

D8.1 Initial Pipeline

Definition of all Use Cases

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 2.1

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

Ref. Ares(2021)5350720 - 30/08/2021

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 1

Document Description

This document gives an overview of the initial pipeline definitions for all use cases.

D8.1 Initial use case definition all use cases

WP8 – Use Case Studies

Type of document R Version 2.1

Dissemination level PU

Lead partner KAI

Author(s) Benjamin Steinwender (KAI), Marius Birkenbach (KAI), Marlies Hofer

(AVL), Daniel Krems (AVL), Andreas Laber (IFAT), Nikolai Skuppin

(DLR)

Reviewer(s) Matthias Boehm (KNOW), Ahmed Hamdy Mohamed Eleliemy

(UNIBAS)

Revision History

Version Revisions and Comments Author / Reviewer

V1.0 Initial document structure, merged description of all indi-

vidual use cases

Benjamin

Steinwender

V2.0 Incorporated reviewer comments Benjamin

Steinwender

V2.1 Final polishing and merge of use case refinements Matthias Boehm

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 2

Executive Summary

Five use case pipelines are presented in this report. The details given in the individual sections

should enable the reader of this document to implement a similar pipeline for evaluation pur-

poses.

Although the scientific background of the different partners varies greatly, the data processing

techniques and focus are largely identical:

• The data pre-processing part is a quite substantial effort in the design and definition

of the pipelines.

• Machine learning processes are mostly described using the Python scripting language

and well-known toolkits like scikit-learn [1].

• All pipeline descriptions mention runtime as being the most crucial measurable.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 3

Table of Contents

1 Introduction .. 6

2 Earth Observation Case Study: Local Climate Zone Classification (DLR) 7

2.1 Overview of the Initial Pipeline ... 7

2.1.1 Pre-processing ... 7

2.1.2 Training ... 8

2.1.3 Inference ... 8

2.2 Description .. 8

2.2.1 Pre-processing ... 8

1.1.1 Training ... 8

1.1.2 Inference ... 9

2.2.2 Dependencies ... 9

2.3 Measurables ... 9

3 Semiconductor Manufacturing Case Study: Optimizing the Equipment Stability and

Utilization (IFAT) ... 10

3.1 Overview of the Initial Pipeline ... 11

3.2 Data Engineering .. 11

3.3 Machine Learning Pipeline ... 12

3.3.1 CSV ... 12

3.3.2 Pre-processing ... 12

3.3.3 Modeling .. 13

3.3.4 Validation ... 13

3.3.5 Deployment ... 13

3.4 Measurables ... 13

4 Material Degradation Case Study (KAI) ... 14

4.1 Overview of the Initial Pipeline ... 14

4.2 Data Reduction ... 15

4.2.1 TDMS File (Waveform Data) .. 15

4.2.2 Reader ... 15

4.2.3 Pre-processing: Dot Product ... 16

4.2.4 Line Simplification ... 16

4.2.5 Post-processing: Convert ... 17

4.2.6 Database ... 17

4.3 Measurables ... 17

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 4

5 Automotive Vehicle Development Case Study: Ejector Geometry Optimization

(AVL 1) ... 18

5.1 Overview of the Initial Pipeline ... 18

5.2 Getting Started .. 19

5.2.1 Input Data .. 19

5.2.2 Initial Main Geometry Parameter Estimation.. 19

5.3 Pre-processing... 20

5.3.1 Data Pre-processing ... 20

5.3.2 CFD Simulation Pre-processing ... 20

5.4 CFD Simulation .. 20

5.5 Post-processing .. 20

5.6 Data Set .. 20

5.7 Behavior Model and Optimizer ... 23

5.8 Measurables ... 23

6 Automotive Vehicle Development Case Study: Virtual Prototype Development (AVL

2) 25

6.1 Overview of the Initial Pipeline ... 26

6.1.1 Data generation ... 26

6.1.2 Model Training ... 27

6.1.3 Prediction ... 27

6.2 Description of Elements ... 28

6.2.1 Training Data Generation ... 28

6.2.2 Model Training ... 28

6.2.3 Prediction ... 28

6.3 Measurables ... 28

7 References ... 29

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 5

List of Abbreviations

Abbreviation Meaning

CFD Computational Fluid Dynamics

CORE Custom Output Range Exploration

CSV Comma Separated Values

CV Characteristic Value

DoE Design of Experiments

DUT Device Under Test

ELMN Evolving Local Model Network

ER Entrainment Ratio

GDAL Geospatial Data Abstraction Library

IODP Integrated and Open Development Platform

OEE Overall Equipment Efficiency

P Pressure

ΔP Pressure Difference (pressure loss in stack or suction pressure in ejector)

