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  Executive Summary 

This deliverable describes the design of the Delilah prototype for offloading eBPF code on a 

computational storage platform. We detail its implementation on the Daisy computational 

storage platform and discuss its initial performance evaluation.  

1 Introduction 

The current DAPHNE prototype relies on the traditional file abstraction to access stored data 

through DAPHNE scripts. In the context of task 6.2, we implemented I/O kernels[1] that support, 

read, and write operations where a data object (e.g., a frame or a matrix) is read or written in its 

entirety from/to file. In terms of data representation, the current DAPHNE prototype supports 

common data formats for frames and matrices (csv, parquet, matrix market) as well as the 

DAPHNE binary data format [2]. The prototype integrates existing access libraries (arrow and 

parquet). 

This design makes it possible to manipulate stored data sets with DAPHNE scripts. However, 

this initial design has a few limitations: 

a) DAPHNE scripts only work with data sets that can be entirely loaded in memory. 

b) The DAPHNE run-time does not optimize performance or minimize data movement 

when accessing stored data. 

Tasks T6.3, T6.4 and T6.5 are designed to address these limitatons, in the rest of the project, 

through careful, asynchronous data movement across storage tiers and by leveraging 

computational storage. 

This deliverable is a report associated to a demonstrator. It focuses on the Delilah prototype 

that we have designed and implemented to support code offload on computational storage, a 

necessary first step towards integrating computational storage in DAPHNE. 

Before we describe Delilah, let us first situate this work in the context of the storage tiers that are 

relevant for DAPHNE. 

 

 

2 Storage Tiers in DAPHNE 

In Deliverable 6.1, we identified three storage tiers that are typical in both cloud systems and 

high-performance computing (HPC) systems where DAPHNE can be deployed: performance, 

capacity, and archival tiers. We also identified a range of different abstractions that are used to 

expose storage to programmers. 

Without loss of generality, we narrow the storage tiers that we consider in DAPHNE to: 

1. Tier 1: High-performance NVMe Solid-State Drives (SSDs) or SSD arrays that are accessed 

via xNVMe [3] (see D6.1), and 

2. Tier 2: Performance, capacity and archival tiers, composed of high-capacity SSDs, Hard- 

Disk Drives (HDDs) and tapes that are accessed via a (parallel) file system. 
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These two tiers are present on modern HPC systems (e.g., Frontier [4] that distinguishes 

between local NVMe drives, a centralized Lustre file system equipped with performance and 

capacity tiers and an archival system exposed though HPSS) [5] and on cloud systems 

(e.g., using S3FS [6] to mount S3 buckets as a file system). 
 

Note that some HPC systems are equipped with Tier 2 but not Tier 1 (e.g., LUMI [7] where three 

storage systems are available via a file abstraction using Lustre or Ceph). Those systems 

cannot leverage all the benefits of high-performance SSDs and they cannot leverage 

computational storage out of the box. 

Explicit tier management and data path optimization across Tier 1, Tier 2 and memory is 

needed to optimize for performance (tasks T6.4 and T6.5). Near data processing focuses on 

computational storage devices that are part of tier 1. Indeed, computational storage is being 

standardized in the context of NVMe [8] (Task T6.3). 

Implicit tier management takes place within Tier 2. This complexity is hidden from the 

DAPHNE run-time that relies on files to access data from this tier. Let us illustrate implicit tier 

management using the German Satellite Data Archive as an example. The main storage 

system of the German Satellite Data Archive is based on a hierarchical storage system 

solution consisting of two tiers: a capacity tier and a performance tier. The capacity tier is a 

robotic tape library. Each tape drive can hold between 6 and 30 TB of data (depending on the 

compression level applied). Sequential read/write speed per drive is between 300 MB/s and 

900 MB/s (again, dependent on the drive type and compression level enabled). In total there 

are two geo-replicated libraries at two locations in Germany that are used to handle potential 

natural hazards, load balancing, and overall improvement of access latencies. Per library, 

there is a number of tape drives attached, for the German Satellite Data Archive this is up to 64 

drives. 

Files get staged (written) to a performance tier based on hard-disk drives (HDD), which also 

serves as a caching layer to quickly serve repeating data requests. Both tiers are connected via 

a storage-area network and operated via a hierarchical storage management (HSM) software, 

which exposes the data through a virtual file system abstraction. 

In this example, the file abstraction already incorporated in the DAPHNE prototype makes it 

possible to write DAPHNE scripts that access the DLR satellite images with minimal 

modifications, assuming that the nodes where DAPHNE runs mount DLR’s hierarchical 

storage management system via the Linux virtual file system 

In summary: 

• The current DAPHNE prototype supports a simple form of data movement between 

tier 2 and memory based on synchronous reading/writing of an entire file. 

• Improvements to the prototype resulting from T6.4 and T6.5 will include (i) block- 

based, asynchronous access to files in tier 2, (ii) asynchronous access to blocks in tier 1, 

(iii) cost-based staging of blocks across tiers. 
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3 Near-Data Processing with the Delilah Prototype 

We consider near-data processing using computational storage in the context of Tier 1. The 

NVMe standard for computational storage is expected for early 2023. This standard will be 

aligned with Storage Network Industry Association (SNIA)’s architecture and programming 

model for computational storage [9], published in August 2022. In particular, it will support the 

offload of extended Berkeley Packet Filter (eBPF) bytecode to computational storage. 

 

We described the role of eBPF in D6.1. In order to experiment with eBPF code offload, we 

designed and implemented the Delilah prototype. In the rest of this section, we describe the 

Delilah demonstrator. Its integration with the DAPHNE run-time remains an issue for future 

work. 

