

A similar situation can be observed when evaluating HPC Benchmarks. Some benchmarks, for 

example, SPEC MPI [15] evaluate different performance categories of HPC systems. Other 

benchmarks such as HPL-AI [9] and ML-Perf-HPC Benchmark [6] exhibit some convergence 

toward covering multiple aspects of an IDA pipeline, as they include high- and low-level 

precision calculations.  

There exist several ML benchmarks, most of them focusing on the training aspect of ML 

systems, as this is usually the bottleneck for such systems. MLPerf [12] also includes model 

inference and time consumption metrics offering the possibility to evaluate a system's 

inference performance, while still maintaining a focus on training performance. There are 

benchmarks also aimed at the preprocessing stage of ML, such as CleanML [11], converging 

towards big data benchmarking frameworks.  

Furthermore, there are multiple levels of an ML system that can be targeted by a benchmark. 

Metrics like hyperparameter influence or number of epochs needed to reach a certain loss or 

accuracy target the application and middleware layer of the system. Metrics concerning the 

consumption of resources like energy and CPU can be used to also take the hardware layer 

into account. Some benchmarks, for example, DeepBench [13] and MLPerf [12] include metrics 

concerning the hardware layers' performance during training like TeraFLOPS per millisecond 

and throughput, respectively. 

To conclude, while most benchmarks focus on one aspect of their corresponding application 

domain, some benchmarks combine multiple tasks of the domain. However, there are no 

benchmarks showing convergence towards covering multiple tasks of the IDA pipeline as well 

as covering multiple levels of the system. This might be because not only is the purpose of the 
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stages disjoint, but especially because each task and layer require different metrics [10]. This 

lack of a benchmark able to provide metrics for all tasks and layers of an IDA pipeline prevents 

the end-to-end evaluation and comparison of IDA systems, such as DAPHNE. 

In this report, we present our definition of an end-to-end benchmarking framework that 

measures the end-to-end performance of a complex data processing system.  

We focus on the complete pipeline lifecycle, covering several benchmarking aspects and 

abstraction levels of IDA-pipelines, collecting a set of metrics reflecting the system’s 

performance and resource utilization through supervised metrics. To this end, we also cover 

metrics related to domain-specific tasks such as simulation and computation for HPC, data 

cleaning for BD or preprocessing, model training, validation, and inference for ML. To this end, 

we also collect a set of metrics reflecting the system’s performance and resource utilization 

through supervised metrics, as well as the performance of the trained model through valued 

metrics.  

This report is structured as follows. In Section 2, we define the benchmarking framework by 

describing the IDA pipelines, the benchmarking aspects, the systems under test, as well as the 

workloads covered by the framework. In Section 3, we provide the outline for implementing 

such a framework, focusing on the design of the benchmarking methods, framework, data 

model, as well as the metrics covered by the benchmarking framework. In Section 4, we 

showcase two use cases, earth observation, and hard drive anomaly analysis, as examples of 

IDA pipelines covering all four benchmarking aspects. Finally, in Section 5, we conclude the 

report. 

2 Benchmark Definition  
This section focuses on defining the core characteristics of the benchmarking framework. We 

introduce IDA pipelines, the benchmarking aspects, systems under test and workloads covered 

by the proposed framework.  

2.1 IDA Pipelines 

IDA pipelines execute workflows combining multiple tasks, such as generating data with the 

use of simulations, data sorting or encoding and training, and using an ML model. The pipelines 

can be divided into three stages, computation, data processing, and training, and include 

components from BD, HPC and ML applications. In Figure 1 [10], we show the complete IDA 

pipeline ecosystem. In this report, we focus on the application and middleware layers. 
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Figure 1: IDA Pipeline and its ecosystem [10] 

Each of the domains, BD, ML, and HPC, presents its own challenges, computation methods, 

and performance metrics that are challenging to evaluate. Some benchmarks from each of 

these domains show convergence towards covering multiple stages and layers of the IDA 

pipeline. Thus, a benchmarking framework needs to cover these as well, including distinct 

metrics for each stage.  