PEM Proton Exchange Membrane

ROI Region Of Interest

SOFC Solid Oxide Fuel Cell

SSF Solver Steering File

T Temperature

TCV Target Characteristic Value

TDMS Technical Data Management System

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 6

1 Introduction
In order to demonstrate impact on real-world applications, to ground our research activities

with relevant use cases, and to allow for benchmarking and quantifying the research progress,

we selected four – with use case 4 being described as two case studies in this document –

complementary use case studies. In the following, we summarize the use cases and describe

the related data types.

A pipeline describes a process which progresses towards a specific goal that involves an arbi-

trary number of lined up stages. In the case of a data pipeline, data is passed on between the

stages in a directed way. One stage represents a processing step. Every stage has a defined

task and processes the input data with a resulting outcome. Potentially these processing ele-

ments are executed in parallel. Machine learning pipelines consist of different steps to prepare

the data, train a model or perform inference.

The main objectives of the use case studies are twofold. First, the variety of use cases represent

real-world applications to quantify the productivity and performance improvements of the de-

veloped system infrastructure and provide feedback on pain points to the system-oriented

work packages. Second, we aim to improve the accuracy and runtime of these important ap-

plications at algorithmic level. As most use cases leverage machine learning, we also aim to

explore the accuracy-runtime trade-off which has huge potential but can only be done in close

collaboration with the domain-specific applications.

A variety of different use cases is presented in the following sections. From climate zone clas-

sification of aerial images over manufacturing equipment optimization and material degrada-

tion studies to fuel cell development topics and virtual prototypes for vehicle development,

these use cases all implement data processing techniques and potentially machine learning

pipelines. Although the selected use cases are very diverse from both application point of view

and initial setup, the requirement of a pipeline-based data processing system is ubiquitous.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 7

2 Earth Observation Case Study: Local Climate Zone Classifi-

cation (DLR)
Urbanization is the second largest mega-trend right after climate change. Accurate measure-

ments of urban morphological and demographic figures are at the core of many international

endeavors to address issues of urbanization. Local climate zones (LCZs) classification is a land-

use, land-cover classification scheme originally designed for studying urban heat islands. But

it also showed its potential in urban morphology mapping. The LCZs classification scheme has

17 classes that describe the building density and height of an area, which are shown in the left

of Figure 2.1. On the middle of Figure 2.1, it shows the LCZs classification of Vancouver, Canada,

as an example. The right of Figure 2.1 shows the Google image of the area marked by the

yellow rectangle in the middle figure, which are the densest area in Vancouver. In order to

provide a global monitoring, large amounts of satellite images need to be processed, including

analysis-ready data preprocessing, machine learning model training, and global image infer-

encing. Therefore, this is per definition a big data problem. Efficient computation is required.

Figure 2.1: LCZ classes [2], example LCZ classification and a Google image of downtown area marked with the yellow

rectangle. [3]

2.1 Overview of the Initial Pipeline

The processing from raw satellite images to the targeted LCZ maps can be divided into three

stages:

2.1.1 Pre-processing

The target is to generate analysis ready data for the later stages. This consists of temporally

and spatially merging of multiple satellite images of a given region of interest. Additionally,

upsampling the different spatial bands to a target ground resolution (10m) and aggregating

cloud free images. Currently, this process is implemented in Google Earth Engine (a cloud plat-

form for processing Earth observation data).

The input is a Region Of Interest (ROI) and a time span. The region of interest is defined as a

polygon in geographic coordinates (e.g., stored in a GeoJSON). The process will then merge all

satellite images covering the ROI in the given time span to compose a cloud free image. For

each image, a cloud and shadow probability mask are calculated and pixels are sorted by this

value and pixels with least probability for cloud and shadow are selected. A detailed description

of the pre-processing is given in [4]. The output is an analysis ready image of size A x B, with

all thirteen Sentinel-2 bands (B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B10, B11, B12) upsampled

to 10 m, where only the bands marked in bold are later used for training and inference. The

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 8

final image is stored to a GeoTIFF. Figure 2.2 illustrates the input and output dependencies of

the pre-processing pipeline.

