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hardware support. Additionally, we give an overview report on the devised performance 

models for a cost-based approach for kernel and data placement decisions in a heterogeneous 

hardware environment in this document.  
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Introduction 

Modern data-driven applications have to deal with increasingly large and heterogeneous data 

collections as well as a variety of machine learning (ML) models for cost-effective automation 

and improved analysis results. This creates a trend towards integrated data analysis (IDA) 

pipelines that jointly utilize data management (DM), high-performance computing (HPC), and 

ML systems. As described in [D+22], developing and deploying such IDA pipelines is, however, 

still a painful process of integrating different systems and related developers, programming 

paradigms, resource managers, and data representations. Integrating DM+ML, HPC+ML, 

DM+HPC for improving productivity and/or performance is an old problem though. However, 

an open system infrastructure for seamlessly developing, deploying, and running IDA pipelines 

is still missing, and at the same time, new challenges related to hardware, productivity, and 

utilization emerge. 

To overcome that, the DAPHNE project sets out to build an open and extensible system 

infrastructure for integrated data analysis pipelines. To achieve that goal, our envisioned 

infrastructure is based on MLIR as a multi-level, LLVM-based intermediate representation 

backed by multiple organizations and communities. This approach allows a seamless 

integration with existing applications and runtime libraries while also enabling extensibility for 

specialized data types, hardware-accelerated kernels, hardware-specific compilation chains, 

and custom scheduling algorithms. While the DAPHNE reports D2.1 - Initial System 

Architecture [D2.1] and D2.2 - Refined System Architecture [D2.2] have described the overall 

DAPHNE system architecture, report D7.1 - Design of integration hardware (HW) accelerators 

[D7.1] has presented the overall design of the integration of HW accelerators as well as it has 

detailed on accelerated operations and primitives. 

As introduced in the DAPHNE report D7.1 [D7.1], the challenges for the integration of HW 

accelerators are (i) developing as well as generating operators - hereinafter also called 

computation kernels or kernels for short - which can be efficiently executed on accelerators 

such as CPUs, GPUs or FPGAs, (ii) integrating these accelerator-specific operators in the whole 

DAPHNE compilation and runtime infrastructure in a seamless way, and (iii) selecting the best-

fitting accelerator for efficient execution depending on the specific IDA pipeline and hardware 

environment [D7.1]. While challenge (i) is addressed by Task 7.1 - Accelerated Key Operations 

and Data Access Primitives, Task 7.4 - Multi-Device Operation Kernels, and Task 7.5 - Code 

Generation for HW Accelerators, challenge (ii) is considered in Task T7.2 - Compiler and Runtime 

Support for HW Accelerators. Selecting the best-fitting accelerator for efficient execution - 

challenge (iii) - is part of Task 7.2 - Compiler and Runtime Support for HW Accelerators as well 

as Task 7.3 - Performance Models and Cost Estimation.  For the current implementation in the 

DAPHNE prototype, we have mainly focused on the challenges (i) and (ii) in order to be able 

to develop hardware-accelerated kernels and to anchor these hardware-accelerated kernels in 
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the entire DAPHNE infrastructure.  Thus, we describe the current state of our prototype in this 

document. Additionally, we give an overview report on the devised performance models for a 

cost-based approach for hardware-accelerated kernels and data placement decisions in a 

heterogeneous hardware environment.  

The remainder of this deliverable is structured as follows: 

● In Section 2, we detail the access to our prototype artifact for this written deliverable 

document. 

● Then, we introduce our prototype by describing the underlying demonstration 

scenarios in Section 3.  

● Afterwards, we explain the folder structure of our prototype in Section 4.  

● Section 5 presents  an overview of our devised performance models.  

2 Artifact Access 

The DAPHNE prototype for the integration of HW accelerators that is described in this 

deliverable is publicly accessible as a snapshot of the DAPHNE development repository 

(created in November 29 2022) under the following link: 

 

Link: https://tinyurl.com/daphne-D72 (88.3 MB) 

 

Note that the DAPHNE development repository is publicly available at 

https://github.com/daphne-eu/daphne under Apache License v2.0. 

3 Demonstration Scenario 

In this deliverable, we present three different scenarios, each focusing on a different hardware 

accelerator type.  

● [SIMD-Example]: The first scenario accelerates an analytical relational SQL query of an 

example IDA pipeline with the usage of Single-Instruction Multiple-Data (SIMD) 

extensions of general-purpose CPUs.  

● [GPU-Example]: The second scenario showcases the support of GPU for a linear 

regression algorithm which is part of the example IDA pipeline from the SIMD-Example. 

The example was run on an Nvidia Tesla T4 with 16GB RAM but should run on any 

modern Nvidia GPU with more than 4GB of RAM. 

https://tinyurl.com/daphne-D72
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● [FPGA-Example]: The third scenario presents how to accelerate example linear algebra 

kernels, like SGEMM and SGEMV on an FPGA based accelerator. At the current project 

stage the Intel Programmable Acceleration Card  D5005 has been used1. 

3.1 General Initial Setup 

Step 0.1 Install Dependencies: Setup a Linux environment (tested with Ubuntu 20.04), and 

install the dependency versions specified in docs/GettingStarted.md, which includes 

clang, cmake, git, lld, ninja, pkg-config, python3, numpy, openjdk, gfortran, uuid-dev, libboost-

dev, and wget. 

