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Document Description 
This report on the language design specification summarizes the design of DAPHNE’s domain-
specific language (DSL) and related user-facing application programming interfaces (APIs). 
Similar to the initial system architecture, described in deliverable D2.1, this language design is 
a result of many discussions with the entire consortium, especially WP2-WP7 because the 
language abstractions define operational capabilities of the DAPHNE system infrastructure, but 
also WP8/9 in order to align with the requirements of the use cases and broader benchmarking. 
The DAPHNE DSL is further closely related to the DAPHNE intermediate representation (IR) and 
compilation chain. Therefore, this report also summarizes the current DaphneIR, and related 
compiler design, as well as early ideas on extensibility at language, compiler, and runtime level. 
Since February 2021, a prototype of the DAPHNE infrastructure is under development, which 
already implements the core of the presented language design. The initial open source release 
of the DAPHNE prototype is planned for early 2022, through which we also aim to share the 
subsequent D3.2 and D3.3 demonstrator deliverables on the compiler prototype. 
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1 Abstract 
DAPHNE aims to provide an open and extensible system infrastructure for integrated data 
analysis (IDA) pipelines that combine data management (DM) and query processing, high-
performance computing (HPC), and machine learning (ML) training and scoring. Although 
state-of-the-art systems in these areas rely on a variety of different programming paradigms 
and language abstractions, they share many compilation and runtime strategies and thus, have 
intrinsic commonalities that ultimately allow us to define common language abstractions and 
their holistic optimization. Increasing specialization of applications, execution strategies, data 
types, and the underlying hardware further motivate data independence and extensibility as 
key design principles. In this report, we introduce the context of existing language abstractions 
and their limitations, overall design principles, and the initial design of the DAPHNE domain-
specific language (DSL), user-facing application programming interfaces (APIs) for bridging the 
gap to the use cases, as well as the underlying DAPHNE intermediate representation (IR) and 
compilation chain. In detail, we utilize MLIR [LP+20] as a compiler infrastructure with increasing 
adoption and devise DaphneIR as a new MLIR dialect. Finally, we describe the initial plans for 
future extensibility at language, compiler, and runtime level.   

 

2 Introduction 
Context and Background: Developing and deploying efficient integrated data analysis (IDA) 
pipelines is still a major challenge as it requires orchestrating a number of different systems 
and data formats, and lacks the ability for holistic optimizations across entire IDA pipelines. 
Together with the increasing specialization of applications, execution strategies, data types, 
and the underlying hardware, we observe major productivity, overhead, and utilization 
challenges. First, tuning individual IDA pipelines for emerging hardware and changing data 
characteristics requires substantial manual effort and is often unsustainable in real-world 
scenarios. Second, orchestrating IDA pipelines with a variety of specialized systems reduces the 
effort but causes overhead for boundary crossing (e.g., materialization of intermediates), static 
resource allocation (temporal and/or spatial under-utilization), and lacks the ability of 
optimization and redundancy elimination (data and computation) if IDA pipeline primitives are 
mixed in repetitive or iterative computations. A necessary requirement for an open and 
extensible system infrastructure for entire IDA pipelines is a common language abstraction.  

Existing Language Abstractions: Data management, HPC, and ML systems are all well-
established fields with long histories of their language abstractions.  

• First, in data management the introduction of the relational model [C70] spawned a 
variety of query languages like QUEL [SW+76] (based on tuple calculus) and SEQUEL 
[CB74] (based on relational algebra), which ultimately led to the SQL standard. The 
success of SQL was driven by its declarative nature (what, not how), flexibility of 
composing arbitrarily complex queries (closure property), automatic optimization of 
plans, and physical data independence (applications independent of data organization). 
Over time, SQL has been extended with good support for user-defined functions (UDF, 
e.g., in PostgreSQL [S16]), procedural dialects like PL/SQL, TSQL Froid [RP+17], and SQL 
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Script [BMM13]. Similar to internal execution plans in column stores like MonetDB 
[MBK00], recently also data-frame operations are widely used for data preparation and 
query processing, in both local and distributed environments, with systems like 
SparkSQL [AX+15], Dask [R15], and DuckDB [RM20]. 

• Second, in HPC the focus was – and largely still is – primarily on custom application 
codes and optimizing programming language compilers for FORTRAN and C. Major 
programming models include shared memory abstractions like OpenMP (open multi-
processing) and X10 [CG+05,MG+11], as well as message passing like MPI (message 
passing interface) and related collective operations. Specific applications, e.g., for multi-
resolution simulations, also led to more specialized programming models like stencil-
based computations. Over time, a rich ecosystem of libraries for numerical 
computations and simulations like FEM (finite element method) or CFD (computational 
fluid dynamics) have been developed. A central abstraction, however, are multi-
dimensional arrays and related operations, which allow the reuse of highly-tuned, 
hardware-vendor-provided BLAS and LAPACK libraries. 

• Third, ML systems are in comparison to DM and HPC, still in their infancy but rapidly 
evolving. Language abstractions range from UDF-based systems [HR+12] (in DBMS or 
data-parallel frameworks), libraries of hand-crafted ML algorithms, over graph-based 
processing systems, and linear-algebra-based systems [BBY13,BD+16], to more 
specialized high-level and low-level frameworks for deep neural networks (DNN), 
model management, and feature-centric tools like DeepDive [SW+15], Overton [Re20], 
and Ludwig [MDM19]. Major classification dimensions include the language 
abstractions (operator libraries, algorithm libraries, computation graphs, linear algebra, 
layers/optimizers), execution strategies, distribution strategies, and underlying data 
types. Given the approximate nature of machine learning, there is also a wide variety of 
optimization objectives such as, minimize time subject to memory constraints, minimize 
monetary cost s.t. time constraints, and maximize accuracy s.t. time constraints.  

Despite these very different language abstractions, programming models, and optimization 
objectives, there is common ground: all of these systems fundamentally work with 
combinations of data frames (tables with different types per column), and matrices/tensors 
(multi-dimensional arrays with homogeneous type). Providing the necessary basic functionality 
and extensibility on top of these abstract data types has the potential to allow a seamless 
specification and execution of integrated data analysis pipelines.  

Design Principles: Before describing the DAPHNE language abstractions in detail, we first want 
to lay out key design principles that govern the individual design decisions: 

• DP1: Frame and Matrix Operations: Many ML algorithms, analytical query processing, 
and numerical computation can be expressed via coarse-grained frame and matrix 
operations. Recent work on ML-assisted data cleaning [DR18], mapping of tree-based 
algorithms to matrix operations [NS+20], and even complex enumeration-based ML 
model debugging via linear algebra [SB21] show its wide applicability. Although such 
coarse-grained operations might appear restrictive, they preserve the semantics of 
operations, and tremendously simplify the parallelization and lowering to kernels for 
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emerging hardware. Overall, we aim to provide a hierarchy of language abstractions for 
ML algorithms and composite primitives based on frame and matrix operations. 

