

D5.2 Prototype of Pipelines

and Task Scheduling

Mechanisms

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.4

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 1

Document Description

This document describes the use of the pipeline and task scheduling mechanisms currently

supported in the DAPHNE system. As discussed in previous deliverable reports [D4.1, D5.1], the

DAPHNE project team continuously refines, extends, and adds scheduling mechanisms in

DAPHNE. Nevertheless, extensibility is at the heart of the DAPHNE system. This offers DAPHNE

users the opportunity to add scheduling mechanisms of their own. Therefore, this document

describes how users can add or extend specific scheduling options.

All information presented in this document is based on a snapshot of the DAPHNE system

prototype that implements well tested and verified scheduling strategies.

D5.2 Prototype of pipelines and task scheduling mechanisms

WP5– Prototype of pipelines and task scheduling mechanisms

Type of document R Version 1.4

Dissemination level PU Project month 24

Lead partner UNIBAS

Author(s)

Reviewer(s)

Ahmed Eleliemy (UNIBAS) and Florina M. Ciorba (UNIBAS)

Pinar Tözün (ITU) and Marius Birkenbach (KAI)

Contributors all

Revision History

Version Revisions and Comments Author / Reviewer

V1.0 Initial draft Ahmed Eleliemy

V1.1 Edits and clarity Florina M. Ciorba

V1.2 Addresses comments from Florina M. Ciorba Ahmed Eleliemy

V1.3 Clarity refinements Ahmed Eleliemy,

Florina M. Ciorba

V1.4 Final version Ahmed Eleliemy,

Florina M. Ciorba

Terminology

Term Definition

Snapshot Since the DAPHNE system is under continuous development, a

snapshot of the DAPHNE system refers to an immutable version of

the project sources at a particular point in time.

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 2

1 Scheduling Philosophy in DAPHNE
The scheduling philosophy in the DAPHNE system considers four types of scheduling decisions:

work partitioning, work assignment, execution ordering and execution timing.

• Work partitioning refers to the partitioning of the work into units of work (or tasks)

according to a certain granularity (fine or coarse, equal or variable sizes).

• Work assignment is the mapping (or placing) the above units of work (or tasks) onto

individual software units of execution (CPU threads). The DAPHNE compiler choses the

type of hardware execution unit (CPU cores), while the DAPHNE runtime system

currently schedules units of work across software execution units of the same type, e.g.,

CPU threads. For additional details, refer to Deliverables D5.1 and D4.1, sections 3.6 and

3.2.3, respectively.

• Execution ordering describes the order in which the tasks are to be executed. We rely

on the DAPHNE vectorized execution engine, therefore, tasks within a vectorized

pipeline have no dependencies and can be executed in arbitrary order.

• Execution timing denotes the times at which the tasks are to begin execution within the

assigned software execution units (e.g., CPU threads).

Deliverable 5.1 [D5.1] describes the scheduler design for pipelines and tasks in the DAPHNE

system. One may refer to Deliverable 5.1 for more details concerning these four types of

scheduling decisions in the DAPHNE system. Currently, the DAPHNE system gives fine-grain

control over the first two scheduling decisions, work partitioning and work assignment.

Work Partitioning: The current snapshot of the DAPHNE prototype implements twelve work

partitioning schemes: Static (STATIC), Self-scheduling (SS), Guided self-scheduling (GSS),

Trapezoid self-scheduling (TSS), Trapezoid Factoring self-scheduling (TFSS), Fixed-increase self-

scheduling (FISS), Variable-increase self-scheduling (VISS), Performance loop-based self-

scheduling (PLS), Modified version of Static (MSTATIC), Modified version of fixed size chunk self-

scheduling (MFSC), and Probabilistic self-scheduling (PSS). These work partitioning schemes

define the granularity of the tasks generated and scheduled by the DAPHNE system. These

schemes divide tasks into chunks that range in size from N/P to 1, where N is the number of

tasks and P is number of workers. For a detailed description of each partition scheme, see

Section 4.1.1.1 in [D5.1]. This multitude of schemes existed in the literature to address

application load imbalance profiles with minimum scheduling overheads [EC’21].

