

D7.2 Prototype and

Overview HW Accelerator

Support and Performance

Models

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.5

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

2

Document Description

This document describes a snapshot of our DAPHNE prototype regarding HW acceleration as

a follow-up of deliverable D7.1. In particular, we introduce three example scenarios as the main

drivers for the current prototype and describe how to execute these examples with enhanced

hardware support. Additionally, we give an overview report on the devised performance

models for a cost-based approach for kernel and data placement decisions in a heterogeneous

hardware environment in this document.

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

WP7 – HW Accelerator Integration

Type of document R Version 1.5

Dissemination level PU Project month 24

Lead partner TUD

Author(s)

Reviewer(s)

Dirk Habich (TUD), Eric Mier (TUD), Mark Dokter (KNOW),

Piotr Ratuszniak (INTP)

Tilmann Rabl (HPI), Patrick Damme (KNOW)

Contributors all

Revision History

Version Revisions and Comments Author / Reviewer

V1.0 Initial structure and write-up Dirk Habich, Eric Mier

V1.1 Content to GPU and FPGA prototype Mark Dokter, Piotr Ratuszniak

V1.2 Refinement Dirk Habich

V1.3 Reviewer feedback incorporated Dirk Habich

V1.4 GPU example revision, adaptations related

to artifact content

Mark Dokter

V1.5 Final version Dirk Habich

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

3

Introduction

Modern data-driven applications have to deal with increasingly large and heterogeneous data

collections as well as a variety of machine learning (ML) models for cost-effective automation

and improved analysis results. This creates a trend towards integrated data analysis (IDA)

pipelines that jointly utilize data management (DM), high-performance computing (HPC), and

ML systems. As described in [D+22], developing and deploying such IDA pipelines is, however,

still a painful process of integrating different systems and related developers, programming

paradigms, resource managers, and data representations. Integrating DM+ML, HPC+ML,

DM+HPC for improving productivity and/or performance is an old problem though. However,

an open system infrastructure for seamlessly developing, deploying, and running IDA pipelines

is still missing, and at the same time, new challenges related to hardware, productivity, and

utilization emerge.

To overcome that, the DAPHNE project sets out to build an open and extensible system

infrastructure for integrated data analysis pipelines. To achieve that goal, our envisioned

infrastructure is based on MLIR as a multi-level, LLVM-based intermediate representation

backed by multiple organizations and communities. This approach allows a seamless

integration with existing applications and runtime libraries while also enabling extensibility for

specialized data types, hardware-accelerated kernels, hardware-specific compilation chains,

and custom scheduling algorithms. While the DAPHNE reports D2.1 - Initial System

Architecture [D2.1] and D2.2 - Refined System Architecture [D2.2] have described the overall

DAPHNE system architecture, report D7.1 - Design of integration hardware (HW) accelerators

[D7.1] has presented the overall design of the integration of HW accelerators as well as it has

detailed on accelerated operations and primitives.

As introduced in the DAPHNE report D7.1 [D7.1], the challenges for the integration of HW

accelerators are (i) developing as well as generating operators - hereinafter also called

computation kernels or kernels for short - which can be efficiently executed on accelerators

such as CPUs, GPUs or FPGAs, (ii) integrating these accelerator-specific operators in the whole

DAPHNE compilation and runtime infrastructure in a seamless way, and (iii) selecting the best-

fitting accelerator for efficient execution depending on the specific IDA pipeline and hardware

environment [D7.1]. While challenge (i) is addressed by Task 7.1 - Accelerated Key Operations

and Data Access Primitives, Task 7.4 - Multi-Device Operation Kernels, and Task 7.5 - Code

Generation for HW Accelerators, challenge (ii) is considered in Task T7.2 - Compiler and Runtime

Support for HW Accelerators. Selecting the best-fitting accelerator for efficient execution -

challenge (iii) - is part of Task 7.2 - Compiler and Runtime Support for HW Accelerators as well

as Task 7.3 - Performance Models and Cost Estimation. For the current implementation in the

DAPHNE prototype, we have mainly focused on the challenges (i) and (ii) in order to be able

to develop hardware-accelerated kernels and to anchor these hardware-accelerated kernels in

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

4

the entire DAPHNE infrastructure. Thus, we describe the current state of our prototype in this

document. Additionally, we give an overview report on the devised performance models for a

cost-based approach for hardware-accelerated kernels and data placement decisions in a

heterogeneous hardware environment.

The remainder of this deliverable is structured as follows:

● In Section 2, we detail the access to our prototype artifact for this written deliverable

document.

● Then, we introduce our prototype by describing the underlying demonstration

scenarios in Section 3.

● Afterwards, we explain the folder structure of our prototype in Section 4.

● Section 5 presents an overview of our devised performance models.

2 Artifact Access

The DAPHNE prototype for the integration of HW accelerators that is described in this

deliverable is publicly accessible as a snapshot of the DAPHNE development repository

(created in November 29 2022) under the following link:

Link: https://tinyurl.com/daphne-D72 (88.3 MB)

Note that the DAPHNE development repository is publicly available at

https://github.com/daphne-eu/daphne under Apache License v2.0.

3 Demonstration Scenario

In this deliverable, we present three different scenarios, each focusing on a different hardware

accelerator type.

● [SIMD-Example]: The first scenario accelerates an analytical relational SQL query of an

example IDA pipeline with the usage of Single-Instruction Multiple-Data (SIMD)

extensions of general-purpose CPUs.

● [GPU-Example]: The second scenario showcases the support of GPU for a linear

regression algorithm which is part of the example IDA pipeline from the SIMD-Example.