• DP2: Data Independence: In contrast to many state-of-the-art ML systems, we aim to 
follow the success of SQL and provide data independence by default. Instead of 
requiring users to specify data representations like dense, sparse, and compressed; or 
data locations like local CPU, local GPU, or distributed, users only work with abstract 
data types and the compiler and runtime optimize the IDA pipeline for the given data 
and deployment characteristics. This principle is crucial, especially for libraries of 
composite DSL-based primitives during whose development the concrete deployment 
environment and data characteristics are still unknown.  

• DP3: Extensibility: Data independence and automatic optimizations are great 
aspirations but face challenges with regard to extensibility for new operations, data 
types, and hardware. Given the expectation of increasing specialization across the 
software and hardware stack, DAPHNE’s design and language abstractions aim for 
good extensibility to allow researchers to quickly experiment with new prototypes and 
extensions of system infrastructure for new specific environments. 

Contributions: Following these three design principles, we created an initial design of the 
DaphneDSL and DaphneLib. In this report, we share the designs of these language abstractions 
and related compiler, as well as selected implementation details related to both the language 
abstractions and intermediate representation. The technical contributions include: 

• DSL and API Design: First of all, in Section 3, we introduce the DAPHNE domain-specific 
language DaphenDSL including data types, operations, control flow, and additional 
language abstractions. In this context, we also introduce the DAPHNE Python API 
(DaphneLib) and parsers for other DSLs and embedded language abstractions like SQL. 

• Compiler Design: Subsequently, in Section 4, we discuss the MLIR-based compilation 
chain and the mapping of DaphneDSL into executable runtime plans. This discussion 
also includes an overview of major compiler components. 

• Hooks for Extensibility: Given the design principle of extensibility, in Section 5, we then 
discuss plans for extensibility at DSL, compiler, and runtime level in order to allow 
researchers to experiment with new operations, data types, optimizations, and 
emerging hardware devices in end-to-end IDA pipelines. 

• Related Work: Finally, in Section 6, we summarize related projects and systems that also 
focus on compiler or system infrastructure for more complex IDA and ML pipelines, as 
well as aspects of extensibility. 

 

3 APIs, DSL and Language Abstractions 
The overall system architecture, including the goals of the DaphneLib and DaphneDSL, has 
been laid out in Deliverable 2.1 [D2.1]. Figure 1 shows this overall architecture. From a user 
perspective, the DaphneDSL – as a domain-specific language for data management, HPC, and 
ML training/scoring – is the main entry point, but additional APIs are provided to allow a 
seamless integration into typical workflows and environments of data scientists, ML and data 
researchers, as well as experts of specific application domains. In this section, we describe the 
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detailed designs of the DaphneDSL and DaphneLib (a Python API with lazy evaluation), as well 
as means for integrating other DSLs and application libraries. 

 

 

Figure 1: DAPHNE System Infrastructure [D2.1]. 

 

3.1 DaphneDSL: A Domain-specific Language 
Overview: The DaphneDSL is a domain-specific language inspired by ML systems as well as 
languages and libraries for numerical computation like Julia [BK+12], Python NumPy [HM+20], 
R [MH+12], and SystemDS DML [BA+20]. At a high-level, this DSL supports conditional control 
flow, typed and untyped functions; abstract data types of frames, matrices, and scalars; various 
built-in operations (i.e., functions and operators), and additional second-order language 
abstractions. A user creates a simple text file with a DSL script (e.g., example.daphne) and can 
parse, compile, and execute this script via 

./build/bin/daphnec example.daphne 

In order to parse this user script example.daphne into DaphneIR (DAPHNE’s intermediate 
representation), we use ANTLR4, for which we provide a DSL grammar file and generate the 
respective parser in an offline manner on grammar updates. In the future, we will further 
simplify this invocation to ’daphne example.daphne’. The DaphneIR representation is then 
the input to the DAPHNE compiler and runtime as described in Section 4.  

Data and Value Types: DaphneDSL differentiates data types and value types. Supported data 
types includes frames (a table with columns of potentially different value types), matrices 
(homogeneous value type) and scalar values, but in the future we will likely extend this by 
tensors and named/unnamed lists to group instances of such data types and access by name 
and/or position (e.g., params[“lr”], or params[7]). Value types specify the representation of 
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individual values and currently we support: SI8, SI32, SI64, UI8, UI32, UI64, FP32, FP64 (various 
integer and floating point representations). In addition, we also support strings but currently 
only for scalars. The combination of data and value types gives already powerful data 
representations such as Matrix<FP32> and Frame<SI32, SI8, FP64>.  

Basic Built-in Operations: The supported frame and matrix operations include both relational 
algebra and linear algebra as well as various aggregation and statistical functions. In detail, the 
list of operations includes 100s of operations of the following categories: 

• Matrix multiplications, and various decompositions/solvers  
• Elementwise operations (e.g., unary, binary, ternary, n-ary) 
• Aggregations and statistical functions (e.g., sum(), rowSums(), colSums(), median()) 
• Indexing and reorganization (e.g., transposition, extraction and insert, reshaping) 
• Deep neural network layers and optimizers 
• Set operations with set and multiset semantics, Cartesian product 
• Selection and extended projection (with arithmetic operations) 
• Joins (inner, outer, theta, semi, anti), and group-by aggregation 
• Deduplication, sorting, renaming, and casting  
• Read and write of common formats (e.g., csv, matrix market, parquet, arrow, hdf5) 

Example DSL Program: For instance, the following DaphneDSL program computes the 
connected components (connected subgraphs) of a co-author graph.  

  G = readCOO("./AuthorCOO.csv");  // n-by-n Boolean matrix 
  n = nrow(G);   // get the number of rows (i.e., number of vertexes) 
  maxi = 1000; 
  c = seq(1, n); // initialize n-by-1 matrix of vertex IDs (1 through n) 
  diff = inf;    // initialize diff to +Infinity 
  iter = 1; 

  // iterative computation of connected components 
  while(diff>0 & iter<=maxi) { 
    u = max(rowMaxs(G * t(c)), c); // propagate to neighbors, take new max  
    diff = sum(u != c);            // number of changed vertex states 
    c = u;                         // update vertex assignment 
    iter = iter + 1;  
  } 

We read a CSV file in coordinate format of row indexes, column indexes, and values (ones) into 
an expanded (likely sparse) matrix representation, where each row and column refers to an 
author (i.e., vertex or node in the graph) and non-zero cells refer to a co-author relationship. 
We then initialize the state of each vertex with a unique ID and iteratively propagate the current 
state to all neighbors (here, G*t(c) performs a matrix/row-vector elementwise multiplication 
with broadcasting of the transposed vector). The new vertex states are computed as the 
maximum IDs received from neighbors and current state. That way, the maximum vertex ID per 
component propagates through the entire subgraph, and once a fixpoint (no more changes) 
is reached, we terminate and obtain the assignment of nodes to connected components.  