Work Assignment: The current snapshot of the DAPHNE prototype supports two work

assignment mechanisms: Single centralized work queue (CENTRALIZED) and Multiple work

queues.

When work is centralized in a single work queue, the workers (processes, CPU threads) follow

the self-scheduling principle, which states that whenever a worker is free and idle, it obtains

a task (or a group of tasks) from a central work queue.

When work is distributed across multiple work queues, the workers (CPU threads) follow the

work-stealing principle, which states that whenever workers are free, idle, and have no other

tasks in their local queue, they find a victim worker and steal tasks from the victim’s work queue.

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 3

Distributed work queues can be one per worker (PERCPU) or one per group of workers

(PERGROUP).

Work-stealing requires that workers employ a victim selection mechanism to find a victim

overloaded worker and steal work from its queue. The currently supported victim selection

mechanisms are: steal from the next adjacent worker (SEQ), steal from the next adjacent worker,

but prioritize same NUMA domain (SEQPRI), steal from a random worker (RANDOM), and steal

from a random worker, but prioritize same NUMA domain (RANDOMPRI).

The approach taken by DAPHNE regarding the latter two scheduling decisions: execution

ordering and execution timing is as follows:

Execution ordering: In the initial design discussed in D5.1., the DAPHNE compiler takes care

of the dependencies between individual operator pipelines. However, tasks within one

pipeline have no dependencies. Thus, the DAPHNE runtime has full flexibility to execute them

in any order, i.e., the software execution units can execute tasks in any order. However, since

the implementation relies on First-in-first-out (FIFO) queue-based data structures to store

partitioned work, tasks are executed following the first-come-first-serve (FCFS) principle. In

this case, first-come means first partitioned, while first-serve means first executed. Other

strategies will be supported in DAPHNE in the future, such as using task priorities set given

their memory requirements.

Execution timing: Currently, whenever a worker obtains a task, it immediately begins

executing it. In the future, we will explore other strategies where workers delay (defer) the

execution of certain tasks to relieve the contention over specific resources, e.g., memory sub-

systems.

2 Access to the DAPHNE System

The DAPHNE system prototype is publicly accessible on GitHub, in the development

repository at https://github.com/daphne-eu/daphne. This document uses the latest release of

DAPHNE, specifically release 0.1 (https://github.com/daphne-

eu/daphne/releases/tag/0.1). This release corresponds to the commit with the following

hash key: aa6ef4a20254e12517c7a8acb5beee755d1726f3.

Step 1 Get the DAPHNE source code as follows:

From https://daphne-eu.know-center.at/index.php/s/Zk9HbAZx343LPNADownload daphne-

0.1.tar.gz

Step 2 Install dependencies: set up a Linux environment (tested with Ubuntu v. 20.04), and

install the software dependencies versions specified in docs/GettingStarted.md. Other

alternatives to build the DAPHNE prototype are described in docs/GettingStarted.md and

include the use of containers, e.g., Docker and Singularity.

tar -xzf daphne-0.1.tar.gz
cd daphne

https://github.com/daphne-eu/daphne
https://daphne-eu.know-center.at/index.php/s/Zk9HbAZx343LPNA

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 4

Step 3 Build DAPHNE: within the daphne directory, run the build script. The first time DAPHNE

is built; it may take ~30 minutes.

If the build fails, try to clean the build directory and rebuild DAPHNE as follows:

One can skip this build step and directly go to Step 4 (execution) by using the precompiled

DAPHNE release 0.1 https://github.com/daphne-eu/daphne/releases/download/0.1/daphne-

0.1-bin.tgz.

We use the connected components algorithm to demonstrate all DAPHNE’s scheduling knobs..

The amazon0601 co-purchase dataset (https://snap.stanford.edu/data/#amazon) is also used

as input to the algorithm. We do not ship the DaphneDSL implementation of the connected

components algorithm nor the Amazon co-purchase dataset with the precompiled release.