Figure 2.2: Pre-processing Pipeline

2.1.2 Training

The target is training a model for LCZ classification, using the available So2Sat-LCZ42 data

set [3]. This consists of image patches of size 32 x 32 x 10 pixels labeled into one of the 17 LCZ

classes and split into training, validation and test data. Please note that different versions of

the data set have been published. We refer to version 2 to get the training, validation and

testing split.

The output is a trained model (weights), which can be used for the inference of additional data.

For the baseline, a ResNet20 model is used [5]. Figure 2.3 provides a high-level view on the

input and output of the training process.

Figure 2.3: Training Pipeline

2.1.3 Inference

The target is to generate an LCZ map for a given region of interest. Inputs are the model ob-

tained during training and the pre-processed images from the first step. The output is the LCZ

map stored as an image. Figure 2.4 illustrates the different processing steps during inference.

Figure 2.4: Inference Pipeline

2.2 Description

2.2.1 Pre-processing

Details of the pre-processing can be found in [4]. The results are stored in GeoTIFFs with the

values coded in UINT16.

1.1.1 Training

A python script is used to train the model with the So2Sat-LCZ42 [3]. Uses version 2 of the data

set, where training.h5 is used for training and validation.h5 for validation (testing.h5 can be

used for final testing and comparison of different models). The training data consists of image

patches of 32 x 32 x 10 pixels (bands B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12). For the

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 9

baseline a ResNet20 model is used [5]. The training uses a batch size of 16 and an initial learn-

ing rate of 2e-4. The learning rate is reduced by a factor of 5 when the validation loss did not

improve for two epochs. The minimum learning rate is 1e-7 and the cool-down is three epochs.

The maximum number of epochs is set to 100 and early stopping on the validation loss is used

with a patience of 5 epochs. The optimizer is Adam with Nesterov momentum and default

parameters (beta_1=0.9, beta_2=0.999, epsilon=1e-07). The loss is categorical cross entropy.

1.1.2 Inference

• Load image: A Python script to load bands B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12

from GeoTIFF and divide the values by 10,000 to obtain the reflectances. Uses GDAL to

process the GeoTIFFs and returns a numpy array representing the image.

• Patch generation: A Python function to grid image into pixels of 100 x 100 square meters

and cut patches of 32 x 32 x 10 pixels around each center coordinate from the original

image (uses GDAL library). Uses symmetric padding of 16 pixels to capture border cases

(cut patch at a border coordinate).

• Classification: A Python function to classify each 32 x 32 x 10 patch into one of the 17 LCZ

classes. Uses model weights obtained during training to initialize the TensorFlow model.

Classification of individual patches is independent from each other, which offers the possi-

bility for parallel processing.

• Store to image: A Python function to store the LCZ map into a GeoTIFF. The pixel value at

each image coordinate is set to the corresponding LCZ class, obtained in the previous step.

Uses GDAL library to write GeoTIFF file.

2.2.2 Dependencies

In the following, the main dependencies are listed:

• Google Earth Engine (used for pre-processing)

• TensorFlow

• GDAL (used for processing GeoTIFFs)

2.3 Measurables

The most important measurable for this use case is the runtime for inference and training.

Since the training time is expected to be negligible compared to inferencing, the primary con-

cern shall be on the inference runtime. Both the training and inference are expected to benefit

from improved and parallel processing of the image patches. There should also be no signifi-

cant degradation of the classification accuracy. The pre-processing is highly dependent on

the application and is run on a cloud platform with only high-level access, therefore, it is not

the target for optimization.

Training on a single machine with an NVIDIA Tesla V100-SXM2 takes several hours and

achieves a validation accuracy of about 61 %. Please note that these values are of stochastic

nature and heavily depend on the underlying system architecture and settings. They only pro-

vide orientation for expected orders of magnitude.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 10

3 Semiconductor Manufacturing Case Study: Optimizing the

Equipment Stability and Utilization (IFAT)
There are many stages within semiconductor manufacturing, one of which is ion implantation.