The example was run on an Nvidia Tesla T4 with 16GB RAM but should run on any

modern Nvidia GPU with more than 4GB of RAM.

https://tinyurl.com/daphne-D72

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

5

● [FPGA-Example]: The third scenario presents how to accelerate example linear algebra

kernels, like SGEMM and SGEMV on an FPGA based accelerator. At the current project

stage the Intel Programmable Acceleration Card D5005 has been used1.

3.1 General Initial Setup

Step 0.1 Install Dependencies: Setup a Linux environment (tested with Ubuntu 20.04), and

install the dependency versions specified in docs/GettingStarted.md, which includes

clang, cmake, git, lld, ninja, pkg-config, python3, numpy, openjdk, gfortran, uuid-dev, libboost-

dev, and wget.

Step 0.2 Download and Extract: Download the artifact from the link in Section 2, and extract

it as follows into a directory called daphne-D7.2. The provided binaries were compiled on an

Ubuntu 18.04 system (for compatibility with the FPGA code paths) with a toolchain compatible

with Ubuntu 20.04 (our default DAPHNE platform using gcc 9.4 and llvm 10.0), using an x86-

64 machine (Intel Xeon).

$ tar xf daphne-D7.2.tgz

$ cd daphne-D7.2

$ tar xf daphne--cuda-D7.2-bin.tgz

 $ tar xf daphne--fpgaopencl-D7.2-bin.tgz

 $ tar xf daphne--morphstore-D7.2-bin.tgz

 $ tar xf daphne-D7.2-source.tgz

Step 0.3 Set some paths: To make it easier to find the correct paths throughout the examples,

we store some paths into variables.

$ artifact=$(pwd)

$ source=$artifact/daphne-D7.2-source

3.2 SIMD-Example

The following example uses a part of the presented pipeline P1 in [D+22], more precisely the

querying part. Fundamentally, pipeline P1 consists of a TPC-H inspired relational query

followed by linear regression model training on the query result. This relational SQL query

computes the total price of all purchases each customer did, filtered by a range of market

segments after a certain date. The DaphneDSL-script to process this query looks like this

(Figure 1):

1 https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html

https://github.com/daphne-eu/daphne/blob/main/doc/GettingStarted.md

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

6

01: /// read input

02: c = readFrame($inCustomer);

03: o = readFrame($inOrders);

04:

05: /// register frames to sql scope

06: registerView("customer", c);

07: registerView("orders", o);

08:

09: /// execute query

10: res = sql(

11: "Select customer.C_CUSTKEY, sum(orders.O_TOTALPRICE)

12: From customer

13: Inner Join orders

14: On customer.C_CUSTKEY = orders.O_CUSTKEY

15:

16: Where customer.C_MKTSEGMENT <= 2

17: And orders.O_ORDERDATE >= 19960802

18: Group By customer.C_CUSTKEY;"

19:);

20:

21: // Range of Market_Segment: 0 - 4

22: // Range of Orderdate: 19920101 - 19980802

23:

24:

25: /// print the results

26: print("================================");

27: print(res);

28: print("================================");

Figure 1: Analytical SQL Query using TPC-H data in DAPHNE

Description: The input is read from two CSV-files that are provided via runtime parameters.

The data is stored in two frames, which have to be registered with a label to make them visible

to the SQL parser. Next, the query is executed and the result is stored in a new frame, which is

printed to the console in the last step.

Step 1.1 Build DAPHNE (optional): Then build the prototype, its dependencies, and the

parser as follows from within the daphne directory (if it fails run “./build.sh --clean“ for a clean

start). On the first run this step might take up to 60min.

$ cd $source

$./build.sh

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

7

If you wish to skip building yourself, the artifact contains prebuilt binaries for each

demonstration scenario. Just skip the commands above and navigate into directory of the first

scenario:

$ cd $artifact/daphne--morphstore-D7.2-bin

Step 1.2 Generate TPC-H data: For this scenario, we require the tables ‘customer’ and ‘orders’

of the TPC-H data. For this the dependency ‘realpath’ is needed.

 $./benchmarks/tpc-h/generate.sh

Step 1.3 Alias to DAPHNE compiler (optional): To shorten things, one could create an alias

to the executable of the DAPHNE compiler.

 $ alias daphne=./bin/daphne

If this step is skipped, the daphne calls in following steps have to be replaced by ‘./bin/daphne’.

If you wish to use the prebuilt binary,

Step 1.4 Set some paths: The following paths are needed multiple times, so store them in

variables. (We assume we are still in the DAPHNE root directory)

 $ script=$(pwd)/scripts/deliverables/del_7_2_example.daphne

 $ customer=inCustomer=\”$(pwd)/benchmarks/tpc-h/data/customer.csv\”

 $ orders=inOrders=\”$(pwd)/benchmarks/tpc-h/data/orders.csv\”

Step 1.5 Build DAPHNE with the SIMD framework MorphStore: This framework enables

the use of kernels that exploit vector operations through the Template SIMD Library (TSL)

[DU+20, U+20]. Fundamentally, MorphStore is an in-memory columnar analytical query

engine with a novel holistic compression-enable and highly-vectorized processing model

[DU+20]. If you choose to use the prebuilt binaries, skip this step.

 $./build.sh --morphstore

This should not take as long as the first build, since only some additional components have to

be compiled.

Step 1.6 Execute the Scenario without SIMD extension: The example script works also

without any API extensions.

 $ daphne $script $customer $orders

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

8

Step 1.7 Execute with SIMD extension: Now run the script again using MorphStore

operations [DU+20].

$ daphne --api MorphStore $script $customer $orders

The api flag sets the API-name used by our developed KernelSelectionPass to map element-

wise compare operations (==,!=,>,>=,<,<=) to MorphStore kernels. This KernelSelectionPass

is our central building block in the DAPHNE system for mapping kernels to hardware-specific

kernels and is implemented within the DAPHNE compiler. The mapping is currently determined

by specific flags, which will later be automated using a cost-based selection technique. The

results of both execution variants should be the same.