 

Step 0.2 Download and Extract: Download the artifact from the link in Section 2, and extract 

it as follows into a directory called daphne-D7.2. The provided binaries were compiled on an 

Ubuntu 18.04 system (for compatibility with the FPGA code paths) with a toolchain compatible 

with Ubuntu 20.04 (our default DAPHNE platform using gcc 9.4 and llvm 10.0), using an x86-

64 machine (Intel Xeon). 

$ tar xf daphne-D7.2.tgz 

$ cd daphne-D7.2 

$ tar xf daphne--cuda-D7.2-bin.tgz 

 $ tar xf daphne--fpgaopencl-D7.2-bin.tgz 

 $ tar xf daphne--morphstore-D7.2-bin.tgz 

 $ tar xf daphne-D7.2-source.tgz 

 

Step 0.3 Set some paths: To make it easier to find the correct paths throughout the examples, 

we store some paths into variables. 

$ artifact=$(pwd) 

$ source=$artifact/daphne-D7.2-source 

 

3.2 SIMD-Example 

The following example uses a part of the presented pipeline P1 in [D+22], more precisely the 

querying part. Fundamentally, pipeline P1 consists of a TPC-H inspired relational query 

followed by linear regression model training on the query result. This relational SQL query 

computes the total price of all purchases each customer did, filtered by a range of market 

segments after a certain date. The DaphneDSL-script to process this query looks like this 

(Figure 1): 

 
1 https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html 

https://github.com/daphne-eu/daphne/blob/main/doc/GettingStarted.md
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01: /// read input 

02: c = readFrame($inCustomer); 

03: o = readFrame($inOrders); 

04: 

05: /// register frames to sql scope 

06: registerView("customer", c); 

07: registerView("orders", o); 

08: 

09: /// execute query 

10: res = sql( 

11:   "Select customer.C_CUSTKEY, sum(orders.O_TOTALPRICE) 

12:    From customer 

13:    Inner Join orders 

14:    On customer.C_CUSTKEY = orders.O_CUSTKEY 

15: 

16:    Where customer.C_MKTSEGMENT <= 2 

17:    And orders.O_ORDERDATE >= 19960802 

18:    Group By customer.C_CUSTKEY;" 

19: ); 

20: 

21: // Range of Market_Segment: 0 - 4 

22: // Range of Orderdate: 19920101 - 19980802 

23: 

24: 

25: /// print the results 

26: print("================================"); 

27: print(res); 

28: print("================================"); 

Figure 1: Analytical SQL Query using TPC-H data in DAPHNE 

Description: The input is read from two CSV-files that are provided via runtime parameters. 

The data is stored in two frames, which have to be registered with a label to make them visible 

to the SQL parser. Next, the query is executed and the result is stored in a new frame, which is 

printed to the console in the last step. 

 

Step 1.1 Build DAPHNE (optional): Then build the prototype, its dependencies, and the 

parser as follows from within the daphne directory (if it fails run “./build.sh --clean“ for a clean 

start). On the first run this step might take up to 60min.  

$ cd $source 

$ ./build.sh 
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If you wish to skip building yourself, the artifact contains prebuilt binaries for each 

demonstration scenario. Just skip the commands above and navigate into directory of the first 

scenario: 

$ cd $artifact/daphne--morphstore-D7.2-bin 

 

Step 1.2 Generate TPC-H data: For this scenario, we require the tables ‘customer’ and ‘orders’ 

of the TPC-H data. For this the dependency ‘realpath’ is needed. 

 $ ./benchmarks/tpc-h/generate.sh 

 

Step 1.3 Alias to DAPHNE compiler (optional): To shorten things, one could create an alias 

to the executable of the DAPHNE compiler. 

 $ alias daphne=./bin/daphne 

If this step is skipped, the daphne calls in following steps have to be replaced by ‘./bin/daphne’. 

If you wish to use the prebuilt binary, 

 

Step 1.4 Set some paths: The following paths are needed multiple times, so store them in 

variables. (We assume we are still in the DAPHNE root directory) 

 $ script=$(pwd)/scripts/deliverables/del_7_2_example.daphne 

 $ customer=inCustomer=\”$(pwd)/benchmarks/tpc-h/data/customer.csv\” 

 $ orders=inOrders=\”$(pwd)/benchmarks/tpc-h/data/orders.csv\” 

Step 1.5 Build DAPHNE with the SIMD framework MorphStore: This framework enables 

the use of kernels that exploit vector operations through the Template SIMD Library (TSL) 

[DU+20, U+20]. Fundamentally, MorphStore is an in-memory columnar analytical query 

engine with a novel holistic compression-enable and highly-vectorized processing model 

[DU+20]. If you choose to use the prebuilt binaries, skip this step. 

 $ ./build.sh --morphstore 

This should not take as long as the first build, since only some additional components have to 

be compiled. 

 

Step 1.6 Execute the Scenario without SIMD extension: The example script works also 

without any API extensions. 

 $ daphne $script $customer $orders 
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Step 1.7 Execute with SIMD extension: Now run the script again using MorphStore 

operations [DU+20].  

$ daphne --api MorphStore $script $customer $orders 

The api flag sets the API-name used by our developed KernelSelectionPass to map element-

wise compare operations (==,!=,>,>=,<,<=) to MorphStore kernels. This KernelSelectionPass 

is our central building block in the DAPHNE system for mapping kernels to hardware-specific 

kernels and is implemented within the DAPHNE compiler. The mapping is currently determined 

by specific flags, which will later be automated using a cost-based selection technique. The 

results of both execution variants should be the same. 

