

D4.2 DSL Runtime Prototype

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.3

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D4.2 DSL Runtime Prototype

DAPHNE – 957407 1

Document Description

DAPHNE is an open and extensible system infrastructure for Integrated Data Analysis (IDA)

pipelines, including language abstractions, compilation and runtime techniques, multi-level

scheduling, hardware accelerators, and computational storage. Previous deliverables described

the initial [D2.1] and refined [D2.2] DAPHNE system architecture, while the initial design of the

local and distributed DAPHNE runtime system was described in D4.1.

In this deliverable we demonstrate the use of the DAPHNE runtime by sharing a snapshot of

the DAPHNE prototype, and provide an example scenario of running simple DaphneDSL scripts

on the local runtime as well as on the distributed runtime. We also demonstrate how to

automate the deployment of the distributed DAPHNE system by using scripts. Finally, we

provide information regarding the code organization, how the runtime system can be

extended, and conclude with outlining some of its current limitations that will be addressed in

future releases.

This demonstrator and document are the result of the collaborative work that is performed by

all consortium partners that participate in WP4 “DSL Runtime and Integration”, i.e., ICCS,

KNOW, UNIBAS, ETH, ITU, HPI, and UM.

D4.2 DSL Runtime Prototype

WP4 – DSL Runtime and Integration

Type of document R Version 1.3

Dissemination level PU Project month 24

Lead partner ICCS

Author(s) Aristotelis Vontzalidis (ICCS), Vasileios Karakostas (ICCS), Stratos

Psomadakis (ICCS), Konstantinos Bitsakos (ICCS), Georgios Goumas

(ICCS), Dimitrios Tsoumakos (ICCS), Florina M. Ciorba (UNIBAS),

Ahmed Hamdy Mohamed Eleliemy (UNIBAS), Gabrielle

Poerwawinata (UNIBAS)

Reviewer(s) Tilmann Rabl (HPI), Benjamin Steinwender (KAI)

Revision History

Version Revisions and Comments Author / Reviewer

V1.0 Initial outline All authors

V1.1 Updated content Aristotelis Vontzalidis

V1.2 Updated content and polished text All authors

V1.3 Update content based on comments from Tilmann

Rabl and Benjamin Steinwender, and final polishing

Vasileios Karakostas,

Aristotelis Vontzalidis,

Dimitrios Tsoumakos

D4.2 DSL Runtime Prototype

DAPHNE – 957407 2

1 Background and Updates
To make this document self-contained, we briefly present an overview of DAPHNE and then

provide a few important updates regarding the design and implementation of the DAPHNE

distributed runtime system.

1.1 Background

DAPHNE works in a hierarchical approach [D4.1], by logically splitting the nodes of a cluster

into the coordinator node and the compute worker nodes (Figure 1.1). The coordinator node

implements the distributed runtime logic and is responsible for orchestrating the data and

work distribution among workers. The coordinator sends necessary data and code to each

worker by using its distribution primitives and receives their respective results. Each worker

executes the received code through the local runtime system via the vectorized execution logic.

Figure 1.1: DAPHNE Hierarchical Approach.

The DAPHNE vectorized execution works by fusing multiple operations together and exploiting

data parallelism [D+22]. Code changes are not required; instead, DAPHNE creates pipelines

containing two or more operations. Data is split across multiple processing units (CPUs) and

each processing unit works on a chunk of data. Figure 1.2 shows how the DAPHNE vectorized

execution works locally at node level.

DAPHNE Worker

Local Runtime

DAPHNE Worker

Local Runtime

DAPHNE Worker

Local Runtime

DAPHNE Coordinator

Distributed Runtime

DAPHNE

DSL script

CPUs/

NUMA

GPUs

FPGAs/

ASICs

Harness data parallelism and locality via vectorized execution

D4.2 DSL Runtime Prototype

DAPHNE – 957407 3

Figure 1.2: DAPHNE Local Execution.

1.2 Design and Implementation Updates

Deliverable D4.1 described the initial design of the DAPHNE distributed runtime system, where

fused operator pipelines were not supported. During the second year of the project, the initial

design and implementation were significantly refactored in order to provide such support.

