

D7.1 Design of integration

HW accelerators

Integrated Data Analysis Pipelines for Large-Scale
Data Management, HPC, and Machine Learning

Version 1.5

PUBLIC

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 957407.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 1

Document Description
In D7.1, the DAPHNE project team reports on the planned overall design of integration HW
accelerators as well as details on accelerated operations and primitives, as well as its compiler
and runtime support.

D7.1 Design of integration HW accelerators
WP7 – HW Accelerator Integration
Type of document Report Version [1.5]
Dissemination level PU
Lead partner Technische Universität Dresden
Author(s) Dirk Habich
Contributors KNOW

Revision History
Version Revisions and Comments Author / Reviewer
V1.0 Initial write-up of the report. Dirk Habich
V1.1 Incorporated comments by Patrick Damme and Mark

Dokter; additional details, figures and explanations.
Dirk Habich

V1.2 Incorporated comments by Patrick Damme; added
additional details and explanations in Sections 4 and 5.

Dirk Habich

V1.3 Revised version by incorporating Mark Dokter’s
comments.

Dirk Habich

V1.4 Incorporated comments by Patrick Damme; enhanced
details and explanations in Section 4 and 5.

Dirk Habich

V1.5 Revised version by incorporating Mark Dokter’s
comments.

Dirk Habich

Abbreviations

Abbreviation Term
KNOW Know-Center GmbH
WP Workpackage
T Task

D7.1 Design of integration HW accelerators

DAPHNE – 957407 2

1 Introduction

Modern data-driven applications have to deal with increasingly large and heterogeneous data
collections as well as a variety of machine learning (ML) models for cost-effective automation
and improved analysis results [A17, A+19b, P+21, Z+19]. This creates a trend towards
integrated data analysis (IDA) pipelines that jointly utilize data management (DM), high-
performance computing (HPC), and ML systems. As described in [D+22], developing and
deploying such IDA pipelines is, however, still a painful process of integrating different systems
and related developers, programming paradigms, resource managers, and data
representations. Integrating DM+ML, HPC+ML, DM+HPC for improving productivity and/or
performance are old problems though [BKS20, S+00, S+11]. However, an open system
infrastructure for seamlessly developing, deploying and running IDA pipelines is still missing,
and at the same time, new challenges related to hardware, productivity, and utilization emerge.

To overcome that, the DAPHNE project sets out to build an open and extensible system
infrastructure for integrated data analysis pipelines. To achieve that goal, our envisioned
infrastructure is based on MLIR [L+20] as a multi-level, LLVM-based intermediate
representation backed by multiple organizations and communities. This approach allows a
seamless integration with existing applications and runtime libraries while also enabling
extensibility for specialized data types, hardware-accelerated kernels, hardware-specific
compilation chains, and custom scheduling algorithms. While the DAPHNE report D2.1 - Initial
System Architecture has described the overall DAPHNE system architecture, this report focuses
on presenting the motivation and design for hardware accelerator integration.

Interestingly, DM, HPC, and ML systems share many optimization techniques and together
stress every hardware aspect of storage, computation, and networking. Accordingly, these
systems are strongly impacted by hardware challenges such as the end of Dennard scaling and
the end of Moore's law, which ultimately lead to dark silicon [BC11, JP13] and increasing
specialization at device level (CPUs, GPUs, FPGAs, APUs) and storage level (computational
memory/storage, storage hierarchies). This hardware specialization, in turn, leads to increasing
heterogeneity and thus, even larger productivity and utilization challenges for pipelines across
DM, HPC, and ML systems [Ca+18, D+22, P+21b]. In particular, the challenges are (i)
developing as well as generating operators - hereinafter also called computation kernels or
kernels for short - which can be efficiently executed on accelerators such as CPUs, GPUs or
FPGAs, (ii) integrating these accelerator-specific operators in the whole DAPHNE compilation
and runtime infrastructure in a seamless way, and (iii) selecting the best-fitting accelerator for
efficient execution depending on the specific IDA pipeline and hardware environment.

The remainder of this report is structured as follows:

• In Section 2, we give a short overview about hardware accelerator heterogeneity.
• Based on this overview, we detail the overall design approach of DAPHNE for hardware

accelerator integration in Section 3.
• Then, Section 4 describes our approach for handcrafting as well as generating of

hardware-accelerated kernels.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 3

• Section 5 presents our concepts for an efficient and effective employment of the
hardware-accelerated kernels in IDA pipelines.

2 Overview of Hardware-Accelerator Landscape
Recent development on the hardware landscape has a massive impact on the software stack
for data processing software systems [BC11, S05]. While the software side enjoyed a ‘free ride’
with ever increasing clock cycles for many decades, the time has finally come to adjust
principles of software architectures to exploit the opportunities provided by modern hardware
components [S05]. To better understand this aspect, we give a short overview of the hardware
development in recent years. As described below, the heterogeneity of hardware at device and
storage levels is growing and thus poses a great challenge.

Figure 1: Trend of the main processor characteristics.

2.1 Device Level Heterogeneity
At device or processing level, the early multi-core with double-digit numbers of cores per
system has passed [BC11, S05]. Nowadays, multi-socket CPU systems with up to 1,000 cores
have become economically feasible. In addition, GPUs (Graphics Processing Units) and FPGAs
(Field Programmable Gate Arrays) have made significant progress in providing general-
purpose processing capabilities.

2.1.1 CPU Developments
The first wave of a disruption in the area of processing units was the switch from increasing to
maintaining the frequency in combination with increasing the number of cores of a single CPU
[BC11, S05]. Current general-purpose server processors like for example the Intel Xeon Gold
Processor 6240R provides 24 cores resulting in a direct support of 48 threads using hyper-
threading for a single socket. As Figure 1 shows, this trend may continue by keeping the
frequency at the current level, but still increasing the number of cores on the same die using
the growing number of transistors. Moreover, this allows to build scale-up hardware systems
with more than 1,000 cores by combining multiple CPUs on one die, e.g., HPE SGI UV 300
including up to 48 TByte of DRAM. These scale-up hardware systems are also called shared-

D7.1 Design of integration HW accelerators

DAPHNE – 957407 4

memory multiprocessor systems and can be further classified in systems with uniform memory
access (UMA) and systems with non-uniform memory access (NUMA) [BC11, W04]. In both
cases, all processes can access the complete memory, but they differ in the way they realize
the connection of the processors to the memory. The issues in NUMA are increased latency
and decreased bandwidth when accessing data in remote main memory locations [K+13,
P+10].