Control Flow and Function Calls: In order to enable complex user programs, we also support 
conditional control flow with loops, branches, and function calls. The basic control flow 
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constructs are mapped to the existing MLIR dialect SCF (structured control flow), but we are 
not limited to its components. First, regarding loops, we support for, while-do, and do-while 
constructs, but will further add parfor (parallel for) loops [BT+14] as a hint for parallelization 
strategies (see extensibility). Second, branches use the classic if-elseif-else syntax. Both loops 
and branches allow for arbitrary nesting levels. Third, functions are one of the oldest and most 
powerful abstractions of computer science. In order to build a hierarchy of DSL-based 
primitives, we aim to support both typed and untyped functions. For example, consider 
wrapping the above example DSL program for connected components into a function 
components() and making it available as a registered built-in function. 

  def components(G, maxi, verbose) { ... } 

  def components(Matrix G, int maxi, bool verbose) { ... } 

  def components(Matrix<UI1> G, UI32 maxi, UI1 verbose) { ... } 

  def components(Matrix<UI1> G, UI32 maxi, UI1 verbose)  
    return (Matrix<UI64>) { ... } // one output matrix of UI64 value type 

These alternative specifications allow for very good flexibility (untyped functions are compiled 
and specialized on demand according to types at a call site) as well as typing (for data and/or 
value types) if the types are known during development. For example, the given connected 
component algorithm assumes Boolean input graphs (1 bit integers) and can make this explicit. 
Note that we took inspiration from Python type hints (e.g., def foo(x:T) -> T:) and Julia 
type assertions (function foo(x::T)::T). Multiple function returns also require multi-
assignments such as X,Y = foo(Z) for a function that returns two results and binds them to 
X and Y, respectively. Function call arguments can be passed by position (e.g., u = 
components(myGraph,100,1)) or name (u = components(G=myGraph)), were the latter 
allows arbitrary argument orderings and defaults. For both DSL-based functions and built-in 
operations, we aim to allow, similar to Julia [BC+18], multiple dispatch where function calls are 
dispatched to the most specific type combination of inputs. In contrast to general-purpose 
programming languages, we only allow top-level function declarations together with 
namespaces, which allows the packaging of function libraries without conflicts.  

Scoping and Type Polymorphism: Related to conditional control flow, we use bounded 
scoping from traditional programming languages as shown below in the example on the left. 
If an intermediate variable (e.g., X) is created in a certain nested scope, it is deleted at the end 
of this scope. This scoping is in contrast to R’s unbounded scoping, which is useful due to 
missing variable declarations. However, via simple matrix/frame constructors, as shown below 
in the example on the right, we can easily overcome the need for type declarations. Variable 
shadowing is not supported, so an assignment of X overwrites the outer scope’s variable but 
in a function-local manner (no side effects on global variables outside the function). 

  if( sum(Y) > 0 ) { 
    X = Y @ Z; // matmult 
    print(sum(X)); 
  }  
  // delete X on exit 

X = matrix(0, 0, 0) // needed 
if( sum(Y) > 0 ) 
  X = Y @ Z1; 
else 
  X = Y @ Z2; 
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Furthermore, the DaphneDSL has copy-on-write semantics by default, where assignments like 
A = B, and function calls are copy-by-reference, but any modification like B[i,] = C, implicitly 
copies B, performs the partial update and assigns the new intermediate to B, while A remains 
unmodified. This approach is consistent with R’s copy-on-write semantics, whereas other 
languages like Julia use update-in-place by default and require users to perform explicit 
A=copy(B) operations if implicit updates to multiple objects are unintended. Internally, the 
DAPHNE compiler and runtime then help to avoid unnecessary copies (e.g., via update-in-place 
flags and/or reference counting). Finally, DaphneDSL provides limited type polymorphism in 
terms of non-polymorphic data types but polymorphic value types as shown in below example: 

  X = matrix(0, 2, 2, SI32) 
  if( sum(Y) > 0 ) 
    X = sum(Y); // X can’t assign scalar 
  else if( sum(Y) < 0 ) 
    X = matrix(7.3, 10, 10, FP32) // ok 

Here, X is initialized as a 2-by-2 integer matrix, and thus cannot be assigned a scalar data type 
(which would give the user an error during compilation), but a matrix data type of different 
value types (float here) and shapes. This approach ensures that, despite conditional control 
flow, the compiler can infer data types at all times, while the user gets enough flexibility in 
terms of value types that are not always obvious to infer. Kernels for different value types can 
also more easily be handled at compiler and runtime level via dispatch mechanisms while, for 
example, distributed operations for scalars are not meaningful.  

Higher-level Built-in Operations: In addition to the basic built-in operations, we further aim 
to provide higher-level built-in operations. This includes DSL-based functions and second-
order functions. First, DSL-based functions are composite functions written in DaphneDSL that 
are registered in packages that can be imported in other DaphneDSL scripts. Good examples 
are packages for ML algorithms and individual DNN layers that can be directly called by 
applications. Second, we also aim to support various second-order functions that take 
functions as arguments. In detail, these functions include built-in functions for (a) executing 
SQL queries over registered tables, (b) primitives like parameter servers for data-parallel mini-
batch training, and (c) user-defined functions with different data bindings.  

  // (a) SQL query processing 
  registerView(“XTab”, X);                   // X:= [a SI32, b SI8, c FP64] 
  Y = sql(“SELECT DISTINCT a, b FROM XTab”); // Y:= [a SI32, b SI8] 

  // (b) primitives for mini-batch training 
  Mp = paramserv(model=M, features=X, labels=y, 
                 upd=updateGrad, agg=updateModel, utype=ASP, 
                 freq=BATCH, epochs=200, batchsize=128, ...); 

  // (c) user-defined functions (axis: 0 cell, 1 row, 2 column) 
  Y = map(X, foo);       // DSL function foo applied to every cell of X 
  Y = map(X, “v -> v.length + 1“); // C++ snippets with pre-defined env 
  Y = map(X, “v -> atoi(v) + 1”, axis=1, lang=“C++”); 

These primitives are either compiled to dedicated frame and matrix operations, or are mapped 
to dedicated infrastructure that repeatedly calls the passed function arguments. For example, 
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the parameter server (or similar distributions strategies) allows to establish temporary workers, 
repeatedly runs gradient and model updates and, after termination, returns the model and 
thus, acts as a stateless function like any other basic operation. 

 

3.2 DaphneLib: A Python API 
Overview: Python is currently undoubtedly the primary entry point to ML systems, but 
increasingly often also to data management and query processing as well as numerical 
computations. Accordingly, we aim to provide DaphneLib as a simple user-facing Python API 
that allows calling individual basic and higher-level DAPHNE built-in functions. The overall 
design follows similar abstractions like PySpark [ZC+12] and Dask [R15] by using lazy 
evaluation, but when evaluation is triggered assembles and executes a DaphneDSL script that 
reuses the entire DAPHNE compilation chain with all related optimization passes. 