 

Step 1.8 Print the DaphneIR: The key difference is shown in the IR after the kernel calls are 

generated. For this, DAPHNE offers an explain feature for different levels of the compiler 

lowering. We take a look at the ‘sql’ and ‘kernels’ level: 

 

SQL: 

Default: 

$ daphne --explain sql $script $customer $orders 

Output: 

%18 = "daphne.ewLe"(%16, %17) : 

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) -> 

!daphne.Matrix<?x?x!daphne.Unknown> 

%23 = "daphne.ewGe"(%21, %22) : 

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) -> 

!daphne.Matrix<?x?x!daphne.Unknown> 

SIMD: 

$ daphne --api MorphStore --explain sql $script $customer $orders 

Output: 

%18 = "daphne.ewLe"(%16, %17) : 

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) -> 

!daphne.Matrix<?x?x!daphne.Unknown> 

%23 = "daphne.ewGe"(%21, %22) : 

(!daphne.Matrix<?x?x!daphne.Unknown>, si64) -> 

!daphne.Matrix<?x?x!daphne.Unknown> 
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The Output shows relevant parts of the DaphneIR after executing with the explain feature. The 

DaphneIR after parsing the SQL query is exactly the same. But after lowering to kernel level we 

see that the ‘ewLe’ and ‘ewGe’ operations are mapped to different kernel calls. 

 

Kernels: 

Default: 

$ daphne --explain kernels $script $customer $orders 

Output: 

%27 = "daphne.call_kernel"(%26, %10, %19) {callee = 

"_ewLe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"} : 

(!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) -> 

!daphne.Matrix<?x1xsi64> 

%30 = "daphne.call_kernel"(%29, %12, %19) {callee = 

"_ewGe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"} : 

(!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) -> 

!daphne.Matrix<?x1xsi64> 

SIMD: 

$ daphne --api MorphStore --explain kernels $script $customer 

$orders 

Output: 

%27 = "daphne.call_kernel"(%26, %10, %19) {callee = 

"MorphStore_ewLe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"

} : (!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) -> 

!daphne.Matrix<?x1xsi64> 

%30 = "daphne.call_kernel"(%29, %12, %19) {callee = 

"MorphStore_ewGe__DenseMatrix_int64_t__DenseMatrix_int64_t__int64_t"

} : (!daphne.Matrix<?x1xsi64>, si64, !daphne.DaphneContext) -> 

!daphne.Matrix<?x1xsi64> 

The default version generates the kernel call ‘_ewLe__DenseMatrix...’, which is associated 

with a DAPHNE native kernel for scalar CPU instructions, but for SIMD the call 

‘MorphStore_ewLe__DenseMatrix_’ is associated with another kernel leveraging MorphStore 

operations. 

 

Step 1.9 Print the DaphneIR colorized (optional): To better visualize the differences, the 

previous commands can be extended like this: 



D7.2 Prototype and Overview HW Accelerator Support and Performance Models  

 

DAPHNE – 957407 

10 

$ daphne --explain sql $script $customer $orders 2>&1 | grep -E --

color "ewGe|ewLe|MorphStore|" 

$ daphne --api MorphStore --explain sql $script $customer $orders 

2>&1 | grep -E --color "ewGe|ewLe|MorphStore|" 

 

$ daphne --explain kernels $script $customer $orders 2>&1 | grep -E 

--color "_ewGe_|_ewLe_|MorphStore|" 

$ daphne --api MorphStore --explain kernels $script $customer 

$orders 2>&1 | grep -E --color "_ewGe_|_ewLe_|MorphStore|" 

The std::error is piped to std::out because the explain functionality prints to std::error and 

otherwise is not grepped. To only print the lines containing the search terms, remove the last 

pipe character in the search string. 

3.3 GPU-Example  

The second part of the demonstrator D7.2 showcases the support of GPU operations in 

DAPHNE (second example). We continue the example of pipeline P1 from our CIDR 2022 paper 

[D+22] with the modification that we omit the SQL query part and use synthetically generated 

input data. We run the subsequent linear regression algorithm (LM) using the direct solve 

method. The data loading stays on the host side (CPU execution) and reads  pre-generated 

input from a file (a matrix stored in DAPHNE binary format), while the LM part runs on the 

device. Currently, the only supported API for GPU operations is CUDA and therefore we restrict 

ourselves to Nvidia hardware. DAPHNE has been tested on the Pascal, Turing, and Ampere 

architecture so far. Support for Intel GPUs (via the OneAPI) is in an early proof of concept stage 

with code in a pending pull request on our Github repository while AMD support remains an 

open issue and will be dealt with in future work. This should cover all relevant GPU platforms 

currently available. 

In Figure 2.1 we see the core of the linear regression algorithm using direct solve (lmDS). The 

full script can be found in scripts/deliverables/lm.daph in the deliverable artifact. 

01: # … load, extract, normalize 

02: # LM pipeline 

03: t0_lm=now(); 

04: A = syrk(X); 

05: lambda = fill(as.f32(0.001), ncol(X), 1); 

06: A = A + diagMatrix(lambda); 

07: b=gemv(X,y); 

08: beta = solve(A, b); 

09: t1_lm=now(); 

10: #...print timing 
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11: # Print the sum of the result vector for checking 

11: print("Result sum(beta): ", 0); print(sum(beta)); 

Figure 2.1: Reduced code snipped of the linear regression algorithm 

 

Step 2.0 Building(optional): To activate CUDA support in DAPHNE, a simple flag to the build-

script is enough (besides having set up the CUDA SDK and the common third party 

prerequisites). This step can be run from the bundled source code snapshot (daphne-D7.2-

source directory). If this optional step is taken, please also run all subsequent steps from the 

source directory where you compiled DAPHNE. 