Step 1.8 Print the DaphneIR: The key difference is shown in the IR after the kernel calls are

generated. For this, DAPHNE offers an explain feature for different levels of the compiler

lowering. We take a look at the ‘sql’ and ‘kernels’ level:

SQL:

Default:

$ daphne --explain sql $script $customer $orders

Output:

%18 = "daphne.ewLe"(%16, %17) :

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) ->

!daphne.Matrix<?x?x!daphne.Unknown>

%23 = "daphne.ewGe"(%21, %22) :

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) ->

!daphne.Matrix<?x?x!daphne.Unknown>

SIMD:

$ daphne --api MorphStore --explain sql $script $customer $orders

Output:

%18 = "daphne.ewLe"(%16, %17) :

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) ->

!daphne.Matrix<?x?x!daphne.Unknown>

%23 = "daphne.ewGe"(%21, %22) :

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) ->

!daphne.Matrix<?x?x!daphne.Unknown>

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

9

The Output shows relevant parts of the DaphneIR after executing with the explain feature. The

DaphneIR after parsing the SQL query is exactly the same. But after lowering to kernel level we

see that the ‘ewLe’ and ‘ewGe’ operations are mapped to different kernel calls.

Kernels:

Default:

$ daphne --explain kernels $script $customer $orders

Output:

%27 = "daphne.call_kernel"(%26, %10, %19) {callee =

"_ewLe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"} :

(!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) ->

!daphne.Matrix<?x1xsi64>

%30 = "daphne.call_kernel"(%29, %12, %19) {callee =

"_ewGe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"} :

(!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) ->

!daphne.Matrix<?x1xsi64>

SIMD:

$ daphne --api MorphStore --explain kernels $script $customer

$orders

Output:

%27 = "daphne.call_kernel"(%26, %10, %19) {callee =

"MorphStore_ewLe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"

} : (!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) ->

!daphne.Matrix<?x1xsi64>

%30 = "daphne.call_kernel"(%29, %12, %19) {callee =

"MorphStore_ewGe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"

} : (!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) ->

!daphne.Matrix<?x1xsi64>

The default version generates the kernel call ‘_ewLe__DenseMatrix...’, which is associated

with a DAPHNE native kernel for scalar CPU instructions, but for SIMD the call

‘MorphStore_ewLe__DenseMatrix_’ is associated with another kernel leveraging MorphStore

operations.

Step 1.9 Print the DaphneIR colorized (optional): To better visualize the differences, the

previous commands can be extended like this:

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

10

$ daphne --explain sql $script $customer $orders 2>&1 | grep -E --

color "ewGe|ewLe|MorphStore|"

$ daphne --api MorphStore --explain sql $script $customer $orders

2>&1 | grep -E --color "ewGe|ewLe|MorphStore|"

$ daphne --explain kernels $script $customer $orders 2>&1 | grep -E

--color "_ewGe_|_ewLe_|MorphStore|"

$ daphne --api MorphStore --explain kernels $script $customer

$orders 2>&1 | grep -E --color "_ewGe_|_ewLe_|MorphStore|"

The std::error is piped to std::out because the explain functionality prints to std::error and

otherwise is not grepped. To only print the lines containing the search terms, remove the last

pipe character in the search string.

3.3 GPU-Example

The second part of the demonstrator D7.2 showcases the support of GPU operations in

DAPHNE (second example). We continue the example of pipeline P1 from our CIDR 2022 paper

[D+22] with the modification that we omit the SQL query part and use synthetically generated

input data. We run the subsequent linear regression algorithm (LM) using the direct solve

method. The data loading stays on the host side (CPU execution) and reads pre-generated

input from a file (a matrix stored in DAPHNE binary format), while the LM part runs on the

device. Currently, the only supported API for GPU operations is CUDA and therefore we restrict

ourselves to Nvidia hardware. DAPHNE has been tested on the Pascal, Turing, and Ampere

architecture so far. Support for Intel GPUs (via the OneAPI) is in an early proof of concept stage

with code in a pending pull request on our Github repository while AMD support remains an

open issue and will be dealt with in future work. This should cover all relevant GPU platforms

currently available.

In Figure 2.1 we see the core of the linear regression algorithm using direct solve (lmDS). The

full script can be found in scripts/deliverables/lm.daph in the deliverable artifact.

01: # … load, extract, normalize

02: # LM pipeline

03: t0_lm=now();

04: A = syrk(X);

05: lambda = fill(as.f32(0.001), ncol(X), 1);

06: A = A + diagMatrix(lambda);

07: b=gemv(X,y);

08: beta = solve(A, b);

09: t1_lm=now();

10: #...print timing

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

11

11: # Print the sum of the result vector for checking

11: print("Result sum(beta): ", 0); print(sum(beta));

Figure 2.1: Reduced code snipped of the linear regression algorithm

Step 2.0 Building(optional): To activate CUDA support in DAPHNE, a simple flag to the build-

script is enough (besides having set up the CUDA SDK and the common third party

prerequisites). This step can be run from the bundled source code snapshot (daphne-D7.2-

source directory). If this optional step is taken, please also run all subsequent steps from the

source directory where you compiled DAPHNE.