Instead of executing single “distributable” operations one after the other in distributed fashion,

we can now fuse multiple operators into a “distributed pipeline” which is then computed on

multiple workers. At runtime, the coordinator sends data chunks to the workers using the

distribution primitives, and then the coordinator sends to the workers the MLIR code fragment

of the pipeline (i.e., one or more fused operators) to be executed. Each worker locally compiles

the received IR code fragment in order to optimize the code generation targeting its available

resources (CPUs, GPUS, accelerators, etc.), and executes the generated code through the local

runtime system via the vectorized execution engine.

The updated distributed runtime supports the vectorized execution engine and works very

similarly to the local runtime (Figure 1.3). Instead of CPUs, there are multiple distributed nodes

that receive chunks of data and perform computations on them. At the moment, the

distributed-pipeline generation is heavily dependent on the vectorized engine that uses the

same compiler and runtime techniques to fuse multiple operations together as in local

execution.

print("Hello world!");
m1 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m2 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m3 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m4 = m1 + m2;
m5 = m3 + m4;
print(m1);
print(m4);
print(m5);
print("Bye");

• Compiler fuses multiple operations into a

"pipeline“

• Runtime chunks inputs, orchestrates

execution, and collects outputs

• Arguments: m1, m2, m3

• Two fused operations

• Result: m4, m5

m1, m2, m3
CPUs

#1

#2

#3

#4

Pipeline: + operations

#1

#2

#3

#4

D4.2 DSL Runtime Prototype

DAPHNE – 957407 4

Figure 1.3: DAPHNE Distributed Execution.

Moreover, we decoupled the distributed runtime execution from the gRPC communication

framework which was tightly linked in the past. This makes it easy to extend DAPHNE and

integrate it with any communication framework. In that context, we integrated DAPHNE with

the MPI library and we now provide primitive support for running the distributed DAPHNE

system with MPI, in order to leverage its characteristics for improved performance.

Furthermore, we extended the I/O support for using multiple data formats, such as Arrow and

Matrix market, in addition to the CSV format. Finally, we defined and implemented our own

DAPHNE file format along with custom (de)serialization support to enable more efficient IO

and network communication.

2 Artifact Access
The DAPHNE DSL runtime prototype that is described in this deliverable is publicly accessible

as a snapshot of the DAPHNE development repository (created in November 7th, 2022) under

the following link:

Link: https://daphne-eu.know-center.at/index.php/s/7biwzCQdYcSzgrF (22 MB)

Note that the DAPHNE development repository is publicly available at

https://github.com/daphne-eu/daphne under Apache License v2.0.

3 Demonstration scenario
We present two demonstration scenarios. The first scenario targets the execution of DAPHNE

on a single node using the local runtime, while the second scenario targets the execution of

DAPHNE on a cluster of nodes using the distributed runtime. We use the following

example.daph script to demonstrate the fusion of operations for both the local and the

distributed runtime:

print("Hello world!");
m1 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m2 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m3 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m4 = m1 + m2;

Collect outputs

Worker Nodes Workers start execution

print("Hello world!");
m1 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m2 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m3 = rand(6, 6, 1.0, 10.0, 1.0, 1);
m4 = m1 + m2;
m5 = m3 + m4;
print(m1);
print(m4);
print(m5);
print("Bye");

m1, m2, m3

#1

#2

#1

#2

Distribute

m4, m5

Broadcast MLIR code

fragment

#1

#2

CPUs

Local vectorized execution per worker

https://daphne-eu.know-center.at/index.php/s/7biwzCQdYcSzgrF
https://github.com/daphne-eu/daphne

D4.2 DSL Runtime Prototype

DAPHNE – 957407 5

m5 = m3 + m4;
print(m1);
print(m4);
print(m5);
print("Bye");

3.1 Prerequisities

Step 1 Install Dependencies: Setup a Linux environment (tested with Ubuntu 20.04), and

install the dependency versions specified in docs/GettingStarted.md, which includes clang,

cmake, git, lld, ninja, pkg-config, python3, openjdk, gfortran, and uuid-dev. For tests related to

DAPHNE’s Python API, installing numpy in the Python environment is needed.