Therefore, one needs to retrieve the following files

• Amazon0601_0.csv,

• Amazon0601_0.csv.meta, and

• components_read.daphne

available at https://daphne-eu.know-center.at/index.php/s/Zk9HbAZx343LPNA

Step 4 Execute the hello-world example with the following command:

The output of this command should look similar to the one below. The hello-world example

generates two random dense matrices of size (2x3) and (3x2), multiplies, and displays the result

matrix (2x2) (the last displayed dense matrix).

Step 5 To learn about the scheduling options in DAPHNE, execute the following command:

./bin/daphne scripts/examples/hello-world.daph

DenseMatrix(2x3, double)

161.297 117.379 135.027

147.907 199.183 113.272

DenseMatrix(3x2, double)

161.297 147.907

117.379 199.183

135.027 113.272

DenseMatrix(2x2, double)

58026.7 62531.5

62531.5 74380.7

Hello world!

Bye!

./build/bin/daphne --help

First matrix

Second matrix

Result matrix

./build.sh

./build.sh –-clean

./build.sh

https://snap/
https://daphne-eu.know-center.at/index.php/s/Zk9HbAZx343LPNA

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 5

The output of this command will show all DAPHNE’s compilation and execution parameters

including the scheduling options. The output below shows only the scheduling options that

are presented in this deliverable. In the DAPHNE context, a task refers to the smallest unit of

work to be scheduled, i.e., task partitioning and work partitioning schemes are synonymous

(See Deliverable D5.1).

3 Scheduling with DAPHNE
Deliverable D4.1 [D4.1], describes the DAPHNE system and the role of its vectorized (tile)

execution engine to exploit parallelism within computing nodes. The vectorized execution

engine decides the partitioning and assignment of work during applications’ execution.

Therefore, the option --vec is required by all scheduling options described in this document.

3.1 Multithreading Options
Number of threads: A DAPHNE user can control the total number of threads spawned by

the DAPHNE runtime system by using the following parameter --num-threads. The

default value of --num-threads is equal to the total number of physical cores of the host

machine. This default value assumes the best performance is achieved when the number

of threads is equal to the number of physical cores. This parameter takes a positive non-

zero integer value. Illegal integer values, e.g., zero and negative values, will be ignored by

the system and the default value will be used. Below is an example of how to use this

option:

This program compiles and executes a DaphneDSL script.

USAGE: daphne [options] script [arguments]

OPTIONS:

Advanced Scheduling Knobs:
 Choose task partitioning scheme:

 --STATIC - Static (default)

 --SS - Self-scheduling

 --GSS - Guided self-scheduling

 --TSS - Trapezoid self-scheduling

 --FAC2 - Factoring self-scheduling

 --TFSS - Trapezoid Factoring self-scheduling

 --FISS - Fixed-increase self-scheduling

 --VISS - Variable-increase self-scheduling

 --PLS - Performance loop-based self-scheduling

 --MSTATIC - Modified version of Static, i.e., instead of n/p, it uses n/(4*p) where n is number

of tasks and p is number of threads

 --MFSC - Modified version of fixed size chunk self-scheduling, i.e., MFSC does not require

profiling information as FSC

 --PSS - Probabilistic self-scheduling

Choose queue setup scheme:

 --CENTRALIZED - One queue (default)

 --PERGROUP - One queue per CPU group

 --PERCPU - One queue per CPU core

 Choose work stealing victim selection logic:

 --SEQ - Steal from next adjacent worker (default)

 --SEQPRI - Steal from next adjacent worker, prioritize same NUMA domain

 --RANDOM - Steal from random worker

 --RANDOMPRI - Steal from random worker, prioritize same NUMA domain

 --debug-mt - Prints debug information about the Multithreading Wrapper

 --grain-size=<int> - Define the minimum grain size of a task (default is 1)

 --hyperthreading - Utilize multiple logical CPUs located on the same physical CPU

 --num-threads=<int> - Define the number of the CPU threads used by the vectorized execution engine (default

is equal to the number of physical cores on the target node that executes the code)

 --pin-workers - Pin workers to CPU cores

 --pre-partition - Partition rows into the number of queues before applying scheduling technique

 --vec - Enable vectorized execution engine

…

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 6

The output of the command should look similar to the following:

One may increase the total number of threads from 1 to 4 as follows:

The output of the command should look similar to the following

Thread Pinning: A DAPHNE user can decide if the DAPHNE system pins the parallel threads

of the application to the underlying physical CPU cores. By default, the DAPHNE system

does not pin its threads. Nevertheless, the DAPHNE system currently supports the round-

robin pinning strategy, whereby threads are pinned to cores in increasing core ID order,

with wraparound when the number of threads exceeds the available cores. Future pining

strategies will consider cases when other applications execute on specific cores.