$ cd $source 
 $ build.sh -–cuda 

Step 2.1 Environment Setup: To enable the operating system’s shared library loading 

mechanism to find the local library files used by DAPHNE, we need to set an environment 

variable. We start from the deliverable extraction directory daphne-D7.2: 

$ cd $artifact/daphne--cuda-D7.2-bin 
 $ export LD_LIBRARY_PATH=$PWD/lib:$LD_LIBRARY_PATH 

Step 2.2 Preparation: The input data is pre-generated by a DaphneDSL script and saved to a 

DBDF (DAPHNE binary format) file on disk. The invocations are wrapped in a shell script. By 

default, the generated data size is 1907 MB (500000 rows and 1000 columns of fp32 values (4 

bytes)). 

$ deliverables/7.2/setup-gpu.sh 

Step 2.3 Execution: The runtime activation of the CUDA API uses the same flag like the build 

script “--cuda” (this flag enables the user to run without GPU ops even if support for that is 

compiled into the binary). The following convenience script takes care of launching the linear 

regression example in three different configurations. First running with CPU operations only, 

then vectorized CPU ops and lastly the run with CUDA ops activated. The output of the script 

sum(beta) indicates that the three invocations produce the same result while the printed 

timing documents the benefit of running our vectorized engine or with CUDA ops. The 

combination of CUDA operations with the vectorized engine is work in progress. 

$ deliverables/7.2/run-gpu.sh 

LM on CPU 

Execution time: 11.2386 seconds 

Result sum(beta): 0.473498 

LM vectorized CPU 
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Execution time: 7.13675 seconds 

Result sum(beta): 0.473498 

LM on CUDA 

Execution time: 5.91564 seconds 

Result sum(beta): 0.473495 

For reference, this example was run on a dual Xeon Gold 6238R (112 vcores) machine with 

768GB RAM and an Nvidia Tesla T4 (16GB VRAM).  

In Figure 2 we show the operations that were compiled down to their respective CUDA version 

by the DAPHNE compiler. 

"daphne.call_kernel"(%15) {callee = "CUDA_createCUDAContext"} : (!daphne.DaphneContext) -> () 

%28 = "daphne.call_kernel"(%21, %26, %15) {callee = 

 "CUDA_ewSub__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} : 

 (!daphne.Matrix<500000x?xf32>, !daphne.Matrix<1x?xf32>, !daphne.DaphneContext) -> 

 !daphne.Matrix<?x?xf32> 

%29 = "daphne.call_kernel"(%28, %27, %15) {callee = 

 "CUDA_ewDiv__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} : 

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<1x?xf32>, !daphne.DaphneContext) -> 

 !daphne.Matrix<?x?xf32> 

%32 = "daphne.call_kernel"(%29, %31, %15) {callee = 

 "CUDA_colBind__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} : 

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<?x1xf32>, !daphne.DaphneContext) -> 

 !daphne.Matrix<?x?xf32> 

%35 = "daphne.call_kernel"(%32, %15) {callee = 

"CUDA_syrk__DenseMatrix_float__DenseMatrix_float"} : (!daphne.Matrix<?x?xf32>, 

 !daphne.DaphneContext) -> !daphne.Matrix<?x?xf32> 

%39 = "daphne.call_kernel"(%35, %38, %15) {callee = 

 "CUDA_ewAdd__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} : 

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<?x?xf32>, !daphne.DaphneContext) -> 

 !daphne.Matrix<?x?xf32> 

%40 = "daphne.call_kernel"(%32, %23, %15) {callee = 

 "CUDA_gemv__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} : 

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<500000x?xf32>, !daphne.DaphneContext) -> 

 !daphne.Matrix<?x1xf32> 

%41 = "daphne.call_kernel"(%39, %40, %15) {callee = 

 "CUDA_solve__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float"} : 

 (!daphne.Matrix<?x?xf32>, !daphne.Matrix<?x1xf32>, !daphne.DaphneContext) -> 

 !daphne.Matrix<?x1xf32> 

Figure 2: Operations converted to CUDA ops in the linear regression algorithm 

3.4 FPGA-Example  

The third scenario for the demonstrator D7.2 presents how to accelerate example linear 

algebra kernels, like SGEMM (matrix-matrix operation) and SGEMV (matrix-vector operation) 

on an FPGA based accelerator.  
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Prerequisites: 

Integrated example linear algebra kernels require an installed FPGA device with configured 

OpenCL support. The support can be provided by Intel® FPGA OpenCL SDK2  or by Intel® 

oneAPI with FPGA Add-On toolkit3. Additional configuration details are described in Daphne 

prototype documentation4. Example integrated FPGA based kernels have been developed 

using T2SP [S+19] tool from Intel Labs. 

Step 3.1 Build DAPHNE with FPGA openCL kernels support: To build the prototype with 

additional support for example FPGA  linear algebra kernels the build script requires an 

additional flag “–fpgaopencl”. The following example presents the complete build command: 

$ cd $source 

$ ./build.sh --fpgaopencl 

 

For a proper compilation process additional system variables must be defined. Required 

variables can be defined using the following example system commands:   

$ export QUARTUSDIR=/opt/intel/intelFPGA_pro/21.4 

$ source $QUARTUSDIR/hld/init_opencl.sh 

 

Step 3.2 FPGA programming:  

Additional commands must be executed to program an FPGA device using a compiled FPGA 

image and the programmed image must be described by the BITSTREAM variable. For 

example, the following command can used for FPGA SGEMM: 

$ aocl program acl0 bitstreams/sgemm.aocx 

$ export BITSTREAM=bitstreams/sgemm.aocx 

Used, precompiled FPGA images can be downloaded using the following address: 

https://github.com/daphne-eu/supplemental-binaries/tree/main/fpga_bitstreams. 