Step 2 Download and Extract: Download the artifact from the link in Section 2, and extract it

as follows into a directory called daphne.

 $ tar -xvf daphne.tar.gz

 $ cd daphne

Step 3 Build DAPHNE: Build the DAPHNE prototype from inside the directory you created at

step 2.

 $./build.sh

3.2 Local Runtime

Step 4 Run DAPHNE: Run the aforementioned example script on the local runtime:

 $./bin/daphne example.daph

Figure 3.1: Building DAPHNE.

D4.2 DSL Runtime Prototype

DAPHNE – 957407 6

3.2.1 Vectorized engine

Step 5 Run DAPHNE with vectorized engine: Run the same script with the --vec flag:

 $./bin/daphne --vec example.daph

Step 6 Explain DaphneIR: Run the same scenario with the additional explain flag in order to

investigate the generated DaphneIR and observe the generated pipeline:

 $./bin/daphne --vec --explain=kernels example.daph

3.3 Distributed Runtime

From the user perspective, utilizing the DAPHNE distributed runtime does not require any

changes to the DaphneDSL script. From the system perspective, the distributed runtime

requires communication support between the coordinator and the worker nodes. We currently

provide support for using two different communication frameworks between the coordinator

and the workers, i.e., gRPC (more mature-level support) and MPI (initial-level support).

3.3.1 gRPC

Distributed runtime with gRPC requires manually building and starting/deploying distributed

workers, which communicate with the coordinator using the gRPC framework.

Step 4 Build DistributedWorker: DAPHNE’s DistributedWorker can be built with:

 $./build.sh --target DistributedWorker

Figure 3.2: Running the DAPHNE local runtime with an example script.

D4.2 DSL Runtime Prototype

DAPHNE – 957407 7

Step 5 Start Workers: After the DistributedWorker is built, manually execute as many workers

as preferred and specify an IP and Port to listen to for each one. In this scenario two workers

listen to localhost and use ports 50001 and 50002.

 $./bin/DistributedWorker IP:PORT

Figure 3.4: Starting DAPHNE's distributed workers.

Step 6 Set environmental variables: The coordinator needs to know at which IPs and ports

the workers listen on. For now, we use an environment variable “DISTRIBUTED_WORKERS” to

specify a comma-separated list of workers addresses.

 $ export DISTRIBUTED_WORKERS=localhost:50001,localhost:50002

Step 7 Run DAPHNE: Finally, after distributed workers are deployed and the environmental

variable is set, DAPHNE can be executed in a distributed fashion by providing the --

distributed switch.

 $./bin/daphne --distributed example.daph

Figure 3.3: Building DAPHNE's distributed workers.

D4.2 DSL Runtime Prototype

DAPHNE – 957407 8

3.3.2 MPI

The current MPI implementation is under heavy development and is not yet included in the

main repository of DAPHNE or in the deliverable snapshot. However, we showcase what is

currently implemented and provide an example of future additions.

The biggest difference between MPI and gRPC is that the former does not require the user to

manually start and deploy workers. The MPI runtime handles all that, as long as the user

specifies that MPI will be used as the distributed back-end. The distributed execution with MPI

is much simpler and more straightforward for the user; however, it requires MPI to be pre-

installed in the system. Note that the --dist_backend flag is not currently supported but will

be added in a future version of DAPHNE.

Example use with 4 workers:

 $ mpirun -n 4 ./bin/daphne --distributed --dist_backend=MPI
example.daph

Figure 3.5: Running the DAPHNE distributed runtime with an example script.

D4.2 DSL Runtime Prototype

DAPHNE – 957407 9

3.4 Deployment of distributed runtime
deploy/deployDistributed.sh

This script automates the task of building, packaging, deploying, and managing distributed

workers on remote machines. Note that this script is intended to be used along with the gRPC

distributed back-end, since MPI does not require any prior deployment.

Prerequisites: Before using this script, SSH configuration must be set within it.

Running deployDistributed.sh: The script is invoked from the root DAPHNE directory.

 $./deploy/deployDistributed.sh --help

Figure 3.6: Running the MPI DAPHNE distributed runtime with an example script.