$ cd $source
 $ build.sh -–cuda

Step 2.1 Environment Setup: To enable the operating system’s shared library loading

mechanism to find the local library files used by DAPHNE, we need to set an environment

variable. We start from the deliverable extraction directory daphne-D7.2:

$ cd $artifact/daphne--cuda-D7.2-bin
 $ export LD_LIBRARY_PATH=$PWD/lib:$LD_LIBRARY_PATH

Step 2.2 Preparation: The input data is pre-generated by a DaphneDSL script and saved to a

DBDF (DAPHNE binary format) file on disk. The invocations are wrapped in a shell script. By

default, the generated data size is 1907 MB (500000 rows and 1000 columns of fp32 values (4

bytes)).

$ deliverables/7.2/setup-gpu.sh

Step 2.3 Execution: The runtime activation of the CUDA API uses the same flag like the build

script “--cuda” (this flag enables the user to run without GPU ops even if support for that is

compiled into the binary). The following convenience script takes care of launching the linear

regression example in three different configurations. First running with CPU operations only,

then vectorized CPU ops and lastly the run with CUDA ops activated. The output of the script

sum(beta) indicates that the three invocations produce the same result while the printed

timing documents the benefit of running our vectorized engine or with CUDA ops. The

combination of CUDA operations with the vectorized engine is work in progress.

$ deliverables/7.2/run-gpu.sh

LM on CPU

Execution time: 11.2386 seconds

Result sum(beta): 0.473498

LM vectorized CPU

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

12

Execution time: 7.13675 seconds

Result sum(beta): 0.473498

LM on CUDA

Execution time: 5.91564 seconds

Result sum(beta): 0.473495

For reference, this example was run on a dual Xeon Gold 6238R (112 vcores) machine with

768GB RAM and an Nvidia Tesla T4 (16GB VRAM).

In Figure 2 we show the operations that were compiled down to their respective CUDA version

by the DAPHNE compiler.

"daphne.call_kernel"(%15) {callee = "CUDA_createCUDAContext"} : (!daphne.DaphneContext) -> ()

%28 = "daphne.call_kernel"(%21, %26, %15) {callee =

 "CUDA_ewSub__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} :

 (!daphne.Matrix<500000x?xf32>, !daphne.Matrix<1x?xf32>, !daphne.DaphneContext) ->

 !daphne.Matrix<?x?xf32>

%29 = "daphne.call_kernel"(%28, %27, %15) {callee =

 "CUDA_ewDiv__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} :

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<1x?xf32>, !daphne.DaphneContext) ->

 !daphne.Matrix<?x?xf32>

%32 = "daphne.call_kernel"(%29, %31, %15) {callee =

 "CUDA_colBind__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} :

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<?x1xf32>, !daphne.DaphneContext) ->

 !daphne.Matrix<?x?xf32>

%35 = "daphne.call_kernel"(%32, %15) {callee =

"CUDA_syrk__DenseMatrix_float__DenseMatrix_float"} : (!daphne.Matrix<?x?xf32>,

 !daphne.DaphneContext) -> !daphne.Matrix<?x?xf32>

%39 = "daphne.call_kernel"(%35, %38, %15) {callee =

 "CUDA_ewAdd__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} :

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<?x?xf32>, !daphne.DaphneContext) ->

 !daphne.Matrix<?x?xf32>

%40 = "daphne.call_kernel"(%32, %23, %15) {callee =

 "CUDA_gemv__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} :

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<500000x?xf32>, !daphne.DaphneContext) ->

 !daphne.Matrix<?x1xf32>

%41 = "daphne.call_kernel"(%39, %40, %15) {callee =

 "CUDA_solve__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} :

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<?x1xf32>, !daphne.DaphneContext) ->

 !daphne.Matrix<?x1xf32>

Figure 2: Operations converted to CUDA ops in the linear regression algorithm

3.4 FPGA-Example

The third scenario for the demonstrator D7.2 presents how to accelerate example linear

algebra kernels, like SGEMM (matrix-matrix operation) and SGEMV (matrix-vector operation)

on an FPGA based accelerator.

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

13

Prerequisites:

Integrated example linear algebra kernels require an installed FPGA device with configured

OpenCL support. The support can be provided by Intel® FPGA OpenCL SDK2 or by Intel®

oneAPI with FPGA Add-On toolkit3. Additional configuration details are described in Daphne

prototype documentation4. Example integrated FPGA based kernels have been developed

using T2SP [S+19] tool from Intel Labs.

Step 3.1 Build DAPHNE with FPGA openCL kernels support: To build the prototype with

additional support for example FPGA linear algebra kernels the build script requires an

additional flag “–fpgaopencl”. The following example presents the complete build command:

$ cd $source

$./build.sh --fpgaopencl

For a proper compilation process additional system variables must be defined. Required

variables can be defined using the following example system commands:

$ export QUARTUSDIR=/opt/intel/intelFPGA_pro/21.4

$ source $QUARTUSDIR/hld/init_opencl.sh

Step 3.2 FPGA programming:

Additional commands must be executed to program an FPGA device using a compiled FPGA

image and the programmed image must be described by the BITSTREAM variable. For

example, the following command can used for FPGA SGEMM:

$ aocl program acl0 bitstreams/sgemm.aocx

$ export BITSTREAM=bitstreams/sgemm.aocx

Used, precompiled FPGA images can be downloaded using the following address:

https://github.com/daphne-eu/supplemental-binaries/tree/main/fpga_bitstreams.