2.2 Benchmarking Aspects 

Big data, high performance computing, and machine learning systems are often represented 

as pipelines composed of several stages or aspects, such as data preprocessing or cleaning, 

simulation, computation or training, and specifically for ML systems, inference. Current 

benchmarks are specialized to evaluate only individual aspects of the pipeline, having a low or 

no overlap with the other stages.  

We propose a benchmarking framework that includes all aspects of an IDA pipeline. To 

accurately measure the performance of each aspect, we collect domain specific metrics related 

to each aspect as well as end-to-end runtime metrics, allowing for a more general evaluation 

of the whole pipeline. We also evaluate the training aspect in more detail by collecting training 

specific metrics.  

With the end-to-end metrics, we evaluate the runtime characteristics of each benchmarking 

aspect. These include the elapsed time, memory consumption, CPU consumption, energy 

consumption, as well as the throughput and latency of the system. For the training-specific 

metrics, we focus on the model performance with respect to time, as in epochs-to-accuracy, 

epochs-to-loss, as well as collecting configuration parameters of the pipeline to measure the 

hyperparameter influence, and the confusion matrix of the generated predictions. 

The proposed framework enables tracking of all end-to-end metrics in each aspect of an IDA 

pipeline. In this way, we evaluate the share of each stage in the end-to-end pipeline 

performance. Accordingly, the framework supports isolated evaluation of individual aspects for 

more focused pipeline analysis.  
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The benchmarking framework is developed to evaluate pipelines executed by systems that 

cover more than one aspect of the IDA stack. Our system of focus is the DAPHNE system for 

integrated data analysis. However, the proposed framework can also be used to evaluate IDA 

pipelines consisting of one or more data processing systems that are integrated in an IDA. The 

benchmarking framework can be used to evaluate end-to-end IDA pipelines, as well as 

individual parts of the pipeline, related to the BD, HPC and ML domain.   

The benchmarking framework also allows for easy comparisons between multiple pipeline-runs 

and systems and features the possibility to visualize metrics obtained during a pipeline run. 

2.3 System under Test 

As a part of the WP 9 in the DAPHNE EU project, we focus on evaluating the end-to-end system 

capabilities of the DAPHNE system for integrated analysis. However, the benchmarking 

framework design is lightweight and modular, which can be integrated into IDA pipelines that 

include one or more data processing frameworks across different stages. 

The proposed framework can be used as a wrapper around data processing methods. Runtime 

metrics are wrapped around individual method calls, as well as several methods comprising 

one or more stages of the pipeline. To evaluate each system integrated into an IDA pipeline, 

the benchmarking framework is to be used for a set of methods run by the system at hand. 

This allows us to determine per-system bottlenecks in the pipeline, as well as focus on the 

runtime performance of individual system operators. In Figure 2, we show an example of a 

benchmark run for a given system under test. 

 

Figure 2: Execution scenario of a given benchmark 

At the definition stage of the framework, we are covering generic data processing pipelines, 

that can include Python libraries, as well as Java and C++ executables.   
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2.4 Workloads 

The workloads currently supported by the proposed framework include:  

• Data cleaning and preparation workloads – part of the data preprocessing stage of an 

IDA pipeline 

• Machine learning model training – part of the training stage of an IDA pipeline 

• Inference – part of the computation stage of an IDA pipeline 

Such workloads are included as elements of benchmarking use cases that we considered during 

the design process and are described in more detail in Section 4. Our benchmarking framework 

will be extended to support workloads that reflect all stages of an IDA pipeline. The new 

workloads are part of the future work and implementation of the benchmarking framework. 

3 Benchmark Specification  
In this section, we present the specification of the new benchmarking framework. We outline 

the implementation plan for the benchmarking methods and framework. Additionally, we 

specify the metrics and the data model in more detail.  

3.1 Benchmarking Methods 

The developed benchmarking framework captures supervised and valued metrics. The 

supervised metrics monitor the resource consumption of the system. For some supervised 

metrics, namely latency and throughput, these measurements are also combined with pipeline 

internal data. Supervised metrics are collected using decorator functions which annotate the 

parts of the pipeline that are being measured and are responsible for collecting the desired 

data. Further, valued metrics collect metric values which are the result of the different stages 

of an IDA pipeline, such as epochs to accuracy and confusion matrices.  