Besides the increasing number of cores according to the Multiple-Instruction Multiple-Data
(MIMD) parallel paradigm, there is also a growing potential of support for data-level parallelism
as second kind of distribution. SIMD extensions according to the Single-Instruction Multiple-
Data parallel paradigm (SIMD) allow to process multiple data items with a single instruction,
which looks extremely promising for data-intensive applications [H15]. While almost all
modern CPU architectures have been providing SIMD extensions for many CPU generations
known as SSE or AVX on the Intel and AMD cores as well as NEON or SVE for ARM cores, a
significant step forward has been made in the recent past. On the one hand, larger registers
can now be found on most modern CPUs. Having initially started with 128 bit-wide SIMD
registers, the current Intel AVX-512 extensions provide 512 bit-wide operations. In contrast,
ARM SVE supports up to 2,048 bit-wide SIMD registers [S+17]. On the other hand, the
instruction set was extended to better support blending, comparing, and permuting operations
in addition to conflict detection and support for floating-point arithmetic. While SIMD
extensions are heavily used in core database algorithms like scans [W+09] or compression
algorithms [D+20] in column-stores, the general design of efficient data structures fully
leveraging the potential of SIMD extensions is still a challenging research task.

In addition to SIMD extensions, recent developments also suggest extending the instruction
set of traditional CPU cores, e.g., with a database-specific instruction set and corresponding
additional elements like additional registers and larger memory interfaces. For example, a
dpCore as part of a specialized Data Processing Unit (DPU) originally proposed within the
Oracle Rapid project [A+17] offers single-cycle instructions like bit-vector load (BVLD), filter
(FILT), and CRC32 hash-code generation to accelerate query operations like filters and joins. A
similar approach is pursued by the Titan3D project [H+17] extending a general-purpose Xtensa
LX5 core with instructions to support efficient bitwise decompression, hash code generation or
efficient operators for bitmap index utilization.

Thus, these CPU extensions already provide accelerator functionality within general-purpose
CPUs, and they will get more diverse in the future. For example, the number of SIMD
instructions differs between Intel architectures, because not all available SIMD extensions from
Intel are meant to be supported by all architectures.

2.1.2 Domain-Specific Processing Devices
With CPUs as general-purpose processing devices on the one side, domain-specific processing
units may be considered the extreme on the other side of the diversity spectrum with GPGPUs
(general-purpose computing on graphics processing units) probably serving as the most widely
known representative of domain-specific processing units. GPUs are originally designed to
process graphic pipelines including coordinate transformations and rasterization as well as
hosting additional components, e.g., a display controller. While most of the elements were

D7.1 Design of integration HW accelerators

DAPHNE – 957407 5

hard-wired and thus only a limited part of this functionality was programmable, the growing
interest in GPUs has caused significant changes in the GPU-internal architectures. The graphics
pipeline has become fully programmable, controlled by a user-defined sequence of so-called
shaders allowing the GPU cores to be used for general-purpose computations. For example,
GPUs are now commonly used for HPC applications.

Acceleration Processing Units (APUs): GPUs or CPUs with specific instruction set extensions
are representatives of attempts to support domain-specific requirements. Pushing the
envelope by supporting specific application requirements exclusively leads into the field of
domain-specific acceleration processing units (APUs) usually deployed within a coprocessor
model. While there exists -- by design -- a wide variety of different systems, APUs for efficiently
executing vector operations have a long tradition and are gaining -- with machine learning as
the driving application area -- significant attention. For example, NEC provides a card-mounted
vector processor SX-ACE [NEC] with a C++-based middleware to accelerate sparse matrix
computations. Google introduced a Tensor Processing Unit (TPU), which aims at accelerating
neural network computations [J+17]. Since the main task of a TPU is to multiply matrices, more
than half of the chip is covered by the matrix multiplication unit including a 24MB scratchpad
buffer. The remaining area is only used for the control, several interfaces, and other auxiliary
components. The loss of general-purpose flexibility and the focus on specialized application
tasks results -- as expected -- in a significant performance gain of up to 30X compared to a
corresponding implementation based on recent CPUs or GPUs [J+17].

While APUs were developed to support compute-intensive tasks, APUs also play a crucial role
to support data-intensive tasks, which are directly relevant for efficient data systems. An
example can be seen in the HARP ASIC to be found in systems of the HPE SGI UltraViolet family.
The HARP APU is responsible for connecting individual rack units (IRUs) to a cache-coherent
NUMA system by maintaining cache coherency and providing a common address space. A
HARP also hosts a Global Reference Unit (GRU) offering an API to offload memory operations
within a NUMA-based system, e.g., functionality to asynchronously copy memory between
processors and to accelerate atomic memory operations. As shown in [D+17] in greater detail,
significant performance improvements can be achieved by using the specialized
implementation of low-level memory management functions compared to variants offered by
the operating system.

Reconfigurable Hardware: APUs are usually developed to enhance the performance and to
reduce power consumption for a specific task. However, they are hard-wired in a sense that
once they are manufactured, they cannot be changed anymore. For situations with a higher
degree of flexibility (e.g., changing application requirements) or for rapid-prototyping,
reconfigurable hardware, especially FPGAs, lend themselves to providing a viable alternative.
The core concept of FPGAs is based on an array of configurable logic blocks each implementing
a binary function, which can be changed by modifying the truth table of the particular function
[T17]. This table is written to the SRAM cells of the logic block and can be overwritten, thus
yielding a reconfigurable processing unit. The number of these logic blocks as well as other
specifications and the price vary heavily between different FPGAs models. The ability to be
reconfigurable obviously comes with some limitations compared to ASICs. First, the resources
on an FPGA are limited, i.e., the specific task to be supported by an FPGA-based

D7.1 Design of integration HW accelerators

DAPHNE – 957407 6

implementation has to be carefully selected; second, building takes some time. For example,
the synthesis of an application for an FPGA can take between several minutes and multiple
hours, depending on the complexity of the application and the available computing power.

Figure 2: Illustration of the diversity of memory and storage technologies (taken from [OL18]).