Step 3.3 Daphne DSL scripts for FPGA kernels demonstration:

For the FPGA-based SGEMM kernel execution, the following script has been used:

2 https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.htm
3 https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html#gs.itep4
4 https://github.com/daphne-eu/daphne/blob/main/doc/FPGAconfiguration.md

https://github.com/daphne-eu/supplemental-binaries/tree/main/fpga_bitstreams

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

14

01: # Creating input matrices

02: m = rand(448,1024, as.f32(1.0), as.f32(2.0), 1.0, -1);

03: m2 = rand(1024,512, as.f32(1.0), as.f32(1.0), 1.0, -1);

04:

05: # Example input matrices values prints

06: print(m[0:5,0:5]);

07: print(m2[0:5,0:5]);

08:

09: # Matrix multiplication operation

10: Z = m @ m2;

11:

12: # Example output values print

13: print(Z[0:5,0:5]);

14:

15: print("Bye!");

Figure 3: SGEMM - matrix-matrix multiplication execution

Inside the script (Figure 3), two input matrices have been created, where the first matrix

contains random values from range <1.0,2.0> and the second matrix contains the same value

1.0 for all elements. On line 10, the matrix multiplication kernel is executed and on line 13

output results from matrix Z are printed on the screen. To run the example DaphneDSL script

the following command has been used:

 $ /bin/daphne --fpgaopencl scripts/examples/fpga-sgemm.daph

An example result for the script execution is presented below:

DenseMatrix(5x5, float)

1.45519 1.17568 1.38401 1.46265 1.37441

1.22417 1.10624 1.39034 1.53821 1.94647

1.60796 1.32805 1.45487 1.16758 1.2184

1.41087 1.16551 1.52658 1.52007 1.47633

1.21382 1.39956 1.97165 1.27372 1.24413

DenseMatrix(5x5, float)

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

DenseMatrix(5x5, float)

1544.36 1544.36 1544.36 1544.36 1544.36

1532.02 1532.02 1532.02 1532.02 1532.02

1547.05 1547.05 1547.05 1547.05 1547.05

1542.2 1542.2 1542.2 1542.2 1542.2

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

15

Based on input matrix sizes, input data values the presented output presents correct values

from range <1024,2048>.

The following second script is used for the FPGA SGEMV kernel.

01: # Creating input matrices

02: m = rand(2048,1024, as.f32(1.0), as.f32(2.0), 1.0, -1);

03: m2 = rand(1024,1, as.f32(1.0), as.f32(1.0), 1.0, -1);

04:

05: # Example input matrices values prints

06: print(m[0:5,0:5]);

07: print(m2[0:5,0:5]);

08:

09: # Matrix vector multiplication operation

10: Z = m @ m2;

11:

12: # Example output values print

13: print(Z[0:5,0:5]);

14:

15: print("Bye!");

Figure 4: SGEMV - matrix-vector multiplication example

The presented DaphneDSL script (Figure 4) contains similar first input matrix creation but

second is a vector. The FPGA GEMV kernel is embedded in the matrix multiplication kernel and

called when the column number for the second matrix equals 1. At the current implementation

stage, the FPGA device must be manually reprogrammed before another FPGA kernel usage.

An example output results for second script run are presented below:

DenseMatrix(5x5, float)

1.07859 1.34949 1.45986 1.14722 1.73465

1.33295 1.07277 1.32148 1.8037 1.34213

1.20028 1.61552 1.10916 1.75976 1.7518

1.4027 1.59546 1.33853 1.74325 1.26625

1.84846 1.10433 1.26412 1.70519 1.40658

DenseMatrix(5x1, float)

1

1

1

1

1

DenseMatrix(5x1, float)

1541.13

1507.43

1547.2

1527.81

1532.3

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

16

Bye!

Step 3.4 Print the DaphneIR for FPGA SGEMM example:

To print the intermediate representation, the following command has been used:

 $./bin/daphne --fpgaopencl --explain kernels

 scripts/examples/fpga-sgemm.daph

The printed DaphneIR representation is presented below presenting functions calls for Daphne

FPGA context creation and FPGA OpenCL matMul for dense matrix multiplication.

%0 = "daphne.constant"() {value = 140728553945216 : ui64} : () -> ui64

%1 = "daphne.call_kernel"(%0) {callee = "_createDaphneContext__DaphneContext

__uint64_t"} : (ui64) -> !daphne.DaphneContext

 "daphne.call_kernel"(%1) {callee = "FPGAOPENCL_createFPGAContext"} :

(!daphne.DaphneContext) -> ()

…

%12 = "daphne.call_kernel"(%3, %7, %4, %2, %5, %6, %1) {callee = "_randMatrix

__DenseMatrix_

…

%13 = "daphne.call_kernel"(%7, %8, %4, %4, %5, %6, %1) {callee = "_randMatrix

__DenseMatrix_

…

%14 = "daphne.call_kernel"(%12, %13, %11, %11, %1) {callee ="FPGAOPENCL_matMul

__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float__bool__bool"} :

…

"daphne.call_kernel"(%1) {callee = "_destroyDaphneContext"} :

(!daphne.DaphneContext) -> ()

"daphne.return"() : () -> ()

Step 3.5 Example script execution in debug mode for FPGA SGEMM kernel :

To run FPGA SGEMM kernel in debug mode the following command can be used:

$ /bin/daphne --fpgaopencl --debug scripts/examples/fpga-sgemm.daph

Additional chosen output results, obtained in debug mode, are presented in the listing

attached below.

creating FPGA context...
===== Host-CPU setting up the OpenCL platform and device ======
Number of platforms = 2
Allocated space for Platform
…