Lazy Evaluation: The entry point for DaphneLib is a DaphneContext that can create DAPHNE 
matrices or frames from passed pandas data-frames or NumPy arrays. These matrices and 
frames are essentially meta data objects with a reference to the leaf data. Subsequent 
operations can be directly invoked on these meta data objects. An example of calling our 
connected components built-in function will look as follows: 

  dc = DaphneContext() 
  G = dc.from_numpy(npG) 
  G = (G != 0) 
  c = components(G, 100, True).compute()  

While Spark differentiates transformations and actions (where actions trigger computation), 
Dask [R15] provides an explicit compute() function. In order to make our API easily 
understandable, we follow this design of explicit triggers. In the example above, we create a 
DAPHNE matrix from a NumPy array, convert it to a Boolean matrix for robustness via (G!=0) 
in case the original graph contains edge weights or similar values (e.g., number of co-authored 
papers), and call the components() built-in function (which expects a Boolean matrix). All these 
operations only build a local dependency graph of operations where each metadata object 
points to its operation node and subsequent operations take the dependencies of inputs and 
place their operation on top of the dependency graph. On compute(), we then traverse this 
dependency graph in a depth-first manner (processing children of a node, and then the node 
itself) in order to construct a DaphneDSL script. Each node adds a line of DSL script, and the 
depth-first traversal with memorization (do not descent if a node was already processed) 
ensures an ordering by data dependencies without unnecessary redundancy if a node is 
reachable over multiple paths in the dependency graph. The resulting DaphneDSL script is 
parsed, compiled, and executed through daphnec, and the results are converted to NumPy 
arrays or pandas data-frames. In addition to exposing all basic and higher-level built-in 
functions and operations, we further provide an operation that directly takes DaphneDSL as a 
string. Given this seamless integration, users can then mix and match DAPHNE computations 
with other Python libraries and plotting functionality. 
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3.3 Parsers for External Languages (SQL, DML) 
While conceptually very clear, building the DSL-based built-in functions for a wide variety of 
data analytics and ML algorithms from scratch could take years. Accordingly, we aim to 
leverage existing libraries of pre-processing primitives, ML algorithms, and DNN layers and 
optimizers with similar language abstractions (for subsets of functionality), and automatically 
convert them to DaphneDSL. For this reason, we aim to integrate parsers for external languages 
in the form of tools used in an offline and/or online (during script compilation) manner. As 
shown in Figure 2, using DaphneDSL as the common target ensures consistency of compilation 
utilizing both conditional control flow as well as matrix and frame operations. 

 

 

Figure 2: DAPHNE APIs and DSLs. 

 

SQL Parser: Initially we contemplated reusing and extending the PostgreSQL parser, but later 
decided to start from scratch and incrementally build up a tailor-made SQL parser that currently 
converts directly to frame operations in DaphneIR. In the future, we will add dedicated 
components for PostgreSQL dialect and its procedural extensions PL/pgSQL.   

SystemDS DML: Apache SystemDS [BA+20], as the successor of Apache SystemML, exposes a 
DSL called DML (declarative machine learning language) with an R-like syntax. Most 
importantly it contains a linear-algebra-based hierarchy of primitives for data cleaning and 
data augmentation, hyper-parameter tuning, feature selection, a variety of ML algorithms, DNN 
layers and optimizers, many graph algorithms, as well as model debugging, evaluation and 
scoring. We aim to create an offline tool to parse and convert these DML scripts into 
DaphneDSL, allowing to materialize and adapt these primitives for DaphneDSL language 
abstractions, while capitalizing on the wealth of functionality, the liberal Apache-v2 license, and 
SystemDS contributors in the DAPHNE consortium. Finally, we will also explore additional 
converters from TensorFlow [A+16], PyTorch [P+19], and Scikit-learn [P+12] pipelines in order 
to quickly bridge the gap between applications and the DAPHNE system infrastructure. 
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3.4 Integration of External Libraries 
The integration of external libraries is very important in order to allow an incremental adoption 
of the DAPHNE infrastructure by potential users. This integration focuses on two main aspects, 
low overhead data exchange with UDFs and libraries, as well as exposing the tuning knobs (e.g., 
degree of parallelism) of libraries to optimization and hierarchical scheduling of IDA pipelines. 

Data Transfer: The basic integration of external libraries is through materialized intermediates 
and the sketched abstractions for user-defined functions. Additionally, we aim to support zero-
copy data formats like Apache Arrow (https://arrow.apache.org/), chunked data transfers as 
known from R-integrations [DSB+10,GLW+11], and careful tuning of buffer management as 
done for data exchange of database systems with user-defined functions [RMT+17]. 

Scheduling: Additionally, we aim to annotate the called UDFs in special script-level scopes to 
expose tunable parameters such as the degree of parallelism, and other MPI / OpenBLAS 
configurations of HPC libraries. Exposing and utilizing these parameters during optimization 
will allow for seamless scheduling and better utilization of hardware resources in complex, 
composite IDA pipelines that otherwise would need to make certain assumptions and treat 
such external libraries as black-box functions, blocking any other concurrent operations. 
Besides manually exposing such tuning knobs, an interesting research direction is the 
development of custom OpenMP backends that intercept tasks of the external libraries and 
forwards these tasks to the DAPHNE scheduler similar to the integration of custom application 
codes in analytical database systems [WPM+15]. 

  

4 Overview Compiler Design  
Figure 1 also shows the overall compiler design. The initial compiler prototype will be shared 
as part of the future demonstrator deliverable D3.2, but in this section, we already describe the 
compiler design for a holistic discussion of language abstractions, compilation chain, and 
means of extensibility of both language abstractions as well as compiler and runtime. 

 

4.1 DaphneIR Dialect (Intermediate Representation) 
MLIR Background: The ANTLR parser converts given DaphneDSL scripts into DaphneIR, an 
MLIR dialect. MLIR [LP+20] is a customizable compiler infrastructure for reuse and low-cost 
domain-specific compilers. Programs are represented in static single assignment (SSA) form – 
which allows only a single assignment to an otherwise immutable variable – and then lowered 
to LLVM. Its basic concepts are modules, functions, and regions that can contain sequences of 
blocks, which in turn contain sequences of operations. The basic philosophy is that everything, 
even loop structures with arbitrarily complex body programs, are operations (that may or may 
not contain regions) and everything is designed for customization. Using MLIR allows for reuse 
of basic infrastructure and various optimization passes as a library (along with existing 
documentation), and allows future extensibility by other MLIR dialects. For control structures 
like branches and loops, we already use the SCF (structured control flow) dialect.  
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DaphneIR: The DAPHNE MLIR dialect, called DaphneIR, defines the types, operations, and 
various traits (e.g., for schema, type, and shape inference) in so-called TableGen [TD21] records, 
from which C++ code is automatically generated. Operations produce values of a certain type. 
For example, the following snippets show the TableGen specifications of basic scalar value 
types, the matrix multiplication operation, and the shape inference interface: 