2.2 Storage Level Heterogeneity
In addition to the increasing device level heterogeneity, we also have seen tremendous
developments in memory and storage technologies as illustrated in Figure 2. For a long time,
the traditional storage hierarchy has comprised several layers of memory technologies, ordered
from the fastest and least dense to the slowest and most dense: CPU caches (SRAM), main
memory (DRAM), secondary memory (HDD), and potentially tertiary memory (Tape Drive)
[OL18]. The rise of Flash memory, manufactured in the Solid-State Drive (SSD) form, has pushed
HDDs another level down the storage hierarchy: SSDs have successfully superseded HDDs.
However, the rise of novel memory technologies, such as Storage-Class Memories (SCM), and
substantial hardware and software advances in existing technologies, such as Open-Channel
SSDs [B18], force us to reconsider how we conceive storage hierarchies as described in
Deliverable D6.1 of the DAPHNE project. Indeed, storage system designers are faced with an
unprecedented diversity of memory and storage technologies, as illustrated in Figure 2.

2.3 Challenges
The emerging hardware, in turn, leads to increasing heterogeneity and thus, even larger
productivity and utilization challenges for IDA pipelines across DM, HPC, and ML systems. This
applies to CPU instruction extensions such as SIMD as well as to the multitude of domain-
specific accelerators such as GPUs or FPGAs. Thus, major challenges tackled by WP7 of the
DAPHNE project are: (i) developing as well as generating operators - also called computation
kernels -, which can be efficiently executed on accelerators such CPUs, GPUs, or FPGAs, (ii)
integrating these accelerator-specific operations in the whole DAPHNE compilation and
runtime infrastructure in a seamless way, and (iii) selecting the best-fitting accelerator for
efficient execution depending on the specific IDA pipeline and hardware environment.

3 DAPHNE System Architecture
In cooperation with the other WPs of DAPHNE, we designed a system architecture to efficiently
address our challenges for HW accelerator integration. The resulting DAPHNE system
architecture is shown in Figure 3 and explained in more detail in Deliverable D2.1 of the
DAPHNE project. The DAPHNE prototype is built from scratch in C++ but utilizes MLIR [L+20]
as a multi-level, LLVM-based intermediate representation (IR) as well as existing runtime
libraries such as BLAS, LAPACK, and DNN kernels and collective operations. These libraries are
augmented with more specialized, custom kernel implementations. Users specify their IDA

122 Datenbank Spektrum (2018) 18:121–127

SRAM DRAM NVRAM

Caches

Merging Point between Storage and Memory

DDR DIMMMCDRAM 3D XPoint MRAM RRAM

…

Storage

SSD HDD Tape Drive

Lower Latency Higher Capacity

…

Fig. 1 Illustration of the diversity of memory and storage technologies (adapted from [29])

lenges. Finally, Sect. 5 summarizes the paper and outlines
future breakthroughs lying ahead of us.

2 Random Access Memory

There are two main types of Random Access Mem-
ory (RAM): Static RAM (SRAM) and Dynamic RAM
(DRAM). SRAM requires six transistors per memory cell
and relies on changing the direction of the current to read
and write memory cells. In contrast, DRAM requires only
one transistor and one capacitor which is used to hold
the charges. Therefore, DRAM is much simpler, denser,
and cheaper (since it requires six times less transistors)
than SRAM. However, since DRAM’s capacitors produce
current leakage, its memory cells must be constantly re-
freshed – hence the name “Dynamic” RAM. While DRAM
is denser and simpler to produce, SRAM offers a much
lower access latency and a much higher bandwidth. There-
fore, SRAM is usually used for the smaller CPU caches
whose performance is critical, while DRAM is used for the
larger main memory. Since SRAM is embedded on-chip
and inflexible, we focus in the remainder of this section on
DRAM.

The DRAM market is currently dominated by Samsung,
Micron, and SK Hynix; they own more than 95% of the
market share [50]. Furthermore, the market is segmented
into many categories, each of which is tailored for specific
application domains:

! Double Data Rate (DDR) DRAM is targeted at Com-
plex Instruction Set Computers (CISC), which can issue
multiple instructions in a single cycle, such as CPUs
found in desktops and servers. Therefore, it is optimized
to handle parallel, small-sized memory requests using
a typically 64-bit memory bus.

! Low Power DDR (LPDDR) offers very low power con-
sumption and is targeted at smaller devices such as smart-
phones, tablets, and laptops.

! Graphics DDR (GDDR) is optimized for GPU work-
loads, or more generally, for Reduced Instruction Set
Computers (RISC) that issue a single instruction per

cycle. It differs significantly from DDR in that it has
a wider memory bus (up to 256-bit wide) which allows it
to provide much higher bandwidth. However, it does not
handle well parallel non-adjacent memory requests.

! High Bandwidth Memory (HBM) is a variant of
DRAM that provides much higher bandwidth than
GDDR thanks to its 3D design: multiple layers of DRAM
are stacked together and accessed through a very wide
memory bus (typically 1024-bit wide). It is mainly tar-
geted at high-end GPUs and servers.

! Multi-Channel DRAM (MCDRAM) is a type of HBM
introduced by Intel in its second generation Xeon Phi
processors1 [36]. It is a high-bandwidth, low-capacity
DRAM that can be used as a software-managed fast
buffer between CPU caches and main memory to accel-
erate analytical workloads.

! Hybrid Memory Cube (HMC) is another promising
high-bandwidth, low-capacity 3D-stacked DRAM and
a competitor of MCDRAM. Its application domains in-
clude high-end computing and networking.

Each category, with the exception of MCDRAM and
HMC, has improved over multiple generations, the latest
being DDR5, GDDR6, LPDDR4X, and HBM2.

DDR DRAM is by far the category that offers the highest
capacity. It is also the most relevant for database systems.
While the cost per bit of DDR DRAM has steadily de-
creased over the years, the capacity and bandwidth per core
have worsened [38]. As a matter of fact, it is intrinsically
hard to further increase the density of DRAM [21]: The
smaller the DRAM cell, the more it leaks energy which
interferes with the state of neighboring cells, thereby ex-
ponentially increasing error rates. Another concern is that
a significant share of data-centers energy consumption
is attributed to DRAM [9], either directly or indirectly
(e.g., through the cooling system). Consequently, DRAM
no longer satisfies the demand for ever-increasing main-
memory capacities.