3.1 Background 

The goal of the Delilah prototype is to support eBPF code offload on a computational storage 

device attached to a host via PCIe. The Delilah prototype implements the Eid-Hermes 

protocol [10], defined by Eideticom, on the Daisy platform, manufactured by a company 

named CRZ. 

3.1.1 Daisy Platform 

The Daisy OpenSSD is a storage system built with 2x100GE and PCIe Gen3x16 connectors, a 

Zynq Ultrascale+ MPSoC, and a backplane interface for connecting to two M.2 SSDs. [11] 

Daisy is the latest iteration of the OpenSSD prototypes developed by Prof. Song and his team at 

the ENC Lab, Hanyang University12. 
 

Figure 1 A diagram showing the physical components of the Daisy OpenSSD. From 

http://crztech.iptime.org:8080/Release/OpenSSD/Daisy-OpenSSD/Doc/DAISY_UserGuide_Rev1.1.pdf 

 

The Daisy OpenSSD offers multiple host interfaces. For this demonstrator, we focus solely on 

the PCIe Gen3 X16 interface. 
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3.1.2 Peripheral Component Interconnect Express (PCIe) 

PCIe is a transactional layered network protocol with requests and responses. [13] It is layered 

on top of a packet-based data link protocol and physical connections organised as a set of 

lanes. A lane is a pair of unidirectional, serial, point-to-point connections. 

PCIe connections will have a root complex connected directly or via switches to one or more 

endpoints. PCIe endpoints have a vendor ID and a device ID. PCIe devices may have one or 

many memory-mapped memory spaces, defined via the Base Address Registers (BARs). These 

regions reside on the device but are accessible directly from the host memory. 

3.1.3 Direct Memory Accesses (DMA) 

It is possible, via the PCIe protocol, to move large chunks of data from the host to the device 

and back independently of the host CPU. These operations are managed by the DMA- 

controller in the PCIe Root Complex at the hardware level. On the Daisy board, DMA 

operations are set up and executed by XDMA. DMA is conducted via a set of write channels, 

called H2C, and a set of reading channels, called C2H. 

It should be noted that DMA is the most performant way to transfer large amounts of data 

over PCIe. 

3.1.4 Zynq UltraScale+ MPSoC 

The Zynq Ultrascale+ is a heterogeneous multiprocessing platform with an ARM processor 

and an FPGA hardware accelerator (it is labelled UG1085) [14]. The ARM processor or 

Processing System (PS) can run an entire operating system and thus run any eBPF program on 

demand. The FPGA component or Programming Logic (PL) allows hardware elements to be 

wired efficiently for the computational storage use-case. Zynq Ultrascale+ MPSoCs come with 

multiple high-performance PS-PL ports to connect an operating system in PS to peripherals 

in PL. While the most efficient ports expose AXI interfaces, the chip can also expose general 

purpose ports like GPIO and USB. 

Xilinx MPSoC uses isolation to separate subsystems. [15] As such, IPs and components with 

memory capabilities will be assigned an aperture, which is a memory region with its own 

permissions and address bits. 

Figure 10-1 of UG1085, the reference manual for the Zynq UltraScale+, shows the various 

apertures. The largest aperture can contain addressing for 256 GB via 40 bits, while the 

smallest can only address 1 MB. 

3.1.5 Daisy Programming Environment 

As mentioned in the previous section, the Daisy OpenSSD comes with a Xilinx Zynq 

Ultrascale+ FPGA component. This means that the SSD must be programmed using the Xilinx 

toolchain. 

The toolchain includes the Vivado suite for managing the hardware aspects and the Petalinux 

SDK for managing the operating system. 
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When programming FPGAs, one must describe the desired hardware layout. The hardware 

layout is visualised as Block Diagrams and stored as Hardware Design Files (HDFs). The Block 

Designs show the wiring of physical components on the device and any intermediate IPs 

between the components. IPs in the context of Xilinx are pre-developed virtual components 

often used as middleware between components that cannot communicate out of the box. 

We will describe some of the typical IPs in this section. 

 

  3.1.5.1 Advanced eXtensible Interface (AXI) 

AXI is an interface specification that defines the interface of IP blocks. [16] In essence, AXI allows 

various IPs to connect over a generalpurpose connection. In a Xilinx block design, it is the 

preferred way to connect IPs together, as it abstracts the details of the connections away. 

For example, when connecting PS to any of the complex FPGA peripherals, one must use one of 

the PS-PL ports described in 2.1.2. However, the PS-PL ports on the Zynq are not directly 

compatible with the AXI port on the peripherals. To connect PS to peripherals or to connect 

peripherals together directly, one must use an AXI Interconnect or an AXI SmartConnect. The 

two connectors serve the same purpose, but the Interconnect type allows more fine-grained 

configurations over SmartConnects. We use Interconnects in our design to allow tweaking of 

the configurations when necessary. 

 

3.1.5.2 PCIe DMA/Bridge – XDMA 

Xilinx’s DMA intellectual property component (XDMA IP) offers a way to expose the FPGA as 

either a PCIe Root Complex or PCIe Endpoint. When an XDMA IP is in bridge-mode, XDMA 

will function as PCIe Root Complex to an underlying PCIe Slave device. [17] Alternatively, putting 

XDMA in DMA-mode will expose the device as a PCIe Slave device with DMA capabilities to a 

host-machine. [18] 

Although possible, it is not required to connect an XDMA component to the board’s 

processing unit. For example, when in DMA-mode, the XDMA IP only has to have one or more 

AXI backends. It is then possible for the host to issue I/Os to any of the apertures in the AXI 

backends. 