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

17

Device Name: pac_s10_dc : Intel PAC Platform (pac_f300000)
Device Vendor: Intel Corp
…
===== Host-CPU setting up the OpenCL command queues ======
A rows 448
A cols 1024
X rows 1024
X cols 512
running GEMM kernel
===== Host-CPU transferring W and X to the FPGA device global memory (DDR4)
via PCIe ======
All kernels created
===== Host-CPU enqueuing the OpenCL kernels to the FPGA device ======
…
 *** FPGA execution started!
…
 *** FPGA execution finished!
Time taken: 0.000499 sec
===== Reporting measured throughput ======
Kernel execution time on FPGA: kernel_A_loader, exec time = 0.00040 s,
start=877461.94515 s, end=877461.94555 s
Kernel execution time on FPGA: kernel_B_loader,
exec time = 0.00032 s, start=877461.94523 s, end=877461.94556 s
Kernel execution time on FPGA: kernel_unloader_WAIT_FINISH,
exec time = 0.00050 s, start=877461.94527 s, end=877461.94577 s
Kernel execution time on FPGA: kernel_A_feeder,
exec time = 0.00049 s, start=877461.94530 s, end=877461.94578 s
Kernel execution time on FPGA: kernel_B_feeder,
exec time = 0.00045 s, start=877461.94533 s, end=877461.94577 s
Kernel execution time on FPGA: kernel_Out,
exec time = 0.00049 s, start=877461.94536 s, end=877461.94585 s

 Loader kernels start time = 877461.94515 s
 Unloader kernels end time = 877461.94585 s
 FPGA GEMM exec time = 0.00069 s
 # operations = 469762048
 Throughput: 676.92083 GFLOPS
===== Host-CPU transferring result matrix C from the FPGA device global memory
(DDR4) via PCIe ======
Bye!
Destroying FPGA context...

The output contains additional data about particular stages for kernel execution, stages

runtime measurement results, and total kernel performance data.

4 Prototype structure

This project structure shows most of the important directories of the prototype (daphne-D7.2-

source folder).

● benchmarks/tpc-h/ (scripts to generate example data)

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

18

● bin/ (compiled system and parser; generated via build.sh)

● doc/ (basic setup and developer documentation)

● lib/ (generated kernel libraries)

● scripts/ (DaphneDSL scripts as examples)

○ deliverables/ (Deliverable specific examples)

● src/ (main source code repository)

○ api/ (cli including daphne which orchestrates the remaining components)

○ compiler/ (execution, explain, inference, lowering)

■ lowering/ (compiler passes)

○ ir/ (DaphneIR including the DAPHNE MLIR dialect)

○ parser/ (DaphneDSL, SQL)

■ sql/ (SQL Parser)

○ runtime/ (distributed, local including data, I/O, kernels, and vectorization)

■ local/kernels/ (kernels)

● CUDA/ (CUDA device kernels)

● FPGA/ (FPGA device kernels)

● MorphStore/ (kernels using MorphStore API)

○ util/ (helper functions etc.)

● test/ (test suite of component and integration tests, organized by components)

● thirdparty/ (dependencies such as llvm, including their build directories)

● build.sh (build script to build the DAPHNE compiler)

● test.sh (Daphne test suite)

5 Performance Model for Kernel Selection Process

As introduced in the DAPHNE report D7.1 [D7.1], the challenges for the integration of HW

accelerators are (i) developing as well as generating hardware-accelerated kernels, which can

be efficiently executed on accelerators such as CPUs, GPUs or FPGAs, (ii) integrating these

accelerator-specific operators in the whole DAPHNE compilation and runtime infrastructure in

a seamless way, and (iii) selecting the best-fitting accelerator for efficient execution depending

on the specific IDA pipeline and hardware environment. In the previous sections, we described

our prototype, which essentially focuses on challenges (i) and (ii). To tackle challenge (iii), we

need appropriate performance models for the hardware-accelerated kernels to make well-

reasoned selections. In this section, we show our current status with regard to these

performance models, looking not only at performance but also at energy-efficiency.

Fundamentally, modern hardware and operating systems offer several control knobs to adjust

hardware settings and accordingly the performance and the energy consumption. However, a

mapping between the hardware configuration, accelerator device, performance, and energy-

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

19

efficiency is not always trivial. For example, two CPU cores processing some data in scalar

mode might perform as well as a single core processing the same data using SIMD extension

(acceleration on CPU), but their energy consumption differs. Further, the performance equality

in this example might not exist for all applications, e.g., if it is bandwidth bound, such that

enabling a second core hardly produces a performance gain. Nevertheless, the determination

of a hardware configuration or to select a specific hardware accelerator offering the best

energy-efficiency for a desired performance is an important goal of DAPHNE. To achieve that,

we propose to solve this challenge using so-called Work-Energy-Profiles (WEPs). Our work is

based on a preliminary work on WEPs [U+16, U+17] and is now being adapted as well as

extended to the DAPHNE accordingly. Our current consideration is limited to general-purpose

CPUs and the different offered SIMD-extensions for acceleration. We will extend our concept

to GPUs as well as FPGAs in the future to design a unified solution.

Basically, a WEP is a mapping between performance and energy-efficiency for all possible

hardware configurations [U+16]. The WEPs have to be determined for a specific kernel and on

a concrete heterogeneous hardware system. Based on these WEPs, we are able to select an

energy-efficient hardware configuration for a requested kernel performance range. In the

remainder of this section, we introduce our WEPs as a general solution idea. Then, we

demonstrate our approach and introduce a benchmark concept to create WEPs. Finally, we

discuss selected example profiles and discuss our ongoing efforts in that direction.

5.1 A Model for Performance-Energy Mapping

Work-Energy-Profiles (WEPs) show the mapping between performance and energy- efficiency

for different hardware configurations. In our current context, a configuration covers all system

knobs, which are adjustable independent of the implementation. Depending on the hardware

and operating system, this can include different properties. For example, general-purpose

CPUs usually offer different SIMD extensions making the available instruction set extensions

part of the configuration space. However, there are more properties influencing the

performance as well as energy-consumption. The following list shows the most common of

these properties:

● CPU core frequency

● Number and ID of active cores, where the ID is important if there are multiple sockets

or heterogeneous cores

● Number of active threads and use of multi-threading

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

20

● SIMD Instruction set and (SIMD) register size

Figure 5: A fictional minimalist Work-Energy-Profile with highlighted example configurations. It shows some

effects as observed in real profiles.