1 Intel has discontinued its Xeon Phi series, albeit some of its concepts
have converged with the Xeon Scalable series.

K

D7.1 Design of integration HW accelerators

DAPHNE – 957407 7

pipelines in the DaphneDSL (a language similar to Julia, PyTorch, or R) or DaphneLib (a high-
level Python API with lazy evaluation that internally compiles DaphneDSL scripts as well). These
scripts are then compiled – via a multi-level compilation chain – into executable runtime plans.

Figure 3: DAPHNE System Architecture.

A major design decision with respect to HW acceleration integration is the focus on an
extensible infrastructure allowing to register new data types, kernels, and scheduling
algorithms in predefined extension hooks. Thus, extensibility goes beyond recent work on
combining variants (variability) of communication primitives [G+21]. Based on this extensibility
concept, we can add a great variety of kernels for HW accelerators in a flexible way without
focusing on a specific hardware accelerator. Moreover, we explicitly decided to implement
these kernels in C/C++ (as opposed to lowering them to low-level MLIR/LLVM operations),
because latest generation HW accelerators can usually be programmed that way, while we
would have to wait for the respective MLIR/LLVM extensions for the lowering approach. More
details on how we implement kernels for HW accelerators can be found in Section 4.

Based on that foundation, we lower DaphneDSL’s frame and matrix operations to calls to
precompiled C++ hardware-accelerated kernels and only use LLVM for control flow and scalar
operations. This is very different to other MLIR dialects but allows a more flexible HW
acceleration integration. Moreover, this design still allows the implementation of kernels in
LLVM, or other MLIR dialects as well as the utilization of code generation approaches, if
beneficial. The mapping to the C++ kernel calls is realized via corresponding MLIR compiler
passes. This can be used to implement different strategies - different compiler passes - to select
the best-fitting HW accelerator for efficient IDA execution depending on the specific pipeline
properties and hardware environment (in cooperation with WP5 and WP6). More details on
how we (plan to) select the best-fitting kernel can be found in Section 5.

Coordinating the system architecture with WP2-6 makes it easier to collaborate within the
consortium and allows all partners to focus on their respective WPs. Thus, the result is a

D2.1 Initial System Architecture

DAPHNE – 957407 5

With system infrastructure addressing these requirements, new opportunities arise. Examples

include tightly integrated ML-assisted simulations; materialization decisions for late data

augmentation during ML training, and query processing of simulation outputs; as well as

improved scheduling and resource utilization in shared cluster environments.

4 DAPHNE Architecture
DAPHNE is an open and extensible system infrastructure for developing and executing

integrated data analysis pipelines. In this section, we share the design of the overall system

architecture and its key components.

4.1 Overall System Architecture

The DAPHNE system architecture is shown in Figure 1. DAPHNE is built from scratch in C++

(for seamless integration with HW specialization), but utilizes MLIR [L+20] as a multi-level,

LLVM-based intermediate representation (IR) as well as existing runtime libraries such as BLAS,

LAPACK, and DNN kernels as well as collective operations. These libraries are augmented with

more specialized, custom kernel implementations. Users specify their IDA pipelines in the

DaphneDSL (a language similar to Julia, PyTorch, or R) or DaphneLib (a high-level Python API

with lazy evaluation that internally compiles DaphneDSL scripts as well). These scripts are then

compiled – via a multi-level compilation chain – into executable runtime plans.

Figure 1: DAPHNE System Infrastructure.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 8

comprehensive system infrastructure with many facets that are coordinated with each other.
To demonstrate the advantages of this system architecture, we are jointly working on a
vectorized execution engine for compiled operator pipelines of frames and matrices;
heterogeneous HW devices, and computational storage as described in Deliverables D2.1 and
D6.1. This engine is also the essential driver for WP7 and provides the corresponding
functionality in terms of orchestrating hardware-accelerated kernels. The set of kernels includes
key operations of linear algebra (e.g., matrix multiplication [BA+20]), data management (e.g.,
joins and group-by), HPC libraries (e.g., signal processing) as well as data access primitives such
as scans, sorting, as well as lossless and lossy (de)compression [D+20, E+19].

Figure 4: Vectorized Execution of Compiled Operator Pipelines (with multi-device data and operator placement).

To better understand the vectorized execution, Figure 4 depicts the basic integration of
vectorized operator pipelines into an execution plan. Similar to LLVM loops, such a vectorized
pipeline has multiple inputs, multiple outputs, and an IR body (operation). Additionally, we
specify split (e.g., row slicing) and combine (e.g., row-bind concatenation or aggregate)
functions. In this example, we perform matrix standardization ((X-colMeans(X))/colSds(X)),
append a column of ones for intercept computation, and compute XTX and XTy as part of a
close-form linear regression algorithm. The input matrix X is federated across CPU, GPU, and
FPGA memory, and vectorized execution creates tasks for aligned row partitions (similar to
morsels [L+14]) and appends them to one or multiple (device-specific) task queues. A task
comprises its input data, an operator pipeline (graph) with a specific input data binding (scalar,
row, or tile), outputs, and a combine. Then, worker threads read from the queues, execute the
tasks by calling the precompiled hardware-accelerated C++ kernels, and combine the results.

4 Kernels for Heterogeneous Hardware Accelerators
As described above, it is an explicit design decision to implement kernels in C/C++ with respect
to the HW accelerator integration. In this section, we give an overview of the state-of-the-art
and describe our approach in more detail.

4.1 State-of-the-Art
With the new opportunities that open up the emerging hardware landscape as described in
Section 2, there also arises a plethora of new challenges when considering how to program
kernels on these hardware platforms. To solve these new challenges, state-of-the-art

D7.1 Design of integration HW accelerators

DAPHNE – 957407 9

programming approaches are either based on general-purpose or on domain-specific
programming frameworks.

4.1.1 General-Purpose Programming Frameworks
One approach for implementing kernels on different HW accelerators are general
heterogeneous programming frameworks, such as OpenMP [DM98], OpenCL [M+11], CUDA
[SK10], SYCL [RL16], and oneAPI [R+21]. These models are not specialized for a single domain
or class of applications, but rather define abstraction mechanisms and language extensions for
common computational patterns, such as parallel loops or concurrently executing tasks.
Generally, they are tightly integrated with an existing serial programming language, such as C,
C++, or Fortran and thus allow at least partial re-use of an existing serial code base.

The advantage of the generic nature of these programming models is that they can be used to
accelerate a wide range of applications from very different domains, as they focus on
fundamental computational patterns rather than domain-specific abstractions. Improvements
of the implementation of a programming model, e.g., in the compiler or runtime library, benefit
many applications, and hardware vendors only need to implement the abstractions of the
programming model once to open up their hardware to many users and applications.