  def SIntScalar : AnyTypeOf<[SI8, SI32, SI64], "signed integer">; 
  def UIntScalar : AnyTypeOf<[UI8, UI32, UI64], "unsigned integer">; 
  def IntScalar : AnyTypeOf<[SIntScalar, UIntScalar], "integer">; 
  def FloatScalar : AnyTypeOf<[F32, F64], "float">; 
  def NumScalar : AnyTypeOf<[IntScalar, FloatScalar], "numeric">; 

  def Daphne_MatMulOp : Daphne_Op<"matMul", [ 
    DeclareOpInterfaceMethods<VectorizableOpInterface>,  
    NumRowsFromIthArg<0>, NumColsFromIthArg<1> 
  ]> { 
    let arguments = (ins MatrixOf<[NumScalar]>:$lhs, MatrixOf<[NumScalar]>:$rhs); 
    let results = (outs MatrixOf<[NumScalar]>:$res); 
  } 

  def InferShapeOpInterface : OpInterface<"InferShape"> { 
    let description = [{ 
      Interface to infer the shape(s) of the data object(s) 
      returned by an operation. 
    }]; 

    let methods = [ 
      InterfaceMethod< 
        "Infer the shape(s) of the output data object(s).", 
        "std::vector<std::pair<ssize_t, ssize_t>>", "inferShape", (ins)> 
    ]; 
  } 

Here NumScalar refers to any supported integer or floating point type, and is used to 
parameterize the value type of the inputs and outputs of the matrix multiplication. The 
InferShapeOpInterface specifies an inferShape method that returns a vector of matrix 
dimensions (pair of rows and columns, for each result of the operation), which for the matrix 
multiplication takes the number of rows from the left-hand-side and number of columns from 
the right-hand-side. Additional traits exist for example, for operator fusion (vectorization), 
distributed operations, and type inference. During parsing, we instantiate the individual 
operations, blocks, and regions. 

Example IR Program: Returning to our connected components example, the DSL script 
(currently in slightly modified form and with random data generation) is parsed into the 
following DaphneIR program (in its textual representation):  

module  { 
  func @main() { 
    %0 = "daphne.constant"() {value = 2000 : si64} : () -> si64 
    %1 = "daphne.constant"() {value = 1 : si64} : () -> si64 
    %2 = "daphne.constant"() {value = 1 : si64} : () -> si64 
    %3 = "daphne.constant"() {value = 1.000000e-03 : f64} : () -> f64 
    %4 = "daphne.constant"() {value = -1 : si64} : () -> si64 
    %5 = "daphne.cast"(%0) : (si64) -> index 
    %6 = "daphne.cast"(%0) : (si64) -> index 
    %7 = "daphne.randMatrix"(%5, %6, %1, %2, %3, %4) :  
         (index, index, si64, si64, f64, si64) -> !daphne.Matrix<?x?xsi64> 
    %8 = "daphne.constant"() {value = 1000 : si64} : () -> si64 
    %9 = "daphne.constant"() {value = 1 : si64} : () -> si64 
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    %10 = "daphne.constant"() {value = 1 : si64} : () -> si64 
    %11 = "daphne.seq"(%9, %0, %10) : (si64, si64, si64) -> !daphne.Matrix<?x?xsi64> 
    %12 = "daphne.constant"() {value = 0x7FF0000000000000 : f64} : () -> f64 
    %13 = "daphne.constant"() {value = 1 : si64} : () -> si64 
    %14:3 = scf.while (%arg0 = %13, %arg1 = %12, %arg2 = %11) :  
            (si64, f64, !daphne.Matrix<?x?xsi64>) -> (si64, f64, !daphne.Matrix<?x?xsi64>)  
    { 
      %15 = "daphne.constant"() {value = 0.000000e+00 : f64} : () -> f64 
      %16 = "daphne.ewGt"(%arg1, %15) : (f64, f64) -> f64 
      %17 = "daphne.cast"(%16) : (f64) -> si64 
      %18 = "daphne.ewLe"(%arg0, %8) : (si64, si64) -> si64 
      %19 = "daphne.ewAnd"(%17, %18) : (si64, si64) -> si64 
      %20 = "daphne.cast"(%19) : (si64) -> i1 
      scf.condition(%20) %arg0, %arg1, %arg2 : si64, f64, !daphne.Matrix<?x?xsi64> 
    } do { 
    ^bb0(%arg0: si64, %arg1: f64, %arg2: !daphne.Matrix<?x?xsi64>):  // no predecessors 
      %15 = "daphne.transpose"(%arg2) :  
            (!daphne.Matrix<?x?xsi64>) -> !daphne.Matrix<?x?xsi64> 
      %16 = "daphne.ewMul"(%7, %15) :  
           (!daphne.Matrix<?x?xsi64>, !daphne.Matrix<?x?xsi64>) -> !daphne.Matrix<?x?xsi64> 
      %17 = "daphne.constant"() {value = 0 : si64} : () -> si64 
      %18 = "daphne.maxRow"(%16) : (!daphne.Matrix<?x?xsi64>) -> !daphne.Matrix<?x?xsi64> 
      %19 = "daphne.ewMax"(%18, %arg2) :  
           (!daphne.Matrix<?x?xsi64>, !daphne.Matrix<?x?xsi64>) -> !daphne.Matrix<?x?xsi64> 
      %20 = "daphne.ewNeq"(%19, %arg2) :  
           (!daphne.Matrix<?x?xsi64>, !daphne.Matrix<?x?xsi64>) -> !daphne.Matrix<?x?xsi64> 
      %21 = "daphne.sumAll"(%20) : (!daphne.Matrix<?x?xsi64>) -> si64 
      %22 = "daphne.cast"(%21) : (si64) -> f64 
      %23 = "daphne.constant"() {value = 1 : si64} : () -> si64 
      %24 = "daphne.ewAdd"(%arg0, %23) : (si64, si64) -> si64 
      scf.yield %24, %22, %19 : si64, f64, !daphne.Matrix<?x?xsi64> 
    } 
    "daphne.return"() : () -> () 
  } 
} 