The IP have many different configurable properties. Most notably are the number of PCIe 

lanes, the link speed, and the BARs. 

XDMA allows the FPGA to raise interrupts over PCIe. It supports up to 32 legacy, MSI and 

MSI-X interrupts. However, half of the interrupts are reserved for DMA operations. Interrupts 

are raised by an interrupt handshake, where a component in the block design sends a signal 

over a predetermined pin to notify the host. The component must keep signaling the pin until 

the host has acknowledged and serviced the interrupt. 

  3.1.5.3 Memory Interface Generator (MIG) 

MIG is an IP for exposing a DIMM slot as a memory aperture via AXI. 

The reason MIGs are needed to access the DIMM-memory is simple; Modern DIMM 

sticks have 288 pins, which have to be wired correctly to the underlying processing unit or 

peripheral. Xilinx provide MIGs to expose these 288 pins as a single AXI connection. Without 
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the MIG IP, hardware developers would have to connect each of the 288 pins and implement a 

driver to communicate with the memory stick. 

MIGs are configured by providing the attributes of the memory sticks mounted in the slot. 

This includes, for example, I/O latencies, voltages and information about columns, banks and 

ranks. 

 

3.1.5.4 General-Purpose IO (GPIO) 

The AXI GPIO IP provides a way to expose single pins to PL or outside of the FPGA. When 

used in conjunction with Petalinux, each pin is exposed as a pseudo-file in /sys/class/gpio. All 

GPIO chips connected to Petalinux will have a base, which indicates the identifier of the first pin 

on the GPIO chip. The base of a chip is assigned by the operating system at boot-time and 

can be deducted using various hints like the static memory address from PL. 

Configuring the pin in Petalinux is simple. First, one must export it, which tells the Linux driver 

to make the pin available to userspace. Afterwards, one must set the direction to out unless the 

pin is considered read-only. 

After setting up the pin, one can easily change the pin by writing either 0 or 1 to the value 

pseudo-file of the pin. 

Below is an example of a successfully configured GPIO-pin, which is immediately changed to 1. 

$ cd /sys/class/gpio 

$ echo 504 > export 

$ echo out > gpio504/direction 

$ echo 1 > gpio504/value 

3.1.5.5 Petalinux 

Petalinux is an SDK for generating and compiling a lightweight Linux-based operating system 

for running on the Zynq MPSoC. The SDK takes a Hardware Description File (HDF) as input 

and generates an operating system with the necessary system files, including the device tree 

and drivers. As Linux powers Petalinux, it is possible to enable many of the drivers and 

modules of a typical Linux system, including support for various drive types (fx. NVMe, Open- 

Channel SSDs) and software packages (fx. GCC, GDB, Python). Furthermore, developers 

provide their packages and modules, which are cross-compiled to run on the MPSoC. 

The Petalinux SDK provides a tool to generate Hello World programs and modules for 

Petalinux with build configurations for languages like C and C++. This provides an excellent 

starting point for developing and integrating software into a Petalinux instance. 

Petalinux compiles applications and libraries on the development machine, which does not 

necessarily run the same architecture as the FPGA. As such, Petalinux makes use of cross- 

compilation tools. Under the hood, Petalinux compiles software using Yocto, a collaborative 

open-source project. The goal of Yocto is to develop tools and processes that enable the 

generation and compilation of Linux distributions for embedded and IoT systems. [19] The 

tools and processes are independent of the underlying architecture of the embedded 
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hardware. 

The way cross-platform compilation practically looks in Petalinux is simple. A software 

package provides a simple Makefile, which gives no configurations on architecture. 

Developers can compile and test code on the development machine without regard to the 

FPGA. When the code is to be compiled through Yocto for the FPGA, Yocto appends a set of 

architectural configurations to the compiler, including the CROSS TARGET setting. As such, 

the cross-compilation is entirely abstracted away from the software developer. It should be 

noted that this project is based on Petalinux version 2019.1. 

3.1.5.6 Vivado 

Vivado is a software suite for synthesising and analysing HDLs with additional features for 

system on chip development and high-level synthesis. 

Vivado helps automate the design phase of FPGAs by automatically connecting IPs that have 

similar interfaces. For example, if a Zynq IP is added and a MIG is added, Vivado will suggest 

connecting these two and generate the intermediate AXI Interconnect IPs. Due to this, the 

main task of an FPGA designer using Vivado is understanding which IPs are appropriate for 

the application and defining applicable constraints. 

Constraints in the context of Vivado are a set of rules for how the block design is wired to 

external hardware. As this depends on the FPGA and its capabilities, it cannot be automated. In 

some limited circumstances, Vivado can infer constraints, for example, if related constraints 

are defined. Many boards come with a guide or specification on which port various hardware 

components are wired. 

It should be noted that for the during of this project, we will work with Vivado version 2019.1. 

 

3.1.6 User-Space eBPF (uBPF) 

eBPF bytecode is either interpreted through a virtual machine or translated into assembly via 

a just-in-time compiler. The Linux kernel contains both. In the context of computational 

storage, we are interested in executing eBPF code on the computational storage platform, 

which is generated on the host. We are thus interested in an interpreter or just-in-time 

compiler in user-space. This is why we are considering uBPF. The uBPF VM is a RISC register 

machine based on eleven 64-bit registers, one stack pointer, an implicit program counter and a 

fixed-size stack [20] [21]. The virtual machine has access to several registered functions, often 

used for BPF helpers. However, in principle uBPF allows registering any function to the VM. 