The option --pin-workers can be used to enable thread pinning in DAPHNE as follows:

The output of the command should look similar to the following:

Hyperthreading: If the –num-threads is not specified, the DAPHNE system sets the total

number of application threads to the count of the physical cores. Nevertheless, if a host

machine supports hyperthreading, a DAPHNE user can decide to use all available logical

cores. When the user specifies --hyperthreading, the DAPHNE system sets the number

of application threads to the count of the logical cores (which is typically double the count

of physical cores).

The output of the command should look similar to the following:

3.2 Work Partitioning Options
Partitioning scheme: A DAPHNE user selects the partitioning scheme by passing its name

as an argument to the DAPHNE system. If the user does not specify a partitioning scheme,

the default partitioning scheme (STATIC) will be used. This default value (STATIC) represents

the straightforward parallelization and incurs the lowest scheduling overhead.

As an example, the GSS partitioning scheme is used as follows:

./bin/daphne --vec --num-threads=1 --select-matrix-representations --args f=\"./Amazon0601_0.csv\"

./components_read.daphne

Core algorithm time in seconds

2.27857

./bin/daphne --vec --num-threads=4 --select-matrix-representations --args f=\"./Amazon0601_0.csv\"

./components_read.daphne

Core algorithm time in seconds

1.14038

./bin/daphne --vec --num-threads=4 --pin-workers --select-matrix-representations --args

f=\"./Amazon0601_0.csv\" ./components_read.daphne

Core algorithm time in seconds

1.06243

./bin/daphne --vec --num-threads=4 --pin-workers --GSS --select-matrix-representations --args

f=\"./Amazon0601_0.csv\" ./components_read.daphne

./bin/daphne --vec --hyperthreading --pin-workers --select-matrix-representations --args

f=\"./Amazon0601_0.csv\" ./components_read.daphne

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 7

The output of the command should look similar to the following:

Task granularity: A DAPHNE user can exploit the --grain-size parameter to set the

minimum size of the tasks generated by the DAPHNE system. The default value of --

grain-size is 1, i.e., the data associated with a task represents 1 row of the input matrix.

This parameter should be a positive non-zero integer value. Illegal integer values, e.g., zero

and negative values, will be ignored by the system and the default value will be used.

The following command uses SS as a partitioning scheme with a minimum task size of 100

(rows):

 The output of the command should look similar to the following:

3.3 Work Assignment Options
Single centralized work queue: By default, the DAPHNE system uses a single centralized

work queue. However, the user may explicitly use the --CENTRALIZED to ensure the use of

single centralized work queue.

 The output of the command should look similar to the following:

Multiple work queues: a DAPHNE user can exploit the use of multiple work queues by

passing one of the following parameters --PERCPU or --PERGROUP. The two parameters

cannot be used together, and if --CENTRALIZED is used with any of them, --CENTRALIZED

will be ignored by the system. All queues exist within the same shared-memory system

(one computing node). However, we plan to support distributing multiple work queue

across distributed-memory nodes with Remote Procedure Call RPC and Message Passing

Interface (MPI). We also plan to explore other work assignment options for distributed-

memory systems.