After additional optimization passes for rewrites, shape inference, and lowering of the SCF 
dialect we obtain the following representation: 
module  { 
  func @main() { 
    %0 = "daphne.call_kernel"() {callee = "_createDaphneContext__DaphneContext"} : () -> !daphne.DaphneContext 
    %1 = "daphne.constant"() {value = 2000 : si64} : () -> si64 
    %2 = "daphne.constant"() {value = 1 : si64} : () -> si64 
    %3 = "daphne.constant"() {value = 1.000000e-03 : f64} : () -> f64 
    %4 = "daphne.constant"() {value = -1 : si64} : () -> si64 
    %5 = "daphne.call_kernel"(%1, %0) {callee = "_cast__size_t__int64_t"} : (si64, !daphne.DaphneContext) -> index 
    %6 = "daphne.call_kernel"(%1, %0) {callee = "_cast__size_t__int64_t"} : (si64, !daphne.DaphneContext) -> index 
    %7 = "daphne.call_kernel"(%5, %6, %2, %2, %3, %4, %0)  
          {callee = "_randMatrix__DenseMatrix_int64_t__size_t__size_t__int64_t__int64_t__double__int64_t"} :  
          (index, index, si64, si64, f64, si64, !daphne.DaphneContext) -> !daphne.Matrix<2000x2000xsi64> 
    %8 = "daphne.constant"() {value = 1000 : si64} : () -> si64 
    %9 = "daphne.call_kernel"(%2, %1, %2, %0) {callee = "_seq__DenseMatrix_int64_t__int64_t__int64_t__int64_t"} : 
         (si64, si64, si64, !daphne.DaphneContext) -> !daphne.Matrix<2000x1xsi64> 
    %10 = "daphne.constant"() {value = 0x7FF0000000000000 : f64} : () -> f64 
    br ^bb1(%2, %10, %9 : si64, f64, !daphne.Matrix<2000x1xsi64>) 
  ^bb1(%11: si64, %12: f64, %13: !daphne.Matrix<2000x1xsi64>):  // 2 preds: ^bb0, ^bb2 
    %14 = "daphne.constant"() {value = 0.000000e+00 : f64} : () -> f64 
    %15 = "daphne.call_kernel"(%12, %14, %0) {callee = "_ewGt__double__double__double"} :  
          (f64, f64, !daphne.DaphneContext) -> f64 
    %16 = "daphne.call_kernel"(%15, %0) {callee = "_cast__int64_t__double"} : (f64, !daphne.DaphneContext) -> si64 
    %17 = "daphne.call_kernel"(%11, %8, %0) {callee = "_ewLe__int64_t__int64_t__int64_t"} :  
          (si64, si64, !daphne.DaphneContext) -> si64 
    %18 = "daphne.call_kernel"(%16, %17, %0) {callee = "_ewAnd__int64_t__int64_t__int64_t"} :  
          (si64, si64, !daphne.DaphneContext) -> si64 
    %19 = "daphne.call_kernel"(%18, %0) {callee = "_cast__bool__int64_t"} : (si64, !daphne.DaphneContext) -> i1 
    cond_br %19, ^bb2(%11, %12, %13 : si64, f64, !daphne.Matrix<2000x1xsi64>), ^bb3 
  ^bb2(%20: si64, %21: f64, %22: !daphne.Matrix<2000x1xsi64>):  // pred: ^bb1 
    %23 = "daphne.call_kernel"(%22, %0) {callee = "_transpose__DenseMatrix_int64_t__DenseMatrix_int64_t"} :  
          (!daphne.Matrix<2000x1xsi64>, !daphne.DaphneContext) -> !daphne.Matrix<1x2000xsi64> 
    %24 = "daphne.call_kernel"(%7, %23, %0)  
          {callee = "_ewMul__DenseMatrix_int64_t__DenseMatrix_int64_t__DenseMatrix_int64_t"} :  
          (!daphne.Matrix<2000x2000xsi64>, !daphne.Matrix<1x2000xsi64>, !daphne.DaphneContext) ->       
          !daphne.Matrix<2000x2000xsi64> 
    %25 = "daphne.call_kernel"(%24, %0) {callee = "_maxRow__DenseMatrix_int64_t__DenseMatrix_int64_t"} :  
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          (!daphne.Matrix<2000x2000xsi64>, !daphne.DaphneContext) -> !daphne.Matrix<2000x1xsi64> 
    %26 = "daphne.call_kernel"(%25, %22, %0) {callee =        
          "_ewMax__DenseMatrix_int64_t__DenseMatrix_int64_t__DenseMatrix_int64_t"} : (!daphne.Matrix<2000x1xsi64>,  
          !daphne.Matrix<2000x1xsi64>, !daphne.DaphneContext) -> !daphne.Matrix<2000x1xsi64> 
    %27 = "daphne.call_kernel"(%26, %22, %0) {callee =  
          "_ewNeq__DenseMatrix_int64_t__DenseMatrix_int64_t__DenseMatrix_int64_t"} : (!daphne.Matrix<2000x1xsi64>,  
          !daphne.Matrix<2000x1xsi64>, !daphne.DaphneContext) -> !daphne.Matrix<2000x1xsi64> 
    %28 = "daphne.call_kernel"(%27, %0) {callee = "_sumAll__int64_t__DenseMatrix_int64_t"} :  
          (!daphne.Matrix<2000x1xsi64>, !daphne.DaphneContext) -> si64 
    %29 = "daphne.call_kernel"(%28, %0) {callee = "_cast__double__int64_t"} : (si64, !daphne.DaphneContext) -> f64 
    %30 = "daphne.call_kernel"(%20, %2, %0) {callee = "_ewAdd__int64_t__int64_t__int64_t"} :  
          (si64, si64, !daphne.DaphneContext) -> si64 
    br ^bb1(%30, %29, %26 : si64, f64, !daphne.Matrix<2000x1xsi64>) 
  ^bb3:  // pred: ^bb1 
    "daphne.call_kernel"(%0) {callee = "_destroyDaphneContext"} : (!daphne.DaphneContext) -> () 
    "daphne.return"() : () -> () 
  } 
} 
 

Finally, this representation is further lowered to the MLIR-LLVM dialect, including LLVM 
function calls to specific kernels such as ewNeq and sumAll for sum(u != c), and ultimately 
compiled to hardware-specific instructions. 

  %77 = llvm.alloca %76 x !llvm.ptr<i1> : (i64) -> !llvm.ptr<ptr<i1>> 
  %78 = llvm.mlir.null : !llvm.ptr<i1> 
  llvm.store %78, %77 : !llvm.ptr<ptr<i1>> 
  %79 = llvm.call @_ewNeq__DenseMatrix_int64_t__.__DenseMatrix_int64_t(%77, %75, %55, %4) :     
        (!llvm.ptr<ptr<i1>>, !llvm.ptr<i1>, !llvm.ptr<i1>, !llvm.ptr<i1>) -> !llvm.void 
  %80 = llvm.load %77 : !llvm.ptr<ptr<i1>> 
  %81 = llvm.mlir.constant(1 : i64) : i64 
  %82 = llvm.alloca %81 x i64 : (i64) -> !llvm.ptr<i64> 
  %83 = llvm.call @_sumAll__int64_t__DenseMatrix_int64_t(%82, %80, %4) :  
        (!llvm.ptr<i64>, !llvm.ptr<i1>, !llvm.ptr<i1>) -> !llvm.void 
  %84 = llvm.load %82 : !llvm.ptr<i64> 

 