 

Step 3.3 Daphne DSL scripts for FPGA kernels demonstration: 

 

For the FPGA-based SGEMM kernel execution, the following script has been used: 

 

 
2 https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.htm 
3 https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html#gs.itep4 
4 https://github.com/daphne-eu/daphne/blob/main/doc/FPGAconfiguration.md 

https://github.com/daphne-eu/supplemental-binaries/tree/main/fpga_bitstreams
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01: # Creating input matrices 

02: m  = rand(448,1024, as.f32(1.0), as.f32(2.0), 1.0, -1); 

03: m2 = rand(1024,512, as.f32(1.0), as.f32(1.0), 1.0, -1); 

04: 

05: # Example input matrices values prints 

06: print(m[0:5,0:5]); 

07: print(m2[0:5,0:5]); 

08: 

09: # Matrix multiplication operation 

10: Z = m @ m2; 

11: 

12: # Example output values print 

13: print(Z[0:5,0:5]); 

14: 

15: print("Bye!"); 

Figure 3: SGEMM - matrix-matrix multiplication execution 

Inside the script (Figure 3), two input matrices have been created, where the first matrix 

contains random values from range <1.0,2.0>  and the second matrix contains the same value 

1.0 for all elements. On line 10, the matrix multiplication kernel is executed and on line 13 

output results from matrix Z are printed on the screen. To run the example DaphneDSL script 

the following command has been used: 

 $ /bin/daphne --fpgaopencl scripts/examples/fpga-sgemm.daph 

 

An example result for the script execution is presented below: 

 

DenseMatrix(5x5, float) 

1.45519 1.17568 1.38401 1.46265 1.37441 

1.22417 1.10624 1.39034 1.53821 1.94647 

1.60796 1.32805 1.45487 1.16758 1.2184 

1.41087 1.16551 1.52658 1.52007 1.47633 

1.21382 1.39956 1.97165 1.27372 1.24413 

DenseMatrix(5x5, float) 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

DenseMatrix(5x5, float) 

1544.36 1544.36 1544.36 1544.36 1544.36 

1532.02 1532.02 1532.02 1532.02 1532.02 

1547.05 1547.05 1547.05 1547.05 1547.05 

1542.2 1542.2 1542.2 1542.2 1542.2 
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Based on input matrix sizes, input data values the presented output presents correct values 

from range <1024,2048>.   

 

The following second script is used for the FPGA SGEMV kernel. 

  

01: # Creating input matrices 

02: m  = rand(2048,1024, as.f32(1.0), as.f32(2.0), 1.0, -1); 

03: m2 = rand(1024,1, as.f32(1.0), as.f32(1.0), 1.0, -1); 

04: 

05: # Example input matrices values prints 

06: print(m[0:5,0:5]); 

07: print(m2[0:5,0:5]); 

08: 

09: # Matrix vector multiplication operation 

10: Z = m @ m2; 

11: 

12: # Example output values print 

13: print(Z[0:5,0:5]); 

14: 

15: print("Bye!"); 

Figure 4: SGEMV - matrix-vector multiplication example 

The presented DaphneDSL script (Figure 4) contains similar first input matrix creation but 

second is a vector. The FPGA GEMV kernel is embedded in the matrix multiplication kernel and 

called when the column number for the second matrix equals 1. At the current implementation 

stage, the FPGA device must be manually reprogrammed before another FPGA kernel usage. 

An example output results for second script run are presented below: 

DenseMatrix(5x5, float) 

1.07859 1.34949 1.45986 1.14722 1.73465 

1.33295 1.07277 1.32148 1.8037 1.34213 

1.20028 1.61552 1.10916 1.75976 1.7518 

1.4027 1.59546 1.33853 1.74325 1.26625 

1.84846 1.10433 1.26412 1.70519 1.40658 

DenseMatrix(5x1, float) 

1 

1 

1 

1 

1 

DenseMatrix(5x1, float) 

1541.13 

1507.43 

1547.2 

1527.81 

1532.3 
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Bye! 

 

Step 3.4 Print the DaphneIR for FPGA SGEMM example: 

 

To print the intermediate representation, the following command has been used: 

 

 $./bin/daphne --fpgaopencl --explain kernels 

 scripts/examples/fpga-sgemm.daph 

 

The printed DaphneIR representation is presented below presenting functions calls for Daphne 

FPGA context creation and FPGA OpenCL matMul for dense matrix multiplication.  

 

 

%0 = "daphne.constant"() {value = 140728553945216 : ui64} : () -> ui64 

%1 = "daphne.call_kernel"(%0) {callee = "_createDaphneContext__DaphneContext 

__uint64_t"} : (ui64) -> !daphne.DaphneContext 

    "daphne.call_kernel"(%1) {callee = "FPGAOPENCL_createFPGAContext"} : 

(!daphne.DaphneContext) -> () 

… 

%12 = "daphne.call_kernel"(%3, %7, %4, %2, %5, %6, %1) {callee = "_randMatrix 

__DenseMatrix_ 

… 

%13 = "daphne.call_kernel"(%7, %8, %4, %4, %5, %6, %1) {callee = "_randMatrix 

__DenseMatrix_ 

… 

%14 = "daphne.call_kernel"(%12, %13, %11, %11, %1) {callee ="FPGAOPENCL_matMul 

__DenseMatrix_float__DenseMatrix_float__DenseMatrix_float__bool__bool"} :  

… 

"daphne.call_kernel"(%1) {callee = "_destroyDaphneContext"} : 