• The --PERGROUP parameter ensures that the DAPHNE system creates as many groups

as NUMA domains on the target host machine. The DAPHNE system assigns an equal

number of workers (threads) to each group. Workers within the same group share a

local work queue. The --PERGROUP parameter can be used as follows:

The output of the command should look similar to the following:

Core algorithm time in seconds

0.854172

./bin/daphne --vec --num-threads=4 --pin-workers --SS --grain-size=100 --select-matrix-representations --

args f=\"./Amazon0601_0.csv\" ./components_read.daphne

Core algorithm time in seconds
0.666354

./bin/daphne --vec --num-threads=4 --pin-workers --SS --grain-size=100 --CENTRALIZED --select-matrix-

representations --args f=\"./Amazon0601_0.csv\" ./components_read.daphne

Core algorithm time in seconds

0.677973

Core algorithm time in seconds

0.366549

./bin/daphne --vec --num-threads=4 --pin-workers --GSS --PERGROUP --select-matrix-representations --args

f=\"./Amazon0601_0.csv\" ./components_read.daphne

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 8

• The --PERCPU parameter ensures that the DAPHNE system creates as many queues as

workers (threads), such that each worker is assigned to a single local work queue. The

--PERCPU parameter can be used as follows:

The output of the command should look similar to the following:

Victim Selection: A DAPHNE user can choose a victim selection strategy by passing one

of the following parameters --SEQ, --SEQPRI, --RANDOM, and --RANDOMPRI. These

parameters activate various victim selection strategies as follows

• --SEQ activates a sequential victim selection strategy, i.e., the ith worker steals form the

(i+1)th worker. If the (i+1)th worker does not have work to be stolen, the ith worker tries

to steal from the (i+2)nd worker, and so on. The last worker (ith = num-threads-1) steals

from the first worker (ith=0). The Sequential victim selection strategy SEQ differs from

the Round Robin strategy as follows: when a worker tries to steal from its successor

neighbor, i.e., the ith worker can steal from only the (i+1)th worker as long as (i+1)th has

work to be stolen [G’22].

• --SEQPRI is similar to --SEQ except that workers prioritize stealing from workers that

are assigned to the same NUMA domain. When the host machine only has one NUMA

domain, --SEQ and --SEQPRI work identically.

• --RANDOM activates a random victim selection strategy, i.e., the ith worker steals form a

randomly chosen worker.

• --RANDOMPRI is similar to --RANDOM except that workers prioritize stealing from

workers that are assigned to the same NUMA domain. When the host machine only has

one NUMA domain, --RANDOMPRI and --RANDOMPRI work identically.

In the absence of explicit values to either of these parameters, the DAPHNE system uses

--SEQ as a default victim selection strategy.

As an example, the following command specifies --SEQPRI as a victim selection strategy:

The output of the command should look similar to the following:

4 Extending Scheduling Strategies in DAPHNE
The use of a specific partitioning scheme has a significant influence on applications’

performance. Indeed, partitioning schemes not only impact the sizes of the generated tasks,

but they also indirectly impact the work assignment (following the self-scheduling or the

work-stealing principle) and the granularity of the self-scheduled or stolen tasks, which

influences the frequency of accessing the work queue(s). Therefore, the current design

ensures that DAPHNE developers can add custom work partitioning schemes.

./bin/daphne --vec --num-threads=4 --pin-workers --GSS --PERCPU --select-matrix-representations --args

f=\"./Amazon0601_0.csv\" ./components_read.daphne

Core algorithm time in seconds

0.469539

./bin/daphne --vec --num-threads=4 --pin-workers --GSS --PERGROUP --SEQPRI --select-matrix-representations --

args f=\"./Amazon0601_0.csv\" ./components_read.daphne

Core algorithm time in seconds

0.404724

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 9

A DAPHNE developer can add a custom work partitioning scheme by changing the following

files:

• src/runtime/local/vectorized/LoadPartitioning.h

• src/api/cli/daphne.cpp

The LoadPartitioning.h file contains the implementation of the currently supported scheduling

techniques (see D5.1 for details). The user should change two things:

1. The SelfSchedulingScheme enumeration. The user needs to add a name for the new

technique, e.g., MYTECH:

2. The getNextChunk() function . This function uses a switch case to select the mathematical

formula for determining the work partitioning that corresponds to the chosen scheduling

method. The user needs to add a new case to handle the new technique.

The daphne.cpp file contains the code that parses the command line arguments and

passes them to the DAPHNE compiler and runtime. The user needs to add the new

technique as a valid parameter. Otherwise, the newly added technique cannot be used.