The objective of ion implantation is changing the physical, chemical or electrical properties of

the target. The target in case of semiconductor manufacturing is in the majority of the cases a

silicon wafer, which acts as a substrate for further processing. During ion implantation charged

dopants are accelerated in an electric field and directed onto wafers. Special equipment is built

for this processing step. A schematic of classical ‘medium current’ ion implantation equipment

is shown in Figure 3.1.

The doping gas, e.g., boron trifluoride BF3, is injected in an ion source wherein a plasma is

generated from this doping gas. The ions are then extracted from the surface plasma of the

ion source with up to 80 kilovolts (kV). The charged particles are deflected by 90° by the mag-

netic field of the mass separator magnet. Particles that are too light/heavy are deflected

more/less than the desired ions and intercepted by resolving apertures behind the mass sep-

arator. The ions are then accelerated to their final energy, 200 kiloelectron volt (keV) accelerate

boron ions to approx. 2e-6 m/s. Lenses are distributed throughout the system to focus the ion

beam. Mechanical wafer handling and electrostatic scanner plates can direct the ions to differ-

ent positions on the wafer. Typically, the goal is to have a uniform dose from 1e-10 to 1e-17

at/cm2 throughout the whole wafer.

Figure 3.1: Schematic of Implantation Equipment

A recipe in the context of manufacturing states various parameter specifications to fulfill the

process step’s requirements. With every recipe change a setup is required, which includes ion

beam tuning. Tuning ensures that recipe’s specifications are met under varying equipment

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 11

conditions. By manipulating the voltages and currents of specific components, the beam can

be tuned to fit the specifications in the recipe. This usually is an automatic process, which is

performed by the equipment on its own. If the tuning parameters only differ slightly from the

previous ones, tuning can be rather quick. To name a bad scenario, if the specifications differ

a lot and the ion source is near the end of its lifetime, it may take roughly 15 minutes, until the

equipment stops without being able to tune.

The objective is to predict which recipes are tunable with high probability and which recipes

are not, given the equipment’s current state. A tuning fail decreases the overall equipment

efficiency (OEE) and generates the need to schedule a lot, i.e., a batch of 25 wafers, with a

different recipe. Not tunable recipes are blocked in order to avoid retries. These restrictions are

lifted after performing a scheduled maintenance activity. After e.g., replacing the ion source, a

wider variety of recipes are readily processable again. In order to reduce downtimes and in-

crease throughput, it is key to predict tuning success before a decision is made on which lot to

process next.

3.1 Overview of the Initial Pipeline

The use case in its current state, is a combination of batch and stream processing. It is a rather

classical machine learning pipeline, where the model is trained on a batch of historical data

and the model is queried via a stream of requests. The complete use case consists of data

engineering, depicted in Figure 3.2, and the machine learning pipeline, depicted in Figure 3.3.

The data engineering pipeline is a prototype for exploratory analyses. It will be reimplemented

in a more stringent and production ready manner. The machine learning pipeline is imple-

mented in Python and makes intensive use of the scikit-learn library [1]. The resulting model is

deployed within a container orchestration platform and delivers predictions, whenever a new

lot arrives at the implantation equipment. The lot is therefore listed in the corresponding dis-

patch list. The dispatch sequence is then optimized by considering the predicted probability of

tuning success.

3.2 Data Engineering

Within data engineering, the setup and implant log files are scanned and their data is parsed

and stored in a MySQL database. Another Python script queries this data from five different

tables and manipulates it to prepare it for the machine learning pipeline. The resulting table is

stored as a csv file, to make it available for further processing. The size variable A of the csv

depends on the considered timeframe for model training. The extracted data consists of a set

of 79 categorical and a set of 2468 numerical columns, which mainly represent process targets

and sensor readings. Each row represents a finished setup with additional data, which is avail-

able before tuning is initiated. The setup result is used as a label for the supervised training.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 12

Figure 3.2: Data Engineering

A redesign decision could be to also include the “Extract Job” from Figure 3.2 into the machine

learning pipeline and therefore eliminate the buffer csv file. This in turn would induce additional

load on the database and a time delay for querying, while training a new model.

3.3 Machine Learning Pipeline

Given that data is loaded from the csv file to a pandas DataFrame, the existing machine learning

pipeline at the time of writing manipulates the data in a few steps, which are elaborated on in

the corresponding sections. An overview of the pipeline is shown in Figure 3.3.