4.2 Compilation Chain 
Optimization Passes: The DAPHNE compilation is based on MLIR optimization passes for 
enrichment by inferred properties and lowering to executable runtime programs. This lowering 
descends from high-level, abstract operations and data types to multiple levels of operator 
specialization (e.g., local/distributed operations, device placement on CPUs/GPUs/FPGAs, 
choice of physical kernels for specific environments and devices), as well as data specialization 
(e.g., DenseMatrix/CSRMatrix representations). Optimization passes for rewrites and lowering 
can be interleaved and repeatedly executed. Important categories of optimization passes 
include (so far, only partially implemented): 

• MLIR Programming Language Rewrites (common subexpression elimination, constant 
propagation, constant folding, branch removal, code motion/loop hoisting, function 
inlining / unrolling) 

• Type and Property Inference (e.g., data and value types, shape/dimensions, schema, 
sparsity/cardinality, symmetry) 

• Inter-Procedural Analysis (analysis of function call graphs, propagation of types, 
dimensions, properties) 

• Algebraic Simplification Rewrites (e.g., many peephole optimizations for 
sequences/sub-DAGs of relational/linear algebra operations) 

• Operator Ordering (e.g., join ordering/enumeration, matrix multiplication chain 
optimization, sum-product optimizations, data-flow-graph linearization) 
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• Generation of Fused Operator Pipelines (selection of fused operators in DAGs, 
vectorization/tiling, and splitting/merging strategies of inputs/results) 

• Memory Management (update-in-place, reuse of allocations, garbage collection) 
• Execution Type Selection (local vs distributed operations, w/ distribution primitives for 

distributed caching/partitioning) 
• Device Placement (e.g., CPU/GPU/FPGA, multiple devices) 
• Physical Operator Selection (e.g., different join/group-by operators, matrix 

multiplication operators, matrix-vector element-wise operations) 

Additional Compiler Components: These aforementioned optimization passes are 
assembled in a heuristic manner according to known dependencies among rewrites and 
lowering passes. In addition, there are several compiler components that are orthogonal to the 
compilation chain and used by several passes, and even during runtime. First, many advanced 
rewrites and reordering optimization passes require cost estimation for subprograms. We aim 
to provide a central cost estimation component including cardinality and sparsity estimation 
(with different cost functions and summary statistics) for blocks of operations and entire sub-
programs. The latter has to additionally reason about loops and branches and aggregate a 
hierarchy of regions and blocks. Second, data-dependent operators, user-defined functions, 
and conditional control flow can create unknown shapes and properties, which would result in 
robust but inefficient fallback plans. A dynamic recompilation component aims to adaptively 
recompile remaining sub-programs at natural or artificial block boundaries according to the 
actual sizes of intermediates. Third and finally, there is a wide variety of additional runtime 
strategies that would benefit from compiler assistance – examples include compiler-assisted 
compression and reuse, which both leverage workload characteristics (aggregated operation 
workload) to make more informed choices during runtime.  

 

5 Extensibility 
The overall design principle of an open and extensible system architecture, is of utmost 
importance to enable low effort exploratory experimentation and custom extensions for new 
data types, operations, and hardware. We aim to support extensibility in terms of 
configurations of internal behavior, but also in terms of extensions for custom operations (at 
script level and kernels), custom data formats (e.g., vendor-specific binary formats), new data 
types (e.g., compressed types), and various extensions of the compiler and runtime system 
(e.g., additional IR dialects, new optimization passes, and scheduling algorithms). 

 

5.1 API and DSL Extensibility 
At API, DSL, and configuration level, there are multiple aspects of extensibility, all of which 
require a discussion of different personas and deployments. DAPHNE aims for deployments 
with different distribution strategies (local, embedded, distributed collections, federated data, 
parameter servers, custom libraries, and ring/tree reduce), different distributed computing 
frameworks (DAPHNE standalone, embedded in DBMS and orchestration engines, Spark, Ray, 
and MPI), different resource managers (e.g., dedicated clusters, resource negotiators like YARN, 
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Mesos, and Kubernetes, and HPC Batch schedulers like Slurm), as well as different on-premise 
and cloud hardware resources. In this context, we see the personas of (1) internal/external 
developers, (2) users, and (3) infrastructure administrators.  

 

 

Figure 3: DAPHNE Configuration and Extensibility. 

 

Extension Catalog: Figure 3 shows an example workflow involving an initial design of an 
extension catalog that allows registering dedicated artifacts in the form of shared libraries. The 
catalog also registers the type of extension (e.g., kernels for existing operations like matrix 
multiplication if possible, or data types), traits and properties, as well as cost functions provided 
by developers. Based on this metadata, theses extensions are represented in DaphneIR and 
thus included in various optimization passes such as shape inference, and operator selection. 
The concrete use of extensions can be further influenced both at script level (mostly by users 
or during experimentation) or configuration files that influence the entire deployment and thus, 
potentially many users (mostly by administrators but also in batch scheduling scripts).  

Extensibility at Script Level: At DaphneDSL level, we provide means for obtaining and setting 
configurations parameters and topology information transiently in a programmatic manner 
(e.g., getNumThreads() and setNumThreads(32)). These configurations include available 
devices, degree of parallelism, memory budgets, but also selecting different garbage collection 
and scheduling algorithms. Depending on the place of invocation these transient 
configurations affect the default configuration for the current scope and child-scopes (e.g., 
called function). Script-level extensibility also includes dedicated built-in functions for affecting 
data representations, data placement, and operator placement: 

  X = sparse(Y);  
  X = compress(Y); 
  X = device(Y, “/GPU:0”);  
  X = device(Y, [“/GPU:0”,“/GPU:1”], round_robin); 
  X = Y @_gpu Z; // matmult on GPU  

All these decisions are made via basic built-in functions. This approach provides clear data-
flow semantics with copy-on-write, and allows extensibility. For example, a developer might 
create a new compressed data type and operations. By registering and invoking a shared library 
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with a custom compressXYZ() operation, the data can be explicitly brought into this 
representation and subsequent function calls on this data object will then be dispatched to the 
new specialized operator implementations accordingly. All these script-level decisions lose 
data dependence but are user choices and will be treated as constraints. The optimizing 
compiler then handles remaining operations around these fixed operators, and helps lowering 
everything to execution plans as needed (multi-level specification). 

Extensibility at Configuration Level: Similar to setting configuration parameters at script 
level, the same configurations can also be set globally at deployment level. We will provide 
JSON or XML configuration files in the installation directory, and allow users to use per-user 
configuration files (e.g., configured via bashrc or environment variables). These configuration 
files or environment variables will also enable automatic modifications in the context of batch 
schedulers (e.g., after resource allocation). Regarding extensibility, these configurations 
primarily focus on selecting alternative algorithms and influencing the extension catalog. 

 

5.2 Compiler and Runtime Extensibility 
Besides the extensibility features at script and configuration level (which also allow the 
introduction of new runtime kernels), we further aim to allow configurations and extensions of 
the optimizing DAPHNE compiler and DaphneIR.  