The variable taskPartitioningScheme of type opt<SelfSchedulingScheme> should be extended

with the declaration of MYTECH as follows:

The DAPHNE system needs to be rebuilt as shown earlier. Then, the new technique can be used

as follows

enum SelfSchedulingScheme {STATIC=0, SS, GSS, TSS, FAC2, TFSS, FISS, VISS, PLS, MSTATIC, MFSC, PSS, MYTECH};

uint64_t getNextChunk(){

 //...

 switch (schedulingMethod){

 //...

 //Only the following part is what the user has to add. The rest remains the same

 case MYTECH:{ // the new technique

 chunkSize= FORMULA;//Some Formula to calculate the chunksize (partition size)

 break;

 }

 //...

 }

 //...

 return chunkSize;

 }

opt<SelfSchedulingScheme> taskPartitioningScheme(

 cat(daphneOptions), desc("Choose task partitioning scheme:"),

 values(

 clEnumVal(STATIC , "Static (default)"),

 clEnumVal(SS, "Self-scheduling"),

 clEnumVal(GSS, "Guided self-scheduling"),

 clEnumVal(TSS, "Trapezoid self-scheduling"),
 clEnumVal(FAC2, "Factoring self-scheduling"),

 clEnumVal(TFSS, "Trapezoid Factoring self-scheduling"),

 clEnumVal(FISS, "Fixed-increase self-scheduling"),

 clEnumVal(VISS, "Variable-increase self-scheduling"),

 clEnumVal(PLS, "Performance loop-based self-scheduling"),

 clEnumVal(MSTATIC, "Modified version of Static, i.e., instead of n/p, it uses n/(4*p) where n is

number of tasks and p is number of threads"),

 clEnumVal(MFSC, "Modified version of fixed size chunk self-scheduling, i.e., MFSC does not

require profiling information as FSC"),

 clEnumVal(PSS, "Probabilistic self-scheduling"),

 clEnumVal(MYTECH, "some meaningful description to the abbreviation of the new technique")

)

);

./bin/daphne --vec --pin-workers --MYTECH --select-matrix-representations --args f=\"./Amazon0601_0.csv\"

./components_read.daphne

D5.2 Prototype of Pipelines and Task Scheduling Mechanisms

DAPHNE – 957407 10

5 Conclusion and Outlook
This deliverable describes the scheduling strategies currently supported in the DAPHNE

system. These scheduling strategies include task self-scheduling and work-stealing

mainly for CPUs (For GPUs, FPGAs, and other accelerators, the scheduler follows the

same task partitioning and queuing strategies [D7.1]). The deliverable also detailed the

scheduling options that control the DAPHNE execution threads and their pinning.

Information about extending specific scheduling options in the DAPHNE system is also

provided.

Specific aspects, such as thread pinning strategies and interfacing with resource

managers, are subject to improvement in upcoming deliverables.

For instance, the DAPHNE system works in execution environments managed by

resource managers such as Slurm or YARN. Such resource managers often expose to

user configuration options via environment variables. Currently, DAPHNE users have to

pass the same configuration to the DAPHNE system, e.g., the number of threads and

thread pining strategy. Future extensions will ensure that the DAPHNE system capture

such information directly from the resource managers. We also plan to ultimately

expose additional interfaces for greater extensibility, e.g., augmenting victim selection

strategies and custom worker-to-work-queue mapping.

6 References

[D4.1] DAPHNE: D4.1 DSL Runtime Design, 11/2021.

[D5.1] DAPHNE: D5.1 Scheduler Design for Pipelines and Tasks, 11/2021.

[D7.1] DAPHNE: D7.1 Design of integration HW accelerators, 11/2021

[EC’21] A. Eleliemy and F. M. Ciorba, “A Distributed Chunk Calculation Approach for

Self-scheduling of Parallel Applications on Distributed-memory Systems”, In

International Journal of Computational Science (JOCS)

[G’22] J. Giger, “Task Scheduling and Work Stealing in the DAPHNE Runtime

System”, Master’s thesis, University of Basel, July 2022 (PDF).

https://hpc.dmi.unibas.ch/wp-content/uploads/sites/87/2022/08/msc_thesis_jonathan_giger-1.pdf