Figure 3.3: Machine Learning Pipeline

3.3.1 CSV

The dataset consists of 2547 columns. The content varies from columns containing recipe or

equipment names as strings, over columns representing timestamps of e.g., the start and end

of the setup process, to the majority of columns of datatype float, which represent sensor data.

These sensor readings include, but are not limited to, gauge and vacuum pressures and various

required settings and read-back values of components. One special column contains the label

for ion beam tuning success or fail, in binary format.

3.3.2 Pre-processing

The data is split into a train (A’) and test (A’’) set by train_test_split(), resulting in a subset of

observations for further processing. In regard to feature selection columns with static values or

low variance are removed by sklearn’s VarianceThreshold(). The model can also be improved

by removing highly correlating features from the dataset. This is achieved by X.corr() and ap-

propriate masking. The data is imputed by forward-filling missing entries with pandas X.fillna().

To fill up missing entries after forward-filling, SimpleImputer() replaces these values with the

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 13

mean of the respective column of A’. The recipe column is one-hot encoded to provide pro-

cessable features for classifiers and therefore extends the number of columns by the number

of distinct recipes. After this selection process only 729 columns remain for the currently used

evaluation dataset. With StandardScaler() data is scaled and centered on A' as not to leak in-

formation from A’’. A domain expert performed a one-time manual selection of the most prom-

ising features. This resulted in the selection of a subset of features for one specific equipment

type. The goal is to let the model decide on its own. This allows for a more cost-efficient rollout

to similar equipment.

3.3.3 Modeling

Random forest classifiers [6] are known to be well-performing and already produced promising

results during the initial experiments for this use case. The classifier is created by sklearn’s

RandomForestClassifer(). On the evaluation dataset the following parameters proofed to per-

form well, max_depth=65 and n_estimators=450. These values were found iteratively by using

RandomizedSearchCV() and GridSearchCV(). The output of the model on the training data are

two percentage values stating the probability of tuning fail and tuning success respectively.

3.3.4 Validation

In most cases (> 80 %) tuning is successful. Therefore, accuracy is not a good validation

method. With cross_validate() the F1 and ROC AUC scores are calculated. Moreover, the con-

fusion matrix and the Matthews Correlation Coefficient (MCC) [7] are computed and in turn

analyzed to monitor the validity of the model.

3.3.5 Deployment

During deployment the current equipment status is known, i.e., all feature columns are up to

date within seconds. In rare cases, there is a possible delay of up to five minutes. The model is

queried with live data from production. The dispatch list contains a list of lots, which are sched-

uled for process on implantation equipment. Whenever a new lot arrives at the equipment it is

added to the list. For each lot, the corresponding recipe is known. For each recipe, a prediction

is provided by the trained model in the form of probability percentages. According to the suc-

cess probability and other production criteria, the lots are newly ranked within the dispatch list

and the top one is dispatched. This decision is made lot by lot. Examples for additional ranking

criteria are accumulated wait time, remaining time to due date, prioritization for development

and customer demanded lots, lots needed for equipment checks and many more. With correct

tuning predictions the OEE of the production equipment can be optimized, as it stays produc-

tive longer before the next maintenance activity is required and less time is spent on perform-

ing setups.

3.4 Measurables

Improvement by DAPHNE is expected to be in terms of computation time. This would allow for

a more extensive search of the solution space, especially in the area of hyperparameter tuning

while retraining. In turn, this should result in a positive impact on validation measures, F1, ROC

AUC and MCC. The required retraining rate is not yet known, but it could be on a daily basis.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 14

4 Material Degradation Case Study (KAI)
At KAI, we develop semiconductor test systems and methods for investigating degradation of

power semiconductors. Thereby, large datasets are collected. A subset of selected data is

shared within the consortium.

As a preparation step, we aim to streamline existing analysis pipelines for material degradation

by automating data import/export, data preparation, and orchestration of analysis tools (DB,

HPC FEM, analysis of simulation outputs) with a major focus on minimizing manual effort. Sub-

sequently, we explore pipeline extensions by leveraging ML models and HPC for more accurate

prediction of material degradation. Additionally, we aim to investigate temporal changes over

waveform measurements and succinct representations of waveforms characteristics and their

key parameters. Finally, we will explore accuracy-runtime tradeoffs with different data subsets,

data representations, and analysis methods for different scenarios from offline analysis to de-

vice monitoring.