Figure 5 illustrates the idea of WEPs. Performance and energy-efficiency span a two-

dimensional space, and each configuration is represented by a position in this space. Even if

this example is a fictional one to keep it simple, two effects are shown, which we also observed

in real WEPs:

1) The best performing configuration is not always the most energy-efficient one

(configuration C vs. D), and

2) There are multiple configurations, which offer a similar performance, but a different

energy-efficiency, and vice versa (configuration A vs. B).

Generally, a WEP can represent a system view or a thread view. A system view covers the

configurations from a system perspective, i.e., the number and ID of the active cores and the

frequencies of the active and inactive cores. This kind of profile is illustrated in Figure 5. A

thread view does not include this system knowledge, but only the properties connected to a

single thread, e.g., the frequency of the CPU core the thread is running on, or the instruction

set it is using. A Work-Energy-Profile of a thread view can look different for the same

application. This depends on the load of the remaining system, e.g., if other threads are using

shared resources like main memory or shared cache. A Work-Energy-Profile of a system view

is always the same for the same application, but becomes more populated the more complex

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

21

the system is, i.e., the more configurations exist. This complexity can be caused by a larger

number of cores or heterogeneous cores.

Figure 6: Configuration options of the ARM big.LITTLE ODROID-XU3.

5.2 Example Heterogeneous Hardware System

Our example system is a single-board computer equipped with an ARM® big.LITTLE CPU, the

ODROID-XU3 (specification in Figure 6). We chose this system because it offers some kind of

heterogeneity with the following properties. First, all components are hard-wired onto one

board including the main memory. Second, the CPU features ARM® cores. Third, the cores are

heterogeneous. There are two clusters, one with four Cortex A7 cores, and one with four Cortex

A15 cores. Both clusters can be used independently, i.e., the system is not restricted to cluster

switching and frequencies can be set per cluster. All cores offer the same instruction set, but

the A15 cores are more powerful and their cluster is equipped with more L2 cache. Hence, this

cluster is referred to as the big cluster, while the A7 cluster is referred to as the Little cluster.

The L2 cache is shared between all cores of the same cluster. There is no L3 cache.

The heterogeneity on this system produces a wide spectrum of configuration choices. There

are 13 frequency steps on the A7 cluster and 19 on the A15 cluster, as well as 24 different

combinations of active and inactive cores. The 24 combinations are composed of 5 variants

per cluster (0 - 4 active cores), where one variant is subtracted, which only includes inactive

cores. Hence, there are 5 * 5 − 1 = 24 combinations. In combination with the CPU frequencies,

this sums up to 13 * 19 * 24 = 5928 different configurations per instruction set. Since the SIMD

instruction set NEON is offered additionally to the scalar instruction set, there is a maximum

of 5928 * 2 = 11856 available configurations. This is not further reduced by the CPU frequency

of a potentially inactive cluster, because that frequency influences the performance of the

active cluster if resources, e.g., memory buses, are shared, as explained before.

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

22

Figure 7: An overview of the benchmark concept

5.3 Creation of Work-Energy Profiles - Benchmarking

One of our main challenges is the creation of WEPs covering a large number of possible

hardware configurations. To tackle this challenge, we developed a benchmark concept to

examine the behavior of performance and energy-efficiency for different hardware

configurations in a uniform way [U+16]. Fundamentally, the same kernel – also called task –

has to be repeated and recorded for all possible configurations on the target systems.

Moreover, not only the kernel but also the test data has to be the same in order to produce

comparable results. Therefore, we separated the generation of test-cases and data from the

control-flow of our benchmark concept. Generally, an overview of our benchmark concept is

depicted in Figure 7. The Controller is the centerpiece of our benchmark. It starts the Work

Generator, which produces tasks and test data. This Work Generator has to be adjusted for

each investigated kernel. After the Work Generator has finished, the Controller chooses the first

hardware configuration and starts the first test run. Within a test, the corresponding tasks are

processed by every worker, whereas a worker is a thread running on a (virtual) core. The

workers count their finished tasks. After a fixed time span, the Controller shuts down the

threads and collects the number of finished tasks, which are later used for calculating the

performance. During an active test, the values necessary for the energy computation are

recorded by a Measuring Device. Depending on the abilities of the Measuring Device, the

energy computation is either done by the device itself or by the Controller. In both cases the

final values are collected by the Controller. For eliminating odd side effects, a test can be run

multiple times. This is repeated for all configurations, with the same tasks on the same test

data. After all configurations have been processed, the Controller generates a Work-Energy-

Profile for the selected kernel and data as depicted in Figure 8. This profile can then be used

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

23

for in-depth analysis and optimization purposes, e.g., for selecting an energy-efficient

configuration satisfying the requested performance constraints or for optimizing the applied

algorithm.

Figure 8: WEP of a system view on our example hardware system and a close-up of the highlighted performance

range.

5.4. Example of Work-Energy-Profiles

To get a deeper understanding of our WEP approach, Figure 8 illustrates an example for a

specific kernel running on our test hardware. The kernel is a synthetic scenario for scalar

processing and consists of an equal ratio of memory accesses and numeric computations. The

left chart in this figure shows the corresponding WEP. The performance is plotted on the x-

axis, the y-axis shows the energy-efficiency in terms of a Work-Energy-Quotient (WEQ) [U+16].

To achieve the objective of reducing the overall energy consumed by the system for a specific

amount of work, the natural decision for quantifying the energy-efficiency is to calculate it as

the quotient of work done and consumed energy. Accordingly, this relation is usually called

Work-Energy-Quotient (WEQ). Each dot in this chart represents a specific hardware

configuration. As we can see, different hardware configurations offer a similar performance

with a high variance in the WEQ. From this WEP, we are able to derive various insights.