On the other hand, due to their general design, such programming frameworks fail to capture
the domain-specific, high-level semantics of HW accelerators, and still operate on a
comparably low level of abstraction, e.g., reasoning about individual loops. Memory
management is typically also explicit and requires careful attention by the programmer.
Because the language mechanisms (e.g., pragmas) are directly integrated into program code,
applications implemented in such general frameworks also mix what is computed with how it
is computed, with negative effects on code readability and maintainability.

As the abstractions of general programming frameworks still operate on a comparably low
level, implementations using such a framework are often specific to a single class of devices.
One example for this problem can be found when comparing vendor recommendations for
programming FPGAs or GPUs using OpenCL: While FPGA vendors usually suggest a single
work-item implementation, with FPGA-specific optimizations such as pipelining applied inside
that single work-item, GPU vendors usually suggest parallelizing an application across many
work-items and, if applicable, also concurrently active kernels. Consequently, OpenCL
implementations optimized for FPGAs usually do not deliver good performance on GPUs and
vice versa.

4.1.2 Domain-Specific Programming Frameworks
In contrast, domain-specific programming frameworks can be used to overcome the limitations
of general-purpose programming models. They are specialized for a single domain and provide
programming language abstractions for operations specific to this domain. Because these
domain-specific operations have well-defined semantics and the memory access pattern is
known beforehand, it is possible to separate what is computed from how it is computed, by
moving the mapping of domain-specific operations to hardware accelerator facilities into the
implementation of the programming framework. This also allows to vary the mapping
depending on available hardware and the desired performance independently of the actual
source code.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 10

Figure 5: Template Vector Library.

A recent example from the data management domain is the Template Vector Library (TVL)
[U+20]. TVL offers hardware-oblivious, but column-store specific primitives as generic
functions. This explicitly enables database systems programmers to implement each database
operator in a SIMDified, but hardware-independent fashion, on the one hand. On the other
hand, the TVL is also responsible for mapping the provided hardware-oblivious primitives to
different SIMD hardware as illustrated in Figure 5. For this mapping, the TVL includes a plug-in
concept, where each plug-in has to implement each provided hardware-oblivious primitive for
a specific SIMD hardware in a hardware-conscious manner. TVL is realized in C++ with the help
of template metaprogramming.

Other similar approaches are Weld [P+18], Voodoo [P+16], or Sierra [Le+14]. The downside of
domain-specific frameworks is the additional implementation effort that initially has to be
spent to define and implement the framework itself. For general-purpose frameworks, the
implementation effort can be amortized over many different applications and domains that
can use the framework. For domain-specific frameworks, on the other hand, this effort can be
justified only by a large number of users or applications, or significant gains in expressiveness
or performance. To reduce the initial implementation effort, compiler frameworks such as LLVM
or MLIR can facilitate the implementation of domain-specific frameworks.

4.2 Hand-Crafted HW-Accelerated Kernels
To show the broad applicability of our HW accelerator integration concept, we will implement
various kernels for our vectorized execution engine using different frameworks (general-
purpose as well as domain-specific). In particular, we will use CUDA [SK10] for NVIDIA GPUs,
oneAPI [R+21] and T2S [S+19] for FPGAs and TVL [U+20] for SIMD extensions on CPUs.
Through these extensive implementations, we can finally compare the individual approaches
with each other in terms of development time and performance of the implemented kernels.
This aspect is especially important regarding FPGAs.

In general, these hardware-accelerated kernels are initially device-specific, whereby the
vectorized execution engine, in combination with the scheduling mechanisms provided by
WP5, is responsible for the orchestration regarding an efficient and effective IDA pipeline

Hardware-Conscious Implementation (Plug-in)

Hardware-Oblivious API

Scalar

L/S
Class

Arithmetic
Class

Create
Class

Manipulate
Class

Comparison
Class

Intel
SSE

Intel
AVX2

Intel
AVX512

ARM
Neon

ARM
SVE

Boolean
Logic
Class

Limited set of data management primitives

D7.1 Design of integration HW accelerators

DAPHNE – 957407 11

execution. If required to further optimize the execution of specific operations over multiple
hardware accelerators, it will also possible to implement a set of hand-crafted HW-accelerated
kernels for various combinations of multiple devices. Despite some existing libraries, multi-
device support for important operations of integrated data analysis pipelines is still very
limited. Examples of existing libraries are cuBLAS-XT [W+16] and some academic prototypes
for matrix multiplication [C+20] or hash-joins [L+20b]. To overcome that and to achieve the
full potential of multiple device execution, we aim to adopt strategies from distributed query
processing and distributed linear algebra to the multi-device setting and adapt these
operations according to specific characteristics of the underlying devices. Furthermore, we will
also adopt distribution primitives from WP4 such as ring-reduce to provide the tools for
composing efficient data analysis pipelines on multiple, potentially heterogeneous,
accelerators. Moreover, the DAPHNE compiler will be extended accordingly, so that the
compiler is able to support single-device (default) as well as multi-device hardware-accelerated
kernels.

These hand-crafted hardware-accelerated kernels are pre-compiled as reusable building blocks
so that they can be called from a variety of DaphneDSL-scripts. This significantly increases the
usefulness and applicability of these hand-crafted kernels.

4.3 Code Generation
Besides the implementation of hand-crafted hardware-accelerated kernels, we also dedicate
ourselves to the following described code generation aspects to improve our approach.

Figure 6: Enhanced Template Vector Library (Virtual Vector Concept).