The uBPF VM accepts either a buffer with eBPF instructions or an eBPF ELF file. The VM loader can 

parse the segment header table and sections to extract the program and references to 

registered functions. On a computational storage device, we aim to reuse the standard uBPF 

design with only minor modifications. The only required modification is to allow the call 

operation to invoke any function and not just BPF helpers. 

The uBPF VM exposes a simple interface with three operations. First, a load function that 

takes a program as a parameter and prepares the uBPF engine for execution. Second, an 

unload function that resets the state of an uBPF engine. Lastly, an execute function executes the 
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loaded program with respect to a provided memory buffer. 

When an eBPF program is executed within the uBPF virtual machine, a return value can be 

returned from eBPF. It corresponds to a value stored in register 0 of the VM. Put differently, an 

eBPF program does not return blocks of data. It may return a form of pointer to the memory 

managed by the uBPF virtual machine or an identifier for a resource managed outside the 

uBPF virtual machine. A protocol would be needed to make it possible for an external 

program to get access to memory managed by the uBPF virtual machine. More generally, 

access to resources associated to the Computational Storage Processor, such as memory, 

direct-attached SSDs or other peripherals, must be mediated through external functions. If 

those resources are shared across several virtual machines, then the registered functions 

should provide concurrency guarantees. 

In the context of computational storage, eBPF bytecode is shipped from the host to the 

computational storage device that should load the bytecode onto the virtual machine (or JIT- 

compile the bytecode) and execute it. There is a need for a protocol that exposes the uBPF 

virtual machine functionalities to the host. Eid-Hermes defines such a protocol. 

3.1.7 Eid-Hermes 

Eid-Hermes is a host-controller transport protocol, which supports the offload of eBPF code 

generated on a host and executed on a device. Eid-Hermes is an Eideticom-led project. [22] 

Eid-Hermes basically exposes the load/unload/execute interface of uBPF to the host. One of the 

key aspects of Eid-Hermes is that it focuses on the transport of data as well as programs. 

Programs are loaded onto a uBPF virtual machine. Data is passed as an argument when the 

program is executed. More specifically, Eid-Hermes makes use of program slots and data 

slots as abstractions of memory buffers. The number of slots and their respective sizes are 

exposed to the host during enumeration. Neither program nor data slots exist in the context of 

uBPF and as such, it is the responsibility of the device to pass along appropriate pointers to 

uBPF. The pointer of program slots are given to uBPF when loading a program [23], while 

data slots are passed as argument when executing a program [24]. 

In the  context  of  computational  storage,  Eideticom’s  choice  of  adding  data  slots  to  the 

protocol opens a range of possibilities. First, it allows data to be transferred to the device 

alongside programs. Second, it is possible to daisy-chain programs to use the same data 

without transferring the data to the device and back. 

Eid-Hermes makes use of three Base Address Registers BARs. First, BAR0 holds the command 

registers and the state of Eid-Hermes, including the capabilities of the device. BAR2 holds 

configurations related to XDMA. BAR4 holds the program and data slots of uBPF. It should be 

noted that the program and data slots are populated using DMAs. As such, an implementing 

device does not need to expose the slots as a BAR since the host CPU never issues reads or 

writes directly to the memory regions. 

The protocol uses XDMA, a Xilinx DMA engine that was described in an earlier section, to 

transfer programs and data to the device. Commands are transferred and executed by writing 

to the Eid-Hermes command register on BAR0. 
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3.1.7.1 Commands 

The lifecycle of a command looks like this: 

1. The user sends a command request to the Eid-Hermes driver. 

2. The driver copies the command request to the BAR0 command registers. 

3. The driver writes the engine start bit of BAR0 to start command execution. 

4. Upon completion, the device writes the command response (16 bytes) to the BAR0 

command registers and raises an MSI-X interrupt 

  The driver then reads the command response and returns it to the user. 

In the current release of the Eid-Hermes protocol, only three commands exist; Request Slot 

(0x0), Execute Program (0x80) and Release Slot (0x01). The current version of the driver does not 

implement 0x0 and 0x1 as slot management is handled on the host. 

3.1.7.2 Theory of Operation 

The high-level overview of the Eid-Hermes protocol can be boiled down to four specific steps. 

1. The host discovers the capabilities of the device. The capabilities include the number of 

slots and engines, including their physical location on the device memory. 

2. The host initiates DMA from the host to the appropriate program and data slots of 

the device. At the end of this step, a program slot will hold the offloaded program, 

and a data slot will hold the initial data of the program. 

3. The host initiates the execution of a program by setting the engine start bit to 1. The 

engine start bit is set to 0, and the engine finished bit to 1 upon completion. 

4. The host initiates a transfer of the resulting data back to the host. 

3.1.7.3 Linux Quick EMUlator (QEMU) 

Eideticom has developed a host driver for Eid-Hermes, based on the DMA library from Xilinx 

(XDMA). Eideticom has also developed a QEMU version of the Eid-Hermes protocol. The 

QEMU version simulates how physical Eid-Hermes devices work and interact and executes 

programs in a uBPF virtual machine. 

The Eid-Hermes QEMU implementation is designed to be self-contained. This means that 

although Eid-Hermes is based on XDMA, the QEMU version does not include or reference 

XDMA. Instead, the Eideticom implements only the capabilities of XDMA used in Eid-Hermes. A 

problematic aspect of this is that Eideticom cannot give any guarantees that their emulated 

version of XDMA behaves the same way as a physical XDMA device. 