3.2 Framework 

The benchmarking framework is implemented in Python and provides a package that measures 

the metrics of the system and model at hand. Furthermore, it also provides a command line 

interface to evaluate the results and compare them across multiple pipeline runs. The metrics 

are stored in a database, whose entries are managed by a central Benchmark class. To capture 

the valued metrics tracker classes, each responsible for capturing one metric and reporting it 

to the benchmark instance, are used. For supervised metrics the BenchmarkSupervisor class, a 

decorator for the pipeline, collects all specified metrics and passes them to the benchmark 

instance.  

3.3 Data Model  

Metrics of multiple pipeline runs are stored in one database, allowing for easier comparison 

and visualization of multiple pipeline runs together. The database consists of two tables, as 

shown in Figure 3.  
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Figure 3: ERD for the proposed data model  

One table saves entries for each pipeline run, including an ID, the start time of the run and a 

description. The other table consists of entries for all metrics collected. A measurement entry 

includes an id, the id of the corresponding pipeline run, a time, description, the type of metric 

saved and the data including its unit.  

3.4 Metrics 

The available metrics are listed in Table 1 and are divided into valued and supervised metrics. 

They are further specified in the following sections. 

Valued metrics Supervised metrics 

Confusion matrix Time consumption 

Hyperparameter influence Memory consumption 

Epochs to accuracy Energy consumption 

Epochs to loss CPU consumption 

 Latency 

 Throughput 

Table 1: Available metrics, valued metrics are marked blue, supervised metrics are marked pink 

3.4.1 Valued Metrics 

The confusion matrix is measured during the training step, as well as during testing and 

inference. For each predicted datapoint the confusing matrix saves the predicted and actual 

value. Epochs to accuracy and epochs to loss both require a list of integers as values. These are 

the target accuracies or losses, respectively. For each value the time, where the accuracy or loss 

of the model exceeds or undercuts this value is collected.  

The benchmarking framework further tracks certain hyperparameters, the influence of the 

value of single hyperparameters can be calculated from these values. 
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3.4.2 Supervised Metrics 

The time consumption metric measures the time taken for execution of the function, which is 

evaluated. The memory consumption metric measured the memory used in the execution of a 

function at given intervals. The energy and power usage of the execution of a function is 

measured by the corresponding metrics using the Running Average Power Limit [5] and 

pyRAPL[14]. Power consumption is measured at given intervals. To collect the CPU 

consumption metric the CPU usage of the running Python instance is measured in percentage 

at given intervals.  

The latency metric of the benchmarking framework measures the time the pipeline needs to 

process a specified number of data points and dividing the number of data points used by this 

time. Similarly, the throughput metric is collected by dividing the time needed to process a 

specified number of data points by this number.  

4 Use Cases  
In this section, we present two use cases for an end-to-end ML system, including the tasks for 

each use case and the available data, outlining how a ML system evaluated by the 

benchmarking framework could be implemented. 

 

Use Case Data Workload SuT 

Earth observation 

 

Sentilel-1 & 

Sentinel-2 [3] 

Climate zone 

classification 

BD & ML System 

Backblaze Anomaly 

Analysis 

Backblaze Dataset 

[1] 

Hardware Failure 

Prediction 

ML System 

Table 2: Specification of the two use cases 

 

4.1 Earth Observation (DAPHNE UC-1) 

The earth observation case study focuses on classifying local climate zones from satellite 

images. The classes are based on the surface structure of the area as well as anthropogenic 

parameters. This information can be gained from the Sentinel-1 and Sentinel-2 datasets, which 

include high resolution satellite imagery as well as auxiliary datasets [3]. Labeled training 

datasets are available. Considering the large size of the datasets and the foreseeable growth 

in data as well as data size, this use case presents the opportunity to evaluate the ability of the 

systems to complete data preparation, classification and analysis tasks at a large scale. For the 

model training stage, we use deep learning approaches which have proven to be an effective 

solution for image recognition tasks. Here, the benchmarking framework can measure the time 

and memory consumed by the system under test during training. The same measurements can 

be taken during the testing stage.  
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4.2 Backblaze Anomaly Analysis 

The Backblaze anomaly analysis is based on publicly available and free data on the operability 

of hard drives provided by Backblaze [2]. For each operational hard drive there is daily 

information on the model, serial number, model, capacity, and possible failures available as 

well as SMART stats. The task at hand is to predict future hardware failures. To this end, we use 

both traditional machine learning methods, such as decision trees, support vector machines, 

and deep learning approaches. The usage of different training methods for the same task 

requires different data preparation techniques which can be evaluated separately. This allows 

us to not only collect ML-specific metrics related to the training process, but to also measure 

system performance during data parsing and transferring, such as the used memory and time.  