(!daphne.DaphneContext) -> () 

"daphne.return"() : () -> () 

  

Step 3.5 Example script execution in debug mode for FPGA SGEMM kernel : 

To run FPGA SGEMM kernel in debug mode the following command can be used: 

$ /bin/daphne --fpgaopencl --debug scripts/examples/fpga-sgemm.daph 

Additional chosen output results, obtained in debug mode, are presented in the listing 

attached below.  

creating FPGA context... 
===== Host-CPU setting up the OpenCL platform and device ====== 
Number of platforms = 2 
Allocated space for Platform 
… 
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Device Name: pac_s10_dc : Intel PAC Platform (pac_f300000) 
Device Vendor: Intel Corp 
… 
===== Host-CPU setting up the OpenCL command queues ====== 
A rows 448 
A cols 1024 
X rows 1024 
X cols 512 
running GEMM kernel 
===== Host-CPU transferring W and X to the FPGA device global memory (DDR4) 
via PCIe ====== 
All kernels created 
===== Host-CPU enqueuing the OpenCL kernels to the FPGA device ====== 
… 
 *** FPGA execution started! 
… 
 *** FPGA execution finished! 
Time taken: 0.000499 sec 
===== Reporting measured throughput ====== 
Kernel execution time on FPGA: kernel_A_loader, exec time = 0.00040 s,  
start=877461.94515 s, end=877461.94555 s  
Kernel execution time on FPGA: kernel_B_loader,                                                                        
exec time = 0.00032 s, start=877461.94523 s, end=877461.94556 s   
Kernel execution time on FPGA: kernel_unloader_WAIT_FINISH,                                                                    
exec time = 0.00050 s, start=877461.94527 s, end=877461.94577 s 
Kernel execution time on FPGA: kernel_A_feeder,                                                                        
exec time = 0.00049 s, start=877461.94530 s, end=877461.94578 s 
Kernel execution time on FPGA: kernel_B_feeder, 
exec time = 0.00045 s, start=877461.94533 s, end=877461.94577 s 
Kernel execution time on FPGA: kernel_Out, 
exec time = 0.00049 s, start=877461.94536 s, end=877461.94585 s 
   
  Loader kernels start time          = 877461.94515 s 
  Unloader kernels end time          = 877461.94585 s 
  FPGA GEMM exec time        = 0.00069 s 
  # operations = 469762048 
  Throughput: 676.92083 GFLOPS 
===== Host-CPU transferring result matrix C from the FPGA device global memory 
(DDR4) via PCIe ====== 
Bye! 
Destroying FPGA context... 

The output contains additional data about particular stages for kernel execution, stages 

runtime measurement results, and total kernel performance data. 

4 Prototype structure 

This project structure shows most of the important directories of the prototype (daphne-D7.2-

source folder). 

● benchmarks/tpc-h/ (scripts to generate example data) 
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● bin/ (compiled system and parser; generated via build.sh) 

● doc/ (basic setup and developer documentation) 

● lib/ (generated kernel libraries) 

● scripts/ (DaphneDSL scripts as examples) 

○ deliverables/ (Deliverable specific examples) 

● src/ (main source code repository) 

○ api/ (cli including daphne which orchestrates the remaining components) 

○ compiler/ (execution, explain, inference, lowering) 

■ lowering/ (compiler passes) 

○ ir/ (DaphneIR including the DAPHNE MLIR dialect) 

○ parser/ (DaphneDSL, SQL) 

■ sql/ (SQL Parser) 

○ runtime/ (distributed, local including data, I/O, kernels, and vectorization) 

■ local/kernels/ (kernels) 

● CUDA/ (CUDA device kernels) 

● FPGA/ (FPGA device kernels) 

● MorphStore/ (kernels using MorphStore API) 

○ util/ (helper functions etc.) 

● test/ (test suite of component and integration tests, organized by components) 

● thirdparty/ (dependencies such as llvm, including their build directories) 

● build.sh (build script to build the DAPHNE compiler) 

● test.sh (Daphne test suite) 

5 Performance Model for Kernel Selection Process  

As introduced in the DAPHNE report D7.1 [D7.1],  the challenges for the integration of HW 

accelerators are (i) developing as well as generating hardware-accelerated kernels, which can 

be efficiently executed on accelerators such as CPUs, GPUs or FPGAs, (ii) integrating these 

accelerator-specific operators in the whole DAPHNE compilation and runtime infrastructure in 

a seamless way, and (iii) selecting the best-fitting accelerator for efficient execution depending 

on the specific IDA pipeline and hardware environment. In the previous sections, we described 

our prototype, which essentially focuses on challenges (i) and (ii). To tackle challenge (iii), we 

need appropriate performance models for the hardware-accelerated kernels to make well-

reasoned selections. In this section, we show  our current status with regard to these 

performance models, looking not only at performance but also at energy-efficiency.  