For example, the QEMU version contains at least one instance where the QEMU device acts 

differently from a physical device. The Eid-Hermes driver does not set the user interrupt mask 

correctly, which the QEMU completely disregards. This can present issues if the software is 

tested on QEMU since the software may behave differently on a physical device. 

The project is multi-threaded, and there exist multiple threads per DMA channel and one 

thread per uBPF engine. Therefore, the implementation relies on mutual exclusion locks and 

semaphores to function. 
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3.2 Delilah Block Design 

Our Delilah prototype is software run on the ARM core of the Zynq MPSoC (introduced in 

Section 3.1.4). To run on the Daisy board, our prototype requires that the ARM cores (PS 

domain) are connected to the host via PCIe and that they are connected to M.2 SSDs. This 

requires that the FPGA (PL domain) is programmed to provide this connectivity. We had to 

build this basic functionality as it did not exist on the Daisy board. 

To this end, we selected and configured existing Xilinx IPs, defined for managing PCIe DMAs, 

memory management and data transfers within the Zynq Ultrascale+. 

Our starting point in the exploration of a functional block design is the example designs built by 

the manufacturer of the Daisy. In particular, the Daisy M.2 PCIe + MIG design, [25] which 

provides a layout including most of the necessary components. In their design, PL consist of 

XDMA and MIGs. However, they do not make use of the PS domain. 

With the manufacturer’s example design as point of departure, we explore what is given and 

what must be added to the design. The design contains three XDMA IPs; Two in bridge mode 

for connecting to the M.2 slots on the Daisy, and one in DMA mode for connecting to the host 

over PCIe. The XDMA IPs are connected to external clocking pins, ensuring that 

communication between the Zynq and SSD or host, respectively, does not result in timing 

issues. 

The two XDMA IPs in bridge-mode are configured with factory-tested settings provided by 

the manufacturer. As such, we will not explain in detail the configurations. Most importantly, 

they are configured to use PCIe 3.0 with 4 PCIe lanes. They are connected to the M.2 

backplane of the Daisy and managed by the NVMe driver residing in PS. 

The XDMA IP in DMA-mode has BRAM as backend without any connection to the Zynq. This 

means that the PS domain have no way of accessing anything transferred to the device. It 

also has no BAR0 defined. As such, we must expand the block design here. 

We can either connect the Zynq to the BRAM or alternatively, change the backend to be the 

Zynq. The first option presents limitations on capacity, while the second requires us to 

reserve a memory space within PS, which limits the memory available for the operating 

system and other processes. In our design, we choose to go with the latter approach, as the 

Linux kernel does not require much memory and since Delilah will be the only major process 

running. 

First, we configure the XDMA IP with an AXI connection to the Zynq, such that the host can 

issue DMA transfers to the Zynq’s internal memory. Second, we expose another memory 

segment within the Zynq via AXI-Lite. This memory segment holds the 0th BAR, which 

contains the Eid-Hermes-related configurations and command registers. We choose to accept 

the configured values from the manufacturer which is set to maximise the full potential of the 

PCIe connection. 

Furthermore, the given block design does not contain functionality to raise interrupts on the 

host. We add an AXI GPIO IP, which we can manage from PS to communicate with the 

interrupt pins of the XDMA IP. 
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The resulting block design can be seen in Figure 3 and Figure 4. Beside the XDMA IPs and our 

proposed additions, the block design contains a set of intermediate and support IPs defined 

and configured by the manufacturer. For example, two GPIO IPs provide the M.2 SSDs with 

3.3V power and a set of Utility Vector Logic IPs sets the PERST pins on the M.2 as per the PCIe 

specification. Processor System Reset IPs ensures that asynchronous external reset input is 

synchronised with the internal clocks in the block design. Lastly, Utility Buffers, Concats and 

Virtual I/Os help alter and modify signals according to the underlying specifications. Most of 

the support and intermediate IPs have been configured and tested by the manufacturer as an 

example of how to configure the Daisy. 

 
 

Figure 2 A full view of the Block Design of Delilah. As the diagram is very small, captions have been        

added to show important IPs. 

 

 

 

 

Figure 3 An abstract overview of the Delilah Block Design showing the most important IPs. The bold connections are AXI 

connections, while the thin connections are one or more singular wires. Intermediate and support IPs have been 

abstracted away for simplicity. 

 

Lastly, we have two MIGs that enable us to use Daisy’s two DIMM slots equipped with two 32 

GB DDR sticks. They are, however, not being used in the proof-of-concept release, as Eid- 
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Hermes only supports DMA to 32-bit addresses. DIMM slots connected to Zynq UltraScale+ 

chips are assigned memory addresses in the 40-bit apertures and thus cannot be referenced 

by Eid-Hermes. 

 

We have upstreamed an Eid-Hermes contribution to enable referencing of 64-bit addresses. 

Since this was a breaking change, it required an increase of the Eid-Hermes version counter 

(EHVER). 

The block design proposed in this section is generic and will be useful for other Daisy users. 

We are making it available at https://github.com/delilah-csp/delilah-bd. 

3.3 Delilah Software 

Our design relies on several layers of software components. 

First, we have Petalinux configured with mostly default settings. The most important changed 

settings are the boot configurations to match the specifications of the Daisy. We have 

provided the block design from the previous section to the Petalinux generator, ensuring that all 

applicable drivers and device-tree information are present. 