Figure 3.7: SSH configuration within the

deployDistributed.sh script

D4.2 DSL Runtime Prototype

DAPHNE – 957407 10

Build and deploy the DAPHNE DistributedWorker at a specified path on remote machines:

 $./deploy/deployDistributed.sh --deploy --pathToBuild

~/DaphneDistributedWorker --peers localhost:50051,localhost:50052

$./deploy/deployDistributed.sh --deploy --pathToBuild ~/DaphneDistributedWorker --peers

localhost:50000,localhost:50001

Start, get status and terminate the DAPHNE DistributedWorkers:

 $./deploy/deployDistributed.sh --run

 $./deploy/deployDistributed.sh –status

$./deploy/deployDistributed.sh --kill

Figure 3.8: Usage of the deployDistributed.sh script.

D4.2 DSL Runtime Prototype

DAPHNE – 957407 11

4 Prototype Structure
We now present in detail how the runtime-related code of the DAPHNE prototype is organized,

along with a brief description. The runtime source code is located at src/runtime/:

• distributed (distributed runtime source code)

o coordinator (distributed coordinator code)

o proto (gRPC and protobuf)

o worker (distributed worker)

• local (local runtime source code)

o context (runtime context information)

o datagen (data generation utils)

o datastructures (implementation of DAPHNE’s data structures)

o io (input/output)

o kernels (implementation of DAPHNE’s build in functions)

o vectorized (vectorized engine)

5 Extending the DAPHNE Runtime
DAPHNE is designed to be highly extensible. A DAPHNE developer can easily implement

additional DAPHNE built-in functions (kernels) for the local runtime. See more in the GitHub

documentation section:

https://github.com/daphne-

eu/daphne/blob/main/doc/development/ImplementBuiltinKernel.md

In addition, the distributed runtime is decoupled from the communication framework, making

it easy to extend and implement additional options. See more about developing the distributed

runtime here:

https://github.com/daphne-

eu/daphne/blob/main/doc/development/ExtendingDistributedRuntime.md

Figure 3.9: Running and terminating the DAPHNE distributed workers.

https://github.com/daphne-eu/daphne/blob/main/doc/development/ExtendingDistributedRuntime.md
https://github.com/daphne-eu/daphne/blob/main/doc/development/ExtendingDistributedRuntime.md

D4.2 DSL Runtime Prototype

DAPHNE – 957407 12

6 Limitations
The distributed runtime is still under heavy development and currently there are various

limitations. Most of these limitations will be fixed in future releases.

• The distributed runtime system currently depends heavily on the vectorized engine of

DAPHNE and how pipelines are created and multiple operations are fused together.

This causes some limitations related to pipeline creation (e.g., not supporting pipelines

with different result outputs or pipelines with no outputs).

• The distributed runtime system currently supports only DenseMatrix types and

double value types – DenseMatrix<double>.

• A DAPHNE pipeline input might exist multiple times in the input array. This is currently

not supported. In the future, similar pipelines will simply omit multiple pipeline inputs

and each one will be provided only once.

• Memory release at worker (node) level is not implemented yet. This means that after

some time, the workers can could have their memory filled up completely, requiring a

restart.

7 References
[D2.1] DAPHNE: D2.1 Initial System Architecture, EU Project Deliverable, 08/2021.

[D2.2] DAPHNE: D2.2 Refined System Architecture, EU Project Deliverable, 08/2022.

[D4.1] DAPHNE: D4.1 DSL Runtime Design, EU Project Deliverable, 11/2021.

[D+22] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe

Bonnet, Florina Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber,

Georgios Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innerebner,

Vasileios Karakostas, Roman Kern, Tomaž Kosar, Alexander Krause, Daniel Krems, Andreas

Laber, Wolfgang Lehner, Eric Mier, Marcus Paradies, Bernhard Peischl, Gabrielle Poerwawinata,

Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin, Andreas

Starzacher, Benjamin Steinwender, Ilin Tolovski, Pınar Tözün, Wojciech Ulatowski, Yuanyuan

Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, and Xiao Xiang Zhu. “DAPHNE: An Open and

Extensible System Infrastructure for Integrated Data Analysis Pipelines”, In 12th Annual

Conference on Innovative Data Systems Research (CIDR 2022).