5 Conclusions 
The current benchmarking landscape has not adopted the convergence between systems 

developed in the big data, high performance computing, and machine learning domains. 

Integrated data analysis pipelines, as the centerpiece in these systems, cannot be 

comprehensively evaluated. In this report, we present an initial concept and definition of a 

benchmarking framework that can track and collect metrics from all stages in the IDA pipeline 

lifecycle. We selected a set of runtime metrics that measure the time and general resource 

consumption of each benchmarking stage. Additionally, for the training aspect of the IDA 

pipeline, we measure the model performance with respect to training time, and epochs 

executed.  

The implementation of the framework is centered around decorator methods that are not 

interfering with the general runtime and can be integrated easily into existing pipelines. Finally, 

we include two use cases that we considered for the design of the benchmarking framework, 

one DAPHNE project IDA pipeline for landscape classification, and an open-source use-case 

on anomaly analysis. Our next steps include incorporating the framework into a working 

prototype that can be generally used to evaluate the performance of the DAPHNE integrated 

analysis system. 

 

  



D9.2 Initial Benchmark Concept and Definition 

 

DAPHNE – 957407  10 

6 References 
[1] Adolf, Robert, et al. "Fathom: Reference workloads for modern deep learning methods." 

2016 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 2016. 

 

[2] Backblaze Hard Drive Data and Stats. https://www.backblaze.com/b2/hard-drive-test-

data.html, accessed 2022-10-27 

 

[3] Corpernicus Open Access Hub. https://scihub.copernicus.eu/, accessed 2022-10-27 

 

[4] Caldas, Sebastian, et al. "Leaf: A benchmark for federated settings." arXiv preprint 

arXiv:1812.01097, 2018. 

[5]  David, Howard, et al. "RAPL: Memory power estimation and capping." 2010 ACM/IEEE 

International Symposium on Low-Power Electronics and Design (ISLPED). IEEE, 2010. 

 

[6] Farrell, Steven, et al. "MLPerf™ HPC: A Holistic Benchmark Suite for Scientific Machine 

Learning on HPC Systems." 2021 IEEE/ACM Workshop on Machine Learning in High 

Performance Computing Environments (MLHPC). IEEE, 2021. 

 

[7] Gao, Wanling, et al. "Bigdatabench: A scalable and unified big data and ai benchmark 

suite." arXiv preprint arXiv:1802.08254, 2018.  

 

[8] Ghazal, Ahmad, et al. "Bigbench: Towards an industry standard benchmark for big data 

analytics." Proceedings of the 2013 ACM SIGMOD international conference on Management 

of data, 2013. 

 

[9] Hpcg benchmark. https://icl.bitbucket.io/hpl-ai/, accessed 2022-10-27 

 

[10] Ihde, Nina, et al. "A Survey of Big Data, High Performance Computing, and Machine 

Learning Benchmarks." Technology Conference on Performance Evaluation and Benchmarking. 

Springer, Cham, 2021. 

 

[11] Li, Peng, et al. "Cleanml: A benchmark for joint data cleaning and machine learning 

[experiments and analysis]." arXiv preprint arXiv:1904.09483, 2019: 75. 

[11] Mattson, Peter, et al. "Mlperf training benchmark." Proceedings of Machine Learning 

and Systems 2, 2020: 336-349. 

[13] Narang, S. “Deepbench.” https://svail.github.io/DeepBench/, accessed 2022-10-27 

 

[14] PyRAPL. https://pypi.org/project/pyRAPL/, accessed 2022-10-27 

 

[15]  Specmpi. https://www.spec.org/mpi2007/, accessed: 2022-11-19 