Second, we have the user-space device-side driver containing the Delilah. Since uBPF, as of 

2022, is released under an Apache 2.0 license, we choose to integrate the uBPF VM directly 

into the Delilah. This is to avoid compiling and integrating certain components which are not 

ready for the ARM architecture, such as the JIT compiler. 

Delilah performs several key operations in sequence during startup, which we describe in the list 

below. 

1. Open the memory region containing program and data slots using /de-v/mem and 

mmap. 

2. Open the memory region containing BAR0 using /dev/mem and mmap. 

3. Open and configure the GPIO pins for raising interrupts, including exporting the pins 

to userspace and setting the direction to out. 

4. Expose Hermes configurations on BAR0, including the physical addresses of the 

program and data slots and their respective sizes. 

5. Create four uBPF engines and register external functions, if applicable. 

6. Spawn four threads to manage command execution of each engine. 

After the six steps are completed, the startup finishes and the Delilah runs in each of the 

engine threads. The sequence follows the flow described below. 

1. If a command has been received, continue, else wait a single microsecond and try 

again. 

– Find the appropriate command handler from the opcode. 

i. If 0x00, allocate a free slot from the pool of slots. 

ii. If 0x01, put the given slot back to the pool of slots. 

iii. If 0x80, follow the instructions below. 

1. Load the program slot into the engine. 

2. Execute the program with respect to the given data slot. 
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3. Unload the program. 

4. Move return values or error codes to the response registers. 

– Set the engine completion bit. 

– Raise the interrupt of the respective engine. 

3.3.1 Design 

In summary, we introduce Delilah: a fully functional computational storage platform based on 

Eid-Hermes on the Daisy OpenSSD. To the best of our knowledge, this is the first such 

device. While the Eid-Hermes framework is specified and a host driver is implemented, no 

device actually exists to implement the protocol. 

On the host side, clang for GCC is used to compile C programs into eBPF bytecode. This 

operation is similar to compiling eBPF programs for the kernel with two major differences. 

First, programs do not go through the meticulous verification process, as they are never 

loaded into the kernel. Second, programs are given two parameters in the main function; A 

pointer to a contiguous memory buffer holding state and data and an unsigned integer 

holding the size of the buffer. 

The Daisy is mounted in a PCIe slot on the host, where the host serves as PCIe root complex 

and the Daisy as the slave. The host loads the Eid-Hermes driver and enumerates the Daisy, 

which is then exposed as a device on /dev/hermes0. The driver may now load the 

precompiled program and ship it to the Daisy using XDMA. 

XDMA is used for transferring programs and data to predefined slots on the Daisy. 

Commands follow the Eid-Hermes specification, which requires commands to be written to 

BAR0. BAR0 serves as the main point of entry for Eid-Hermes. BAR2 holds the configurations 

for PCIe and DMA, which is managed entirely by XDMA. 

On the device side, we have three distinct software packages. First, XDMA handles 

communication with the host and provides DMA capabilities. Second, we have one or more 

uBPF virtual machines in charge of executing BPF code. Lastly, we have Delilah. 

The Delilah is responsible for setting up the uBPF virtual machines, spawning worker threads 

and exposing Eid-Hermes-related configurations to the host. Delilah also is responsible for 

receiving and executing commands and programs. It is furthermore responsible for notifying 

the host when programs are finished executing. 

We implement an extension to uBPF called registered functions, which are a set of functions 

made available to eBPF programs for managing Delilah resources, including the underlying 

SSDs. We expect to either use a file system or make use of xNVMe [26] to access SSDs, e.g., 

NVMe ZNS SSDs, as raw devices. Defining registered functions for a given system is a topic 

for future work. 

3.3.2 Implementation 

In this section, we will describe the implementation details of the project. 

3.3.2.1 Build Process 

Compiling from scratch is a long-running process that usually takes several hours. 
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However, after the first compilation, some artefacts may be cached for later use. 

The first step of compiling the block design is initiating the Out-of-Context synthesis. The OoC 

step will generate and compile functional blocks for each IP to be reused later. It is 

comparable to compiling individual files without linking them. The goal is to avoid 

recomputing the whole IP after minor changes. 

The next two steps are synthesis and implementation. Here the IPs are first converted to 

schematics, which are then later converted into a bitstream. During implementation, the 

constraints come into play since the compiler now ensures that all wires are connected 

according to the constraints. Implementation is the most time-consuming phase since it 

cannot be cached. This is the case since a single change of wire may cause the whole layout to 

be regenerated. 

When the implementation phase has finished, and the resulting bitstream is exported, all 

hardware components are compiled. This is a milestone in the build flow, as the hardware will 

not have to be recompiled unless the block design or constraints change. This means that 

recompiling changes in software does not require a hardware recompile, and thus the time 

required to compile is decreased tenfold. 

All the steps above are executed in Vivado. The coming steps are conducted in the Petalinux 

SDK, which is command-line only. 

First, we provide the resulting bitstream to Petalinux using the configuration tool. This 

updates the device tree and boot configurations to contain the newest hardware. During the 

implementation of Delilah, we have previously observed caching problems where previous 

hardware was deployed after updating the bit-stream. We manually invoke the mrproper 

build step, which cleans the cache of Petalinux. Compilation without caching takes roughly 15 

minutes. 