Our raw waveform data consists of two signals, the voltage across (VDS) and the current through

the DUT (ID) during a test pulse. The pulses are recorded through our test systems. There is a

series of pulses for every tested device.

4.1 Overview of the Initial Pipeline

The initial pipeline is composed of a data reduction and a subsequent simulation step. The

input data consists of sampled waveforms which are stored in files. These raw waveforms re-

quire downsampling to enable performant storage in a database. Afterwards, several values

from the database, including the decimated waveforms, serve as input parameters for the sim-

ulation step. The simulation results are stored in the same database.

Figure 4.1: KAI pipeline overview.

As described in Figure 4.1, the initial data analysis pipeline comprises P number of pulses with

2 channels each stored in a TDMS file, S number of sample points per pulse and R number of

sample points after data reduction.

• The waveform data is stored in the NI TDMS file format [8]

o Binary structured file format (lightweight version similar to HDF5)

o Our dataset shared with the consortium consists of ~13,760 TDMS files

o One file contains the test pulses of one DUT (varying amount, typically ~3000)

• Data Reduction

o A polyline simplification algorithm compresses the waveform data [9], [10]

o The goal is to reduce the massive amount of waveform data without losing too

much information

• Our database is an in-house developed web application based on PHP and MySQL

• Simulation

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 15

o Our physics-based simulations are carried out using ANSYS APDL. ANSYS allows

the integration of black-box models and algorithms in larger workflows. In fu-

ture, we might actually see if we can improve key components of the simulation

too.

o Text files serve as input / output

4.2 Data Reduction

The focus lies on the data reduction component. It contains a sub-pipeline itself, which is elab-

orated in Figure 4.2. There are P number of pulses stored in a TDMS file, S number of sample

points per pulse and R number of sample points after data reduction.

Figure 4.2: Data reduction pipeline.

4.2.1 TDMS File (Waveform Data)

The TDMS file format consists of a hierarchical structure, namely groups and channels. One file

contains an arbitrary number of groups. A group consists of an arbitrary number of channels.

At KAI, one file contains all waveforms of one specific DUT. The waveforms are acquired se-

quentially during a degradation test. One group represents one test pulse (about 3000 pulses

are recorded per test). One test pulse consists of two time-series data channels, the drain-

source voltage VDS across the DUT and the drain current ID. One pulse is sampled with around

750 sample points.

• TDMS file (One DUT)

o Group 1: Recorded Test pulse #1

 Channel 1: drain-source voltage (VDS)

 Channel 2: drain current (ID)

o Group 2: Recorded Test pulse #2

o …

o Group N: Recorded Test pulse #N

Mapped as a matrix: [~3000 pulses] X [VDS, ID] X [~750 sample points]

4.2.2 Reader

To read data from the TDMS files, various tools can be used, e.g., NI LabVIEW, or the Python

package npTDMS [11].

The reader passes the waveforms (VDS and ID) group-wise to the preprocessing component.

Currently, the reader is implemented in Python 3.

Input: [~3000 pulses] X [VDS, ID] X [768 sample points]

Output: [VDS, ID] X [768 sample points]

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 16

4.2.3 Pre-processing: Dot Product

The total power dissipation is the decisive factor for the thermo-mechanical simulation. There-

fore, the voltage and the current are multiplied.

���� � ��� ⋅ 	�

The dot product of the voltage vector and the current vector is calculated.

���,�⋮���,�� ⋅

	�,�⋮	�,�� �
����,�⋮����,��

The resulting power waveform is forwarded to the line simplification algorithm.

Input: [VDS, ID] X [~750 sample points]

Output: [Ptot] X [~750 sample points]

4.2.4 Line Simplification

This component is the actual lossy data compression part. So far, we discovered two suitable

algorithms, the Visvalingam-Whyatt algorithm (VW) [10] and the Douglas-Peucker algorithm

(DP) [9]. At the moment, the former is used, but the latter still is an option.

Visvalingam-Whyatt is an iterative algorithm which step by step discards points of the line with

least information loss. The point with the smallest area of the triangle between itself and its

neighboring points is discarded next. Since we feed a power curve to the algorithm, it

minimizes the energy deviation during downsampling.