Daphne IR: The DAPHNE MLIR dialect DaphneIR defines types, operations, and various traits 
(e.g., for schema, type, and shape inference) in so-called TableGen [TD21] records, but also 
reuses existing MLIR dialects like SCF (structured control flow). One developer-centric direction 
for extensibility is the extension of our DaphneIR dialect. Common use cases are adding new 
operations of an existing category (e.g., a new unary elementwise operation), adding a new 
category of operations (e.g., a specific quaternary operator), adding new traits (e.g., as help for 
new optimization passes). Additionally, developers might add existing or new MLIR dialects 
and integrate them with the rest of the system by changing the DAPHNE infrastructure 
internally. While some of these extensions can reuse most of the existing runtime operations, 
other require additional runtime kernels. 

Compilation Chain: MLIR’s approach of applying a sequence of optimization passes is already 
very modular and can reuse existing LLVM and MLIR passes (e.g., constant folding, common 
subexpression elimination, code motion/loop hoisting). Adding new optimization passes or re-
composing existing optimization passes into custom compilation chains is a natural direction 
for compiler extensibility. For example, having registered a new data type or kernel, an 
additional optimization pass may apply them for a given IR program under certain conditions.  

Sideways Entry in Multi-level Compilation: The normal invocation of DAPHNE through 
daphnec (by a user or through the Python API) takes a DaphneDSL script and then compiles 
and executes this script. In order to allow for debugging and understanding, an explain flag 
allows to print the DaphneIR at different states of compilation. Similar to the use of kernels at 
script level, which are treated as constraints, we will extend daphnec to take valid DaphneIR 
instead of DaphneDSL as program specification as well. This flexibility allows researchers to 
obtain the generated execution plan, modify the plan slightly (e.g., to force certain sequences 



D3.1 Language Design Specification 

 

DAPHNE – 957407  18 

of local or distributed operations), and execute this plan through daphnec, which performs the 
remaining lowering and runs the final executable plan.  

 

6 Related Work  
Besides existing work on language abstractions in the areas of data management, high-
performance computing, and ML systems, there are a couple of closely related projects and 
systems, aiming for system infrastructure similar to DAPHNE. In the following, we discuss this 
additional related work of systems and language specifications for IDA pipelines (partial 
extension from deliverable D2.1 [D2.1]), means of extensibility in data management and ML 
systems including algorithms, data formats, and the underlying hardware. 

Systems for IDA Pipelines: The trend toward IDA pipelines is currently handled with a 
combination of existing systems including standalone and embedded DBMS like DuckDB 
[RM20], ML systems like TensorFlow [A+16] or PyTorch [P+19], data-parallel computation 
frameworks like Spark [ZC+12], Flink [CK+15], or Dask [R15] (often with collections of tiles of 
an overall matrix or frame), as well as a variety of specialized systems or libraries (e.g., for graph 
processing and time series analysis) and even custom application codes. Furthermore, ML 
systems are extended with features for basic data processing (e.g., from TensorFlow to TFX 
[BB+17]), DBMS are extended with ML capabilities (e.g., via UDFs or lambda functions) [KBY17], 
data-parallel frameworks aim to provide a unified environment [ZC+12], compilation 
frameworks like MLIR [LP+20] or CVM [MM+20] provide common compiler infrastructure and 
HPC techniques are increasingly adopted across these systems [BKS20]. However, these 
integrated systems often rely on separate libraries and data representations for query 
processing, ML, and HPC, which makes them difficult to apply in tightly integrated pipelines 
where, for example, ML-based data cleaning, query processing, and ML training is performed 
repeatedly in an interleaved manner. 

Extensibility: Providing extensibility for functionality and performance has been investigated 
in different systems and at different abstraction levels. First, in the context of database 
management systems, there are great surveys of work on extensibility [CH90]. Abstract data 
types and user-defined functions/aggregates were introduced in PostgreSQL [S16] and are 
now widely used in practice. Such UDFs have also been used to integrate ML into DBMS 
[FK+12] and HPC OpenMP applications in DBMS [WPM+15], but UDFs are often treated as 
black boxes thus, not subject to optimization (unless parsed and explicitly included into the 
optimization process [HP+12]). Additional means of extensibility include query optimizer 
generators [GM+93], extensible cardinality estimation [JS+02], interfaces for new storage 
methods (aka storage managers, or storage engines) with well-defined interfaces for 
create/drop relation, insert, delete, update, and get()/getNext() operations, but also persistently 
stored modules like attachments or triggers. Second, several ML systems also provide means 
of extensibility. DNN frameworks like Caffee, PyTorch, and TensorFlow make it easy to add 
layers and optimizers. AutoML systems like MLBase defined catalogs for registering new ML 
algorithms with their cost functions [KT+13]. Additionally, some ML systems also focus on 
extensibility of ML system internals. Examples include TensorFlow distribution strategies [G19] 
for data exchange in mini-batch training, TVM code generation for new hardware backends 
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[CM+18], and the Flashlight library for extensibility by custom modules and kernels [F21]. 
DAPHNE takes inspiration from these existing works and aims to build an open and extensible 
infrastructure for IDA pipelines that combine data management, HPC, and ML systems. 

 

7 Conclusions  
To summarize, we described the overall DAPHNE language design specification, including 
DaphneDSL and DaphneLib, an overview of the DAPHNE compiler including DaphneIR, and 
plans for extensibility at different levels. In conclusion, a common language abstraction based 
on abstract frames and matrix operations (as well as a hierarchy of composite language 
abstractions) for specifying and executing integrated data analysis pipelines seems feasible. In 
this context, we follow the major design principles of coarse-grained frame and matrix 
operations for preserving semantics and simplifying parallelization, data independence to 
enable adaptation to data and deployment characteristics, and extensibility to allow for 
exploration and extensions for new environments. The language abstractions will be extended 
as we build out the DAPHNE prototype over the next years. Interesting research directions 
related to language abstractions include the design of the catalog for registering extensions, 
generic optimization passes that seamlessly leverage unknown extensions, constrained 
program optimization respecting user-provided decisions, and internal runtime abstractions 
for low-overhead access of custom data types to reuse non-specialized operators.  
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Appendix A Prioritized List of Operations 
Continuous experiments for quantifying and improving the DAPHNE prototype currently use a 
set of simple IDA pipelines. These pipelines include (1) query processing and linear regression, 
(2) ResNet-20 classification, (3) K-Means clustering, and (4) connected components graph 
processing. For supporting these algorithms, the list of prioritized operations is: 

• Matrix multiplications: GEMM, SYRK, GEMV, conv2d 
• Element-wise operations: M–r, M/r, M/c, M*r, M*s, M<=c, AXPY, r!=r, max(M,M), 

max(M,s) where r is a row vector, c is a column vector, and M is a matrix. 
• Aggregations: colMeans(), colSds(), colSums(), rowSums(), sum(), rowMins(), rowMaxs() 
• Reorganizations: slicing, indexing, transposition, cbind(), reshape() 
• Others: solve(), seq(), selection, group-join, batchnorm 

 