4.3.1 Virtual Vector Concept
Supporting multiple hardware accelerators with hand-crafted kernels implies a high
implementation effort. To overcome that, we aim for extending the domain-specific
programming framework TVL to a virtual vector framework as shown in Figure 5. The extension
mainly concerns two aspects. On the one hand, the current hardware-oblivious interface is
limited to primitives of the data management domain. This interface will be enhanced with
hardware-oblivious primitives required for linear algebra operations. On the other hand, the
TVL-backends are currently limited to SIMD extensions as illustrated in Figure 4. Besides SIMD
extensions, GPUs and FPGAs also provide data-level parallelism but with a different execution
model. To integrate these accelerators, we virtualize GPUs and FPGAs as virtual vector engines

Hardware-Conscious Implementation (Plug-in)

Hardware-Oblivious API

Scalar

L/S
Class

Arithmetic
Class

Create
Class

Manipulate
Class

Comparison
Class

Intel
SIMD

ARM
SIMD GPU FPGA NEC

Engine

Boolean
Logic
Class

Extract
Class

Limited set of data management and linear algebra primitives

D7.1 Design of integration HW accelerators

DAPHNE – 957407 12

with specific HW-accelerated software-defined SIMD instructions - implemented in CUDA for
GPUs and oneAPI for FPGA. This virtual vector concept leaves the SIMD register length as an
implementation and optimization choice. A first approach with promising results is published
in [F+21]. Based on this domain-specific framework, we can implement data-level parallel
operators in C++ in a hardware-oblivious way. From every single source operator
implementation, we are then able to automatically derive multiple variants for various HW
accelerators.

4.3.2 Fused Pipeline Operators
To optimize the execution of IDA pipelines, operator fusion is a very important technique,
which fuses sub-pipelines - a set of contiguous kernels - into a single operator [B+18].
Advantages are avoiding allocation of intermediates, reduced memory bandwidth
requirements, and specialization according to queries and operator parameterizations. One
more advantage of fuses pipelines: allows to process out of core/in batches. With the DAPHNE
compiler, we are able to fuse certain operations, forming the concept of a fused pipeline
operator. This means that operators, if they meet certain criteria, qualify to be put together
into a container operator - a fused pipeline. The focus of these criteria lies on how the input
data to operations can be split and how the output data has to be combined. In MLIR we can
express these constraints with the provided compiler infrastructure and have one of the
compiler's optimization passes gather chains of operations to put into a "VectorizedPipeline"
operator. For the input of an operation, we indicate if the data can be processed if split in a
row- or column-wise fashion while for the output characteristics, we specify a combine
property of row-wise, column-wise or aggregation. If the split and combine characteristics of
subsequent operations match up, a fused pipeline can be created. These chains of operations
can then work on slices of data in parallel without materializing full-sized intermediates. The
sliced input is wrapped in task items to be queued in the vectorized execution engine that
employs runtime scheduling decisions. Worker threads execute the fused pipelines according
to the given schedule (WP5). By controlling the task size, we can ensure bounded memory
requirements and fit intermediates into the device caches. That way, the entire operator
pipeline behaves like a dedicated, hand-crafted kernel. A task is the unit of scheduling with
potential worker contention on shared task queues and outputs, and random access to the
start of the task data. The more tasks (or the smaller the task size), the higher the overhead but
the better for load balancing (see Deliverable D5.1). Separating task size from data binding
provides additional flexibility. Furthermore, this wrapping into variably sized tasks allows us to
adapt to sparse input patterns. Sparsity exploitation across chains of operations can avoid huge
dense intermediates and thus, change the asymptotic runtime behavior, but these
opportunities are only leveraged for a limited set of operations and CPUs yet. Beyond this
state-of-the-art, we aim to generate sparsity-exploiting fused operators for GPUs, which is
challenging due to the irregularities of sparse matrices. Additional focus areas are operator
fusion (both compilation and runtime) for multiple, heterogeneous hardware devices, as well
as improved optimizer support for generating fused operators for partial data placement on
different devices.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 13

4.3.3 Sparsity Exploiting Code Generation for GPU
While it may not be feasible to compile source code at run-time for all types of accelerators
(e.g., it takes hours to compile even a simple vector addition sample program for FPGAs), we
certainly will engage in code generation for GPU devices using the CUDA language and SDK.
Not only does the language allow to express kernels in an elegant and human readable fashion
due to CUDA supporting most concepts of the C++ language (up to C++17 at the time of
writing). There is also a dedicated runtime compiler, named NVRTC, included in the SDK. This
allows to compile binaries from in-memory source code - which will be generated by the
Daphne compiler based on the operators that it encounters during execution of the multitude
of optimization passes. Previous work has shown the benefit of decoupling data bindings from
source code generation [B+18]. By using templates that model the way of certain access
patterns, the complexity of generating high performance operators is reduced and can focus
on the computation and not become bloated with code that deals with all kinds of problems
when dealing with feeding the data to the generated kernel. This complexity is partially
"exported" to the DAG (directed acyclic graph) analysis stage, that determines if a certain code
template can be applied. These code templates facilitate sparsity exploitation as they can be
geared towards being invoked on non zeros, not needing to fall back to densifying the sparse
inputs to do computations. And with chains of operations contained in the generated code
only being triggered by non zeros, a lot of unnecessary computation can be avoided, thus not
only increasing performance but also making certain computations possible. While an
implementation of this approach for GPU has its novelty to a certain extent, it is also a challenge
yet to be solved to gear dynamically created operators to the irregular input patterns that need
to be dealt with during IDA pipeline execution. GPUs and most SIMD style hardware excels at
processing regular patterns, e.g., dense inputs, because the hardware and the data are laied
out like a grid, fitting together naturally. Thus, processing sparse data will almost certainly be
not utilizing the available resources as efficiently. But shaping the way inputs are fed to the
processing elements can bring efficiency to tolerable or even favorable levels and brings along
other benefits like reduced memory bandwidth requirements. Two examples of methods of
adapting sparse inputs to accelerators are row binning [A+14] and adaptive chunking [W+19].
The former processes rows of a sparse matrix that have similar length with similar kernel launch
configurations. The latter tries to form uniformly sized chunks of work for the GPU. Both
approaches have been applied primarily to matrix-matrix and matrix-vector multiplication.

4.4 Summary
In DAPHNE, we explicitly decided to integrate HW accelerators by implementing kernels in
C/C++ on these HW accelerators. Thus, this implementation scope includes the following
aspects: (i) implementing key operations on different HW accelerators (T 7.1), (ii) supporting
multi-device/multi-accelerator kernels (T 7.4), and (iii) code generation for HW accelerators (T
7.5).

5 Employment of HW Accelerators in IDA Pipelines
While the previous section dealt with the implementation of hardware-accelerated kernels, this
section describes our concepts for an efficient and effective employment of these kernels in
IDA pipelines. The basic execution model of DAPHNE supports both (1) sequentially invoking
(hardware-accelerated) kernels of an IDA pipeline and producing materialized intermediates in

D7.1 Design of integration HW accelerators

DAPHNE – 957407 14

memory with copy-on-write semantics and operator-level synchronization barriers as well as
(2) fusing operators to a vectorized pipeline as pursued with a vectorized execution engine.
Additionally, we adopt hierarchical scheduling mechanism as well as task-parallel loops and
operations.