Fundamentally, modern hardware and operating systems offer several control knobs to adjust 

hardware settings and accordingly the performance and the energy consumption. However, a 

mapping between the hardware configuration, accelerator device, performance, and energy-
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efficiency is not always trivial. For example, two CPU cores processing some data in scalar 

mode might perform as well as a single core processing the same data using SIMD extension 

(acceleration on CPU), but their energy consumption differs. Further, the performance equality 

in this example might not exist for all applications, e.g., if it is bandwidth bound, such that 

enabling a second core hardly produces a performance gain. Nevertheless, the determination 

of a hardware configuration or to select a specific hardware accelerator offering the best 

energy-efficiency for a desired performance is an important goal of DAPHNE. To achieve that, 

we propose to solve this challenge using so-called Work-Energy-Profiles (WEPs). Our work is 

based on a preliminary work on WEPs [U+16, U+17] and is now being adapted as well as 

extended to the DAPHNE accordingly. Our current consideration is limited to general-purpose 

CPUs and the different offered SIMD-extensions for acceleration. We will extend our concept 

to GPUs as well as FPGAs in the future to design a unified solution.  

Basically, a WEP is a mapping between performance and energy-efficiency for all possible 

hardware configurations [U+16]. The WEPs have to be determined for a specific kernel and on 

a concrete heterogeneous hardware system. Based on these WEPs, we are able to select an 

energy-efficient hardware configuration for a requested kernel performance range. In the 

remainder of this section, we introduce our WEPs as a general solution idea. Then, we 

demonstrate our approach and introduce a benchmark concept to create WEPs. Finally, we 

discuss selected example profiles and discuss our ongoing efforts in that direction.  

5.1 A Model for Performance-Energy Mapping 

Work-Energy-Profiles (WEPs) show the mapping between performance and energy- efficiency 

for different hardware configurations. In our current context, a configuration covers all system 

knobs, which are adjustable independent of the implementation. Depending on the hardware 

and operating system, this can include different properties. For example, general-purpose 

CPUs usually offer different SIMD extensions making the available instruction set extensions 

part of the configuration space. However, there are more properties influencing the 

performance as well as energy-consumption. The following list shows the most common of 

these properties: 

● CPU core frequency 

● Number and ID of active cores, where the ID is important if there are multiple sockets 

or heterogeneous cores 

● Number of active threads and use of multi-threading 
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● SIMD Instruction set and (SIMD) register size 

Figure 5: A fictional minimalist Work-Energy-Profile with highlighted example configurations. It shows some 

effects as observed in real profiles. 

Figure 5 illustrates the idea of WEPs. Performance and energy-efficiency span a two- 

dimensional space, and each configuration is represented by a position in this space. Even if 

this example is a fictional one to keep it simple, two effects are shown, which we also observed 

in real WEPs: 

1) The best performing configuration is not always the most energy-efficient one 

(configuration C vs. D), and 

2) There are multiple configurations, which offer a similar performance, but a different 

energy-efficiency, and vice versa (configuration A vs. B). 

Generally, a WEP can represent a system view or a thread view. A system view covers the 

configurations from a system perspective, i.e., the number and ID of the active cores and the 

frequencies of the active and inactive cores. This kind of profile is illustrated in Figure 5. A 

thread view does not include this system knowledge, but only the properties connected to a 

single thread, e.g., the frequency of the CPU core the thread is running on, or the instruction 

set it is using. A Work-Energy-Profile of a thread view can look different for the same 

application. This depends on the load of the remaining system, e.g., if other threads are using 

shared resources like main memory or shared cache. A Work-Energy-Profile of a system view 

is always the same for the same application, but becomes more populated the more complex 
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the system is, i.e., the more configurations exist. This complexity can be caused by a larger 

number of cores or heterogeneous cores.  

Figure 6: Configuration options of the ARM big.LITTLE ODROID-XU3. 

5.2 Example Heterogeneous Hardware System 

Our example system is a single-board computer equipped with an ARM® big.LITTLE CPU, the 

ODROID-XU3 (specification in Figure 6). We chose this system because it offers some kind of 

heterogeneity with the following properties. First, all components are hard-wired onto one 

board including the main memory. Second, the CPU features ARM® cores. Third, the cores are 

heterogeneous. There are two clusters, one with four Cortex A7 cores, and one with four Cortex 

A15 cores. Both clusters can be used independently, i.e., the system is not restricted to cluster 

switching and frequencies can be set per cluster. All cores offer the same instruction set, but 

the A15 cores are more powerful and their cluster is equipped with more L2 cache. Hence, this 

cluster is referred to as the big cluster, while the A7 cluster is referred to as the Little cluster. 

The L2 cache is shared between all cores of the same cluster. There is no L3 cache. 

The heterogeneity on this system produces a wide spectrum of configuration choices. There 

are 13 frequency steps on the A7 cluster and 19 on the A15 cluster, as well as 24 different 

combinations of active and inactive cores. The 24 combinations are composed of 5 variants 

per cluster (0 - 4 active cores), where one variant is subtracted, which only includes inactive 

cores. Hence, there are 5 * 5 − 1 = 24 combinations. In combination with the CPU frequencies, 

this sums up to 13 * 19 * 24 = 5928 different configurations per instruction set. Since the SIMD 

instruction set NEON is offered additionally to the scalar instruction set, there is a maximum 

of 5928 * 2 = 11856 available configurations. This is not further reduced by the CPU frequency 

of a potentially inactive cluster, because that frequency influences the performance of the 

active cluster if resources, e.g., memory buses, are shared, as explained before. 
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Figure 7: An overview of the benchmark concept 

5.3 Creation of Work-Energy Profiles - Benchmarking 

One of our main challenges is the creation of WEPs covering a large number of possible 

hardware configurations. To tackle this challenge, we developed a benchmark concept to 

examine the behavior of performance and energy-efficiency for different hardware 

configurations in a uniform way [U+16]. Fundamentally, the same kernel – also called task – 

has to be repeated and recorded for all possible configurations on the target systems. 