Generally, we are able to utilize such WEPs to directly identify the most energy-efficient

configuration (high WEQ) for a desired performance range and kernel. In Figure 8, we

highlighted a specific performance range using a vertical slice. This performance range can be

realized with various hardware configurations as depicted in the right chart of this figure. In

this chart, the most energy-efficient configuration is highlighted by a thick green line. The x-

axis indicates the frequency of the clusters, the y-axis shows the number of active cores. The

left side shows the A7 cluster, the right side the A15 cluster. A line connects the configuration

of both clusters and forms the complete configuration. The least energy-efficient ones are

marked with a thin red line. This close-up shows the variety inside the configurations, which

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

24

produce the same performance but a different WEQ and the most energy-efficient

configuration is not necessarily the most obvious one. For the highlighted performance range,

the most energy-efficient configuration consists of 3 active A15 cores running at 1.8 GHz, while

all A7 cores are idle at 1.4 GHz. The graph also shows a number of configurations with high

CPU core frequencies on both, the idle cluster and the active cluster, which show a

comparatively low WEQ. As already mentioned, the frequency of an idle cluster can still

influence the overall performance if resources are shared. In this specific case, the cache and

core clock are only shared within the same cluster, but the memory and the memory bus clock

are shared between both clusters. We assume that the shared bus clock is the reason for the

unexpected behavior.

5.5 Ongoing Work

From our point of view, these Work-Energy-Profiles are well-designed performance models to

select the best-fitting hardware configuration with regard to performance as well as energy-

efficiency perspectives. In particular, due to the generic nature of WEPs, we can distinguish

between memory accesses and computations, covering all possible situations. So far, we have

limited ourselves to general-purpose CPUs with SIMD functionalities for acceleration. In the

near future, we want to transfer and generalize this approach to other accelerators such as

GPU and FPGA. One drawback of our unified WEP approach is that the benchmarking of the

profiles is very time-consuming. To overcome that shortcoming, we will investigate

approaches for approximating such WEP profiles as shortly introduced in [U+17].

Another focus of our work in this area will be to fully integrate these WEPs into the DAPHNE

system. From our point of view, our WEPs represent accurate performance (based on

benchmarking per kernel per device) and thus, they are the key to the integration of HW

accelerators into advanced compilation techniques as well as automatic kernel and data

placement decisions. In detail, we aim to model data access along the data path with our WEPs

under different access characteristics and compute capabilities for various HW accelerators.

Then, this allows the comparison across different HW accelerators and thus, the selection of

the best-fitting device.

6 Conclusion

This document reported a snapshot of our DAPHNE prototype regarding HW acceleration as

a follow-up of deliverable D7.1. In particular, we introduce three example scenarios as the main

drivers for the current prototype and describe how to execute these examples with enhanced

hardware support. Additionally, we gave an overview report on the devised performance

models in terms of Work-Energy-Profiles (WEPs) for a cost-based approach for kernel and data

placement decisions in a heterogeneous hardware environment in this deliverable.

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

25

References

[D2.1] DAPHNE: D2.1 Initial System Architecture

[D2.2] DAPHNE: D2.2 Refined System Architecture

[D3.1]

DAPHNE: D3.1 Language Design Specification, EU Project Deliverable

[D5.1] DAPHNE: D5.1 Scheduler Design for Pipelines and Tasks

[D7.1] DAPHNE: D7.1 Design of integration HW accelerators

[D+22] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm,

Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy,

Christian Faerber, Georgios Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer,

Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaž

Kosar, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric

Mier, Marcus Paradies, Bernhard Peischl, Gabrielle Poerwawinata, Stratos

Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin,

Andreas Starzacher, Benjamin Steinwender, Ilin Tolovski, Pınar Tözün, Wojciech

Ulatowski, Yuanyuan Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, and Xiao

Xiang Zhu. “DAPHNE: An Open and Extensible System Infrastructure for

Integrated Data Analysis Pipelines”, In 12th Annual Conference on Innovative

Data Systems Research (CIDR 2022).

[DU+20] Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause, Dirk

Habich, Wolfgang Lehner: “MorphStore: Analytical Query Engine with a Holistic

Compression-Enabled Processing Model” (PVLDB 2020)

[S+19] Srivastava, Nitish and Rong, Hongbo and Barua, Prithayan and Feng, Guanyu

and Cao, Huanqi and Zhang, Zhiru and Albonesi, David and Sarkar, Vivek and

Chen, Wenguang and Petersen, Paul and Lowney, Geoff and Herr, Adam and

Hughes, Christopher and Mattson, Timothy and Dubey, Pradeep.”T2S-Tensor:

Productively Generating High-Performance Spatial Hardware for Dense Tensor

Computations "," 2019 IEEE 27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2019

D7.2 Prototype and Overview HW Accelerator Support and Performance Models

DAPHNE – 957407

26

U+16 Annett Ungethüm, Thomas Kissinger, Dirk Habich, Wolfgang Lehner: Work-

Energy-Profiles: General Approach and In-Memory Database Application. TPCTC

2016, pages 142-158, 2016

U+17 Annett Ungethüm, Patrick Damme, Johannes Pietrzyk, Alexander Krause, Dirk

Habich, Wolfgang Lehner: Balancing Performance and Energy for Lightweight

Data Compression Algorithms. ADBS (Short Papers and Workshops) 2017, pages

37-44, 2017

U+20 Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Alexander Krause, Dirk

Habich, Wolfgang Lehner, Erich Focht: Hardware-Oblivious SIMD Parallelism for

In-Memory Column-Stores. CIDR 2020