From a HW accelerator perspective, two aspects play an important role for an efficient and
effective execution: operator and data placement. Existing work for both aspects mainly relies
on manual or heuristic placement, but there is also work on using reinforcement learning for
operator placement onto multiple HW accelerators [L+20b, M+17, R+20]. Recent work further
applies self-scheduling schemes across devices [D+19] or partitions the data accordingly to
expected device performance [G+19], for utilizing all available devices jointly.

To advance the state-of-the-art and to develop a comprehensive DAPHNE approach, we focus
on three important components: (i) memory management, (ii) scheduling, and (iii) cost
modeling.

(i) Memory Management: As described in Deliverable D2.1, DAPHNE's core data structures
as part of the memory management are dense or sparse matrix formats. Both use row-major
representations: a dense linearized one-dimensional array, and a compressed sparse row (CSR)
[S94] format of row offsets, column-index and value arrays. While matrices are homogeneous
arrays, frames have a schema and thus require the handling of value types. Given common
analytic workload characteristics, our frames rely on a column-oriented storage implemented
via a dense matrix per column or column group. This composition allows the reuse of matrix
operations as frame operations. In hybrid runtime IDA execution plans that utilize HW
accelerators, a data object might be partitioned or replicated across devices. For maximum
flexibility – for example in programs with conditional control flow – we keep this data-location
information in runtime data structures. Specifically, matrices and frames reference the host
data (which can be a nullptr) and/or data on HW accelerators, computational storage devices
[BD21, LB21], and distributed workers.

This meta-data enrichment allows the memory management to track the data placement and
to orchestrate the data transfer at any time for each IDA pipeline execution. For example, a
compiled GPU kernel is called through its host kernel, which first invokes primitives to make
the inputs available in GPU memory. If the data is already on the GPU, there is no additional
transfer, and otherwise the primitive utilizes implicit (stream and discard) or explicit (copy and
retain) means of data transfer. The decision is made based on the meta-data. In a next step,
we will allow the compiler to inject prefetch and broadcast directives to overlay anticipated
data transfer with other operators to mask latencies. These distribution primitives nicely
generalize to HW accelerators, the distributed runtime, and computational storage. Moreover,
these primitives expand the technical possibilities for optimizing the data transfer between HW
accelerators.

(ii) Scheduling: Based on the memory management foundation, we will explore different
scheduling strategies from WP5 – see Deliverable D5.1 -- with respect to operator and data
placements for HW acceleration (T7.2). In particular, we will investigate placement decisions at
compile-time as well as runtime. Based on this investigation, we want to derive new placement
heuristics for the different kinds of HW accelerators. For example, for GPUs, it is already known

D7.1 Design of integration HW accelerators

DAPHNE – 957407 15

that the data must not be too small, since overhead for the data transfer is then too large. The
question is whether this heuristic also applies to FPGA or not, or what other influencing factors,
such as prefetching, may exist.

(iii) Cost Modeling: Finally, we aim at developing a cost-based approach for operator and
data placement decisions (T7.3 and T7.6). For these cost-based decisions, accurate
performance models of the HW accelerators are a key ingredient. Thus, we aim at creating a
wide spectrum of performance models from simple analytical models to more complex
profiling and learning-based models (requiring profiling for each HW accelerator). Based on
that, we further aim to model data access costs along the data path of IDA pipelines under
different access characteristics, accelerator capabilities, and accelerator-centric models of
parallelism. Then, these models are used during the compile-time of an IDA pipeline, to
determine the best-fitting hardware accelerator in combination with the best-fitting data
placements. For this purpose, it must be possible to estimate the sizes and properties (e.g., the
sparsity of matrices [SB+19]) of the intermediate data accordingly [BH+07, MNS09].

6 Conclusions
This report presented the motivation and the design for hardware accelerator integration in
DAPHNE. In particular, we described our approach for hand-crafting as well as generating of
hardware-accelerated kernels. Based on that, we presented our concepts for an efficient and
effective employment of the hardware-accelerated kernels in IDA pipelines.

7 References
[A+19b] S. Agrawal et al. Machine Learning for Precipitation Nowcasting from Radar Images.

CoRR, abs/1912.12132, 2019.

[A+17] S.R. Agrawal et al. A many-core architecture for in-memory data processing. In:
MICRO, pp 245–258, 2017

[A17] S. N. M. Albarqouni. Machine Learning for Biomedical Applications: From
Crowdsourcing to Deep Learning. PhD thesis, Technische Universitaet Muenchen,
2017.

[A+14] A. Ashari et al. An efficient two-dimensional blocking strategy for sparse matrix-vector
multiplication on GPUs. ICS 2014: 273-282, 2014.

[BD21] A. Barbalace and J. Do. Computational Storage: Where Are We Today? In CIDR, 2021.

[BH+07] K. S. Beyer et al.: On synopses for distinct-value estimation under multiset operations.
SIGMOD 2007.

[BKS20] S. Blanas et al. Topology-aware Parallel Data Processing: Models, Algorithms and
Systems at Scale. In CIDR, 2020.

[BA+20] M. Boehm et al.: SystemDS: A Declarative Machine Learning System for the End-to-
End Data Science Lifecycle. CIDR 2020.

[B+18] M. Boehm et al. On Optimizing Operator Fusion Plans for Large-Scale Machine
Learning in SystemML. PVLDB, 11(12), 2018.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 16

[BC11] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–77,
2011.

[B18] M. Bjørling. Open-Channel Solid State Drives. https://
openchannelssd.readthedocs.io/en/latest/. 2018, 2022-05-30

[Ca+18] J. Castrillon et al. A Hardware/Software Stack for Heterogeneous Systems. IEEE Trans.
Multi Scale Comput. Syst. 4(3): 243-259, 2018

[C+20] Y. R. Choi et al. Matrix-matrix multiplication using multiple GPUS connected by Nvlink.
GloSIC, pp. 354-361, 2020.

[D+19] K. Dursun et al. A Morsel-Driven Query Execution Engine for Heterogeneous Multi-
Cores. PVLDB, 12(12), 2019.

[D+20] P. Damme et al. MorphStore: Analytical Query Engine with a Holistic Compression-
Enabled Processing Model. PVLDB 13(11), 2020.