$ petalinux-config --get-hw-description ../delilah-hw/ps.sdk/ 

$ petalinux-build -x mrproper 

The manufacturer of the Daisy has provided a convenience script for compiling Petalinux. This 

script manages the artefacts that Petalinux yields, which may be several files. In essence, the 

convenience script can be boiled down to the following: 

FSBL=zynqmp_fsbl.elf 

PMUFW=pmufw.elf 

FPGA=system.bit 

ATF=bl31.elf 

UBOOT=u-boot.elf 

$ petalinux-build 

$ petalinux-package --boot --fsbl ${FSBL} --pmufw ${PMUFW} --fpga ${FPGA} --atf ${ATF} -u- 

boot ${UBOOT} --force 
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The convenience script furthermore moves all artefacts to known locations to ease the 

deployment. Another convenience script helps format and create an SD card with the 

artefacts. In essence, it creates a boot partition and an operating system partition. 

3.3.2.2 Poll mode 

After Delilah has pushed Eid-Hermes configurations to BAR0, it will spawn four threads to 

listen for commands in each of the four command registers. There exists no interrupt system 

from host to Daisy, meaning that Delilah works in poll mode. 

When idle, Delilah polls the command register once a micro-second. We choose this constant to 

ensure responsiveness while not wasting all system resources on polling. 

3.3.2.3 Interrupts 

XDMA and Eid-Hermes make use of interrupts to notify the host when an op-eration has 

terminated. XDMA supports interrupts of the legacy type, MSI and MSI-X, while Eid-Hermes 

only supports MSI-X. Furthermore, XDMA can be set to work in poll mode, thus eliminating 

the need for interrupts. The poll mode may be faster for small DMAs as the context switches 

related to interrupts are very costly. 

After the Eid-Hermes driver has finished initialising, there exist two interrupts per DMA 

channel and one per engine. XDMA reserves the right to allocate 16 vectors and guarantees 

up to 16 vectors for user-defined interruptible events. XDMA interrupts are handled by XDMA 

internally, while Delilah handles interrupts for Eid-Hermes. Eid-Hermes expects an interrupt 

after command or program execution. 

Interrupts are triggered, as described earlier, by setting the respective bit of usr irq req to 1. We 

keep the bit one until the engine is triggered again. This ensures that the bit is one at least 

until the interrupt has been serviced and cleared by the host, as the Xilinx documentation 

requires. 

Changes to the interrupt pin invoke a forced sleeping period of 1 microsecond to ensure the 

XDMA subsystem observes the change on the pin in case the program terminates 

immediately. It is possible to optimise the forced sleep period away and combine it with the 

sleep/poll mechanism, which is considered to be future work for now. 

While implementing the interrupt mechanism above, we discovered an error in Eid-Hermes. 

XDMA uses IRQ masking to enable the host to silence irrelevant interrupts. By default, all 

interrupts are silenced, meaning that Eid-Hermes must inform XDMA of its ability to handle all 

applicable interrupts. 

Eid-Hermes delegates the responsibility of the DMA interrupts to the XDMA driver, which 

correctly notifies the subsystem. However, Eid-Hermes never notifies the subsystem of its 

ability to handle the user interrupts, causing them to never be received and serviced on the 

host. 

We manually implemented a temporary patch in Eid-Hermes, notifying the subsystem 

correctly, which resolved the bug. We expect our patch to be submitted to Eideticom when it has 

been tested and verified thoroughly. 
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3.3.2.4 Limitations on registered functions 

The current implementation of registered functions in Delilah has several major limitations. 

Programs to be offloaded are compiled on the host and may not have access to Delilah at 

compile time. As such, there is no way for the compiler to know if an invoked function will 

exist on the device at runtime. If we assume an asynchronous mechanism for sharing device 

capabilities (for example, by installing a header file into Linux), we still run into problems if the 

device is updated and changes its registered functions. Furthermore, it is currently unknown 

how to handle programs that were successfully offloaded but invoke an unknown registered 

function, as eBPF does not support exceptions. Lastly, it is an open question whether or not 

registered functions must be idempotent and without side effects. If side effects are 

introduced, state management becomes yet another challenge to tackle. 

We can summarise the challenges above into four distinct questions: 

• How does the compiler know, at compile-time, which registered functions are 

available on a device even if the device is yet to be attached? 

• How does the compiler handle versioning of registered functions, i.e. if a function 

signature changes? 

• How can Delilah propagate back to the host that an invalid registered function was 

invoked? 

• How can Delilah manage the state of registered functions, and how should state scope 

be managed (i.e. state alive for the duration of the program and state alive for the 

duration of the device)? 

These questions are very similar to all SSDs or, more generally, PCIe device capabilities. NVMe 

provides admin functionality to determine capabilities. We expect that some of the questions 

can be answered using a similar mechanism. 

3.4 Preliminary Evaluation 

To determine the latency of our computational storage platform in various scenarios, we 

enable two simple registered functions in Delilah. One function, let us call it A, reads the 

entirety of a file to a predetermined buffer. Another function, B, acts as a mapping table from 

logical filenames to absolute paths on the filesystem.  

We develop two programs to make use of the functions above. Program 1 makes use of 

function A to read a file. Program 2 makes use of B to translate a logical filename to an 

absolute path and then function A to read it. 

All programs are seeded with two parameters; A file name, which can either be logical or 

absolute and a file size. The buffer to be returned to the host is equal to the size parameter. 

We attach an SSD on one of Daisy’s M.2 slots, format it and create an EXT filesystem. On this 

filesystem, we create six files with random ASCII characters; 1kb, 10kb, 100kb, 1mb, 10mb and 

100mb. 
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Above is an overview of the results for the first program. We see that very little time is spent 

transferring state of a program to the device. We can also observe that the execution time of 

function A is constant for the first 1 MB. This means that the first ~20ms of execution time is 

overhead and is spent on preparing the VM, executing the program and triggering the host-

side IRQ. We also see that the execution time increases less than the number of bytes. 