Moreover, not only the kernel but also the test data has to be the same in order to produce 

comparable results. Therefore, we separated the generation of test-cases and data from the 

control-flow of our benchmark concept. Generally, an overview of our benchmark concept is 

depicted in Figure 7. The Controller is the centerpiece of our benchmark. It starts the Work 

Generator, which produces tasks and test data. This Work Generator has to be adjusted for 

each investigated kernel. After the Work Generator has finished, the Controller chooses the first 

hardware configuration and starts the first test run. Within a test, the corresponding tasks are 

processed by every worker, whereas a worker is a thread running on a (virtual) core. The 

workers count their finished tasks. After a fixed time span, the Controller shuts down the 

threads and collects the number of finished tasks, which are later used for calculating the 

performance. During an active test, the values necessary for the energy computation are 

recorded by a Measuring Device. Depending on the abilities of the Measuring Device, the 

energy computation is either done by the device itself or by the Controller. In both cases the 

final values are collected by the Controller. For eliminating odd side effects, a test can be run 

multiple times. This is repeated for all configurations, with the same tasks on the same test 

data. After all configurations have been processed, the Controller generates a Work-Energy-

Profile for the selected kernel and data as depicted in Figure 8. This profile can then be used 
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for in-depth analysis and optimization purposes, e.g., for selecting an energy-efficient 

configuration satisfying the requested performance constraints or for optimizing the applied 

algorithm. 

Figure 8: WEP of a system view on our example hardware system and a close-up of the highlighted performance 

range.  

5.4. Example of Work-Energy-Profiles 

To get a deeper understanding of our WEP approach, Figure 8 illustrates an example for a 

specific kernel running on our test hardware. The kernel is a synthetic scenario for scalar 

processing and consists of an equal ratio of memory accesses and numeric computations. The 

left chart in this figure shows the corresponding WEP. The performance is plotted on the x-

axis, the y-axis shows the energy-efficiency in terms of a Work-Energy-Quotient (WEQ) [U+16]. 

To achieve the objective of reducing the overall energy consumed by the system for a specific 

amount of work, the natural decision for quantifying the energy-efficiency is to calculate it as 

the quotient of work done and consumed energy. Accordingly, this relation is usually called 

Work-Energy-Quotient (WEQ). Each dot in this chart represents a specific hardware 

configuration. As we can see, different hardware configurations offer a similar performance 

with a high variance in the WEQ. From this WEP, we are able to derive various insights. 

Generally, we are able to utilize such WEPs to directly identify the most energy-efficient 

configuration (high WEQ) for a desired performance range and kernel. In Figure 8, we 

highlighted a specific performance range using a vertical slice. This performance range can be 

realized with various hardware configurations as depicted in the right chart of this figure. In 

this chart, the most energy-efficient configuration is highlighted by a thick green line. The x-

axis indicates the frequency of the clusters, the y-axis shows the number of active cores. The 

left side shows the A7 cluster, the right side the A15 cluster. A line connects the configuration 

of both clusters and forms the complete configuration. The least energy-efficient ones are 

marked with a thin red line. This close-up shows the variety inside the configurations, which 
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produce the same performance but a different WEQ and the most energy-efficient 

configuration is not necessarily the most obvious one. For the highlighted performance range, 

the most energy-efficient configuration consists of 3 active A15 cores running at 1.8 GHz, while 

all A7 cores are idle at 1.4 GHz. The graph also shows a number of configurations with high 

CPU core frequencies on both, the idle cluster and the active cluster, which show a 

comparatively low WEQ. As already mentioned, the frequency of an idle cluster can still 

influence the overall performance if resources are shared. In this specific case, the cache and 

core clock are only shared within the same cluster, but the memory and the memory bus clock 

are shared between both clusters. We assume that the shared bus clock is the reason for the 

unexpected behavior. 

5.5 Ongoing Work 

From our point of view, these Work-Energy-Profiles are well-designed performance models to 

select the best-fitting hardware configuration with regard to performance as well as energy-

efficiency perspectives. In particular, due to the generic nature of WEPs, we can distinguish 

between memory accesses and computations, covering all possible situations. So far, we have 

limited ourselves to general-purpose CPUs with SIMD functionalities for acceleration. In the 

near future, we want to transfer and generalize this approach to other accelerators such as 

GPU and FPGA. One drawback of our unified WEP approach is that the benchmarking of the 

profiles is very time-consuming. To overcome that shortcoming, we will investigate 

approaches for approximating such WEP profiles as shortly introduced in [U+17].  

Another focus of our work in this area will be to fully integrate these WEPs into the DAPHNE 

system. From our point of view, our WEPs represent accurate performance (based on 

benchmarking per kernel per device) and thus, they are the key to the integration of HW 

accelerators into advanced compilation techniques as well as automatic kernel and data 

placement decisions. In detail, we aim to model data access along the data path with our WEPs 

under different access characteristics and compute capabilities for various HW accelerators. 

Then, this allows the comparison across different HW accelerators and thus, the selection of 

the best-fitting device.  

6 Conclusion 

This document reported a snapshot of our DAPHNE prototype regarding HW acceleration as 

a follow-up of deliverable D7.1. In particular, we introduce three example scenarios as the main 

drivers for the current prototype and describe how to execute these examples with enhanced 

hardware support. Additionally, we gave an overview report on the devised performance 

models in terms of Work-Energy-Profiles (WEPs) for a cost-based approach for kernel and data 

placement decisions in a heterogeneous hardware environment in this deliverable.  
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