[D+22] P. Damme et al. DAPHNE: An Open and Extensible System Infrastructure for
Integrated Data Analysis Pipelines. In CIDR, 2022.

[DM98] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. IEEE computational science and engineering, 5(1), pp.46-55., 1998

[D+17] M. Dreseler et al. Hardware-accelerated memory operations on large-scale numa
systems. ADMS@VLDB, 2017.

[E+19] A. Elgohary et al. Compressed linear algebra for declarative large-scale machine
learning. PVLDB 9(12), 2017

[F+21] J. Fett et al. The Case for SIMDified Analytical Query Processing on GPUs.
DaMoN@SIGMOD, 14:1-14:5, 2021

[G+21] S. Gan et al. BAGUA: Scaling up Distributed Learning with System Relaxations. CoRR,
abs/2107.01499, 2021.

[G+19] M. Gowanlock et al. Accelerating the Unacceleratable: Hybrid CPU/GPU Algorithms
for Memory-Bound Database Primitives. In DaMoN@SIGMOD, 2019.

[H+17] S. Haas et al. Application-specific architectures for energy-efficient database query
processing and optimization. Microprocess Microsyst. 55:119–130, 2017

[H15] C. J. Hughes. Single-Instruction Multiple-Data Execution. Morgan & Claypool
Publishers. 2015

[JP13] R. Johnson and I. Pandis. The bionic DBMS is coming, but what will it look like? In
CIDR, 2013.

[J+17] N.P. Jouppi NP et al. In-datacenter performance analysis of a tensor processing unit.
https://arxiv.org/pdf/1704.04760.pdf. 2017, Accessed 2022-05-31

[K+13] T. Kiefer et al. Experimental evalu- ation of NUMA effects on database management
systems. BTW, pp. 185–204, 2013.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 17

[L+20] C. Lattner et al. MLIR: A Compiler Infrastructure for the End of Moore's Law. CoRR,
abs/2002.11054, 2020.

[L+14] V. Leis et al. Morsel-driven parallelism: a NUMA-aware query evaluation framework
for the many-core age. In SIGMOD, 2014.

[Le+14] R. Leißa et al. Sierra: a SIMD extension for C++. WPMVP@PPoPP, 2014.

[LB21] A. Lerner and P. Bonnet. Not your Grandpa's SSD: The Era of Co-Designed Storage
Devices. In SIGMOD, 2021.

[L+20b] C. Lutz et al. Pump Up the Volume: Processing Large Data on GPUs with Fast
Interconnects. In SIGMOD 2020.

[M+17] A. Mirhoseini et al. Device Placement Optimization with Reinforcement Learning. In
ICML, 2017.

[MNS09] G. Moerkotte et al. Preventing Bad Plans by Bounding the Impact of Cardinality
Estimation Errors. PVLDB 2(1) 2009.

[M+11] A. Munshi et al. OpenCL programming guide. Pearson Education, 2011

[NEC] NEC. Nec accelerates machine learning for vector computers.
http://www.nec.com/en/press/201707/global_20170703_02.html. Accessed 30 May
2022.

[OL18] Ismail Oukid and Lucas Lersch: On the Diversity of Memory and Storage Technologies.
Datenbank-Spektrum 18(2): 121-127, 2018.

[P+18] S. Palkar et al. Evaluating End-to-End Optimization for Data Analytics Applications in
Weld. PVLDB 11(9), 2018

[P+10] I. Pandis et al. Data-oriented transaction execution. PVLDB, 3(1):928–939, 2010.

[P+16] H. Pirk et al. Voodoo – A Vector Algebra for Portable Database Performance on
Modern Hardware. PVLDB 9(14), 2016

[P+21] T. Pfaff et al. Learning Mesh-Based Simulation with Graph Networks. ICLR, 2021.

[P+21b] C. Pilato et al. EVEREST: A design environment for extreme-scale big data analytics on
heterogeneous platforms. In DATE, 2021.

[R+20] A. Raza et al. GPU-accelerated data management under the test of time. In CIDR,
2020.

[R+21] J. Reinders et al. Data parallel C++: mastering DPC++ for programming of
heterogeneous systems using C++ and SYCL (p. 548). Springer Nature, 2021

[RL16] R. Reyes and V. Lomüller. SYCL: Single-source C++ accelerator programming. In
Parallel Computing: On the Road to Exascale (pp. 673-682). IOS Press, 2016

[SK10] J. Sanders and E. Kandrot. CUDA by example: an introduction to general-purpose GPU
programming. Addison-Wesley Professional, 2010.

D7.1 Design of integration HW accelerators

DAPHNE – 957407 18

[SB+19] J. Sommer: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions.
SIGMOD 2019.

[S+19] N. K. Srivastava et al. T2S-Tensor: Productively Generating High-Performance Spatial
Hardware for Dense Tensor Computations. In FCCM, 2019.

[S+17] N. Stephens et al. The ARM scalable vector extension. IEEE Micro, 37(2):26–39, 2017.

[S+11] M. Stonebraker et al. The Architecture of SciDB. In SSDBM, 2011.

[S05] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s journal, 30(3):202–210, 2005.

[S+00] A. S. Szalay et al. Designing and Mining Multi-Terabyte Astronomy Archives: The
Sloan Digital Sky Survey. In SIGMOD, 2000.

[T17] J. Teubner. Fpgas for data processing: current state. it Inf Technol 59(3):125–131, 2017.

[U+20] A. Ungethuem et al. Hardware-Oblivious SIMD Parallelism for In-Memory Column-
Stores. In CIDR, 2020.

[W+16] L. Wang et al. Blasx: A high performance level-3 blas library for heterogeneous multi-
gpu computing. SC. pp. 1-11, 2016

[W+09] T. Willhalm et al. Simd-scan: ultra fast in-memory table scan using on- chip vector
processing units. PVLDB Endowment 2(1):385–394, 2009.

[W+19] M. Winter et al. Adaptive sparse matrix-matrix multiplication on the GPU. PPoPP 2019:
68-81, 2019.

[W04] W. H. Wolf. The future of multiprocessor systems-on-chips. DAC, pp- 681–685, 2004.

[Z+19] A. Zamuda et al. Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-
Oriented Survey of the State-of-the-Art in the Cloud Era. In High-Performance
Modelling and Simulation for Big Data Applications. 2019.