 

Above is an overview of the results of the second program, which adds a mapping element to 

the program. We see similar numbers indicating that mapping between logical file paths and 

absolute file paths causes no significant overhead. Furthermore, we see a lot of latency 

variance. 

4 Delilah Demonstrator 
This Delilah demonstrator contains the following components: 

- BlockDesign: The FPGA block design used to deploy Delilah on the Daisy platform 

- Petalinux: The Petalinux image used to deploy Delilah on Daisy’s ARM processor 

- Eid-Hermes: The Linux-based host-side driver used to interact with Delilah 

- Evaluation: A small evaluation script used to evaluate simple eBPF function execution. 

The Delilah demonstrator is packaged as a 10GB compressed file. This file is available on 

request. 

4.1 System requirements 

Delilah is built and targeted at the Daisy OpenSSD platfrm. The host we used for the 
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demonstrator ran Linux v5.9. 

The block design is built using Vivado 2019.1. Petalinux image is built using Petalinux 2019.1 

4.2 Installation 

The Petalinux folder is configured with the correct block design and precompiled with Delilah. To 

deploy to an SD card, run the following commands: 

# cd Petalinux/project-spec/image # 

./create-sdcard.sh 

Then follow the instructions to write to your SD card. The SD card should have at least 8 GB of 

space. 

Plug your Daisy OpenSSD into your host and power it using the external power adapter with 

the SD card plugged into it. Mind that the Daisy OpenSSD must be in SD mode. You can set 

the Daisy OpenSSd in SD mode by setting the DIP switch to ON-OFF-OFF-OFF. Attach one or 

more NVMe M.2 SSDs. We use Samsung EVO for the demonstration. Connect your Daisy 

OpenSSD through the USB/JTAG port to a third machine. It cannot be the same machine as the 

Daisy is connected to via PCIe. On this machine, connect to it via Minicom. 

# sudo minicom -D /dev/ttyUSBxx 

Turn the Daisy on using the switch. You should now see Petalinux boot in Minicom. When 

reaching a login prompt, log in using root and root. 

Mount the NVMe 

device. # mkdir 

/media/nvme 

# mount /dev/nvme0n1p1 /media/nvme/ 

The NVMe device should have the files from the Evaluation folder on it. To verify, run the ls 

command. It should look like this if done right: 

root@daisy:~# ls -la /media/nvme/ 

total 108672 

drwxr-xr-x 3 root root 4096 Sep 9 12:07 . 

drwxr-xr-x 3 root root 4096 Oct 12 15:49 .. 

-rw-r--r-- 1 root root 1000 Jun 15 12:38 100.txt 

-rw-r--r-- 1 root root 10000 Jun 15 12:38 1000.txt 

-rw-r--r-- 1 root root 100000 Jun 15 12:39 10000.txt 

-rw-r--r-- 1 root root 1000000 Jun 15 12:39 100000.txt 

-rw-r--r-- 1 root root 10000000 Jun 15 12:39 1000000.txt 
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-rw-r--r-- 1 root root 100000000 Jun 15 12:40 10000000.txt 

drwx------ 2 root root 16384 May 18 12:34 

lost+found To start Delilah, run Delilah through Minicom. 

# delilah 

Delilah is now running on the Daisy OpenSSD. Turn on the host that the Daisy OpenSSD is 

connected to. Go to the Eid-Hermes folder. 

# cd src/driver 

# make 

# sudo make install 

You can verify if the driver is loaded correctly by checking if /dev/hermes0 has been created. 

Compile the evaluation suite by going to Evaluation on the host. 

# cmake . 

# make 

# ./delilah-eval 

You should now see the reading performance from 1 KB to 100 MB. The evaluation is done 

both using an absolute path and a logical path. 

Our results show that we can read 100 MB of data to a local buffer on the Daisy OpenSSD in 

0.142703 seconds and transfer it to the host in 0.339767 seconds. 

As a sanity check, we see that reading 100 MB to /dev/null takes 0.069s seconds outside of 

Delilah. The increased latency of Delilah comes from orchestrating the execution of the read 

operation. 

root@daisy:~# time cat /media/nvme/10000000.txt > /dev/null 

real 0m0.069s 

user  0m0.001s 

sys 0m0.068s 

5 Conclusion and Future Work 
This report describes the Delilah demonstrator, which supports eBPF offload on the Daisy 

computational storage platform. The demonstrator is functional and its performance shows 

no obvious shortcomings. 

Future work includes (i) a thorough performance evaluation of the Delilah prototype and 

most importantly (ii) its integration with the DAPHNE run-time, which requires the 

implementation of new IO kernels and the definition of use cases that will make it possible to 
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explore the overall performance impact of eBPF functions offload on DAPHNE performance. 

In the Introduction, we identified two limitations of DAPHNE’s current IO kernels: (a) datasets 

must fit in memory and (b) there are no optimizations of data movement. New IO kernels that 

leverage computational storage will address these issues by supporting access to portions of a 

dataset while offloading portions of processing from the CPU in a way that requires 

significantly less data to be transferred or leads to better performance on the host. An 

example of processing that can be offloaded to improve performance on the host and reduce 

transfers is the formatting from on-disk format to in-memory format. Another example, 

related to WP7, is the quantization in the DLR use case. A third example, could be a second 

order function such as a parameter server for mini-batch training deployed on a storage hub, 

associated with several computational storage devices that compute gradient descent 

upgrades over stored data. 
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