The algorithm has the following parameters:

1. max_points

• Maximum number of points after simplification

• Set to 18 (it has been shown that our data can be reduced very well to this

amount)

2. min_points

• Minimum number of points after simplification

• Set to 2 (a line needs at least two points)

• Latest abort criterion

3. tolerance

• Upper barrier for the area of the triangle between neighboring points when

discarding

If the tolerance already is exceeded while the number of points still is higher than the limit

max_points, the algorithm continues discarding until the condition is reached.

If the limit max_points has already been undershot while the tolerance still is bigger than some

triangles, the algorithm will continue until the tolerance is exceeded.

The algorithm terminates at the latest when min_points is reached.

Input: [Ptot] X [~750 sample points]

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 17

Output: [ti, Ptot] X [~18 sample points]

4.2.5 Post-processing: Convert

The reduced waveform needs to be in the piecewise linear format. Linear regression is used to

connect these points and form the line segments.

The result is stored in the database as a string. The post processing step therefore converts the

reduced line into a list of numbers separated by space in string format: “t0 Ptot,0 t1 Ptot,1

… tR Ptot,R“.

4.2.6 Database

To access the database, various REST endpoints can be queried. The proprietary client is im-

plemented with Python and can be imported as a package. The client accesses the server via a

REST API. Basically, the database client sends 2D csv files via POST request to insert data.

4.3 Measurables

Within the DAPHNE project, we identified the following measurables for our initial pipeline:

• Runtime

• Memory requirements

• Compression-information-loss-ratio

The above mentioned measurables are evaluated for single pipeline components or jointly for

successive components. For instance, the pre-processing step together with the line simplifi-

cation step of the data reduction sub-pipeline. Parts of the pipeline whose implementation is

addressed by the DAPHNE project are of special interest.

For our future and more developed pipeline, we can further evaluate with the number of de-

tected features and the prediction accuracy for various sub-use cases.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 18

5 Automotive Vehicle Development Case Study: Ejector Ge-

ometry Optimization (AVL 1)
AVL is developing gas ejectors for PEM and SOFC fuel cell systems. The ejector should com-

pensate pressure losses of the stack and other components in the anode recirculation line (see

Figure 5.1). The primary domain of the ejector is the fuel supply. A certain hydrogen (H2) flow

rate is supplied from the fuel tank through an injector at a specific temperature and pressure

and gets accelerated via the nozzle. Downstream the nozzle, in the mixing chamber of the

ejector, the primary stream and the recirculated secondary stream are mixed. The secondary

stream is accelerated by the high flow momentum of the primary stream. In the diffuser of the

ejector, the mixed flow is decelerated while increasing the pressure to p2. The outlet gas of

the ejector is led to the anode side of the fuel cell stack where a pressure loss occurs (Δp=p2-

p3). The stack off-gas is led into the secondary domain of the ejector (=recirculation line).

Depending on the geometric variables of the ejector and the operating conditions like the

supply pressure of the fuel, a certain entrainment ratio ER (ratio of recirculated flow and fresh

fuel flow) and suction pressure can be achieved. The optimized ejector generates high suction

pressures / recirculation flow rates.

AVL established a DOE workflow combining AVL software components (AVL FIRE™for Mul-

tiphysics CFD and AVL CAMEO™for parameter behavior model and optimizer) and elaborated

a continuously growing data set which is getting denser for standard fuel cell system applica-

tions.

Figure 5.1: Schematic of anode recirculation line containing ejector (marked in orange) and the fuel cell stack. Aim of

the ejector is to recover the pressure loss of the stack.

5.1 Overview of the Initial Pipeline

The current ejector geometry optimization pipeline consists of an initial lookup in the data set

and further looping of the DoE (prediction of geometry and CFD verification) till target is

achieved. The biggest and most complex elements are for sure the numerically expensive CFD

simulation and the DoE model using machine learning techniques. Besides them, there are

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 19

various scripts for data and simulation preprocessing and result post-processing, the outcome

is collected in the data set that trains the behavior model with every new simulation.

Figure 5.2: Initial Pipeline

5.2 Getting Started

5.2.1 Input Data

The goal of the task ejector geometry optimization is to find the most suitable combination of

geometry parameters to meet a certain entrainment ratio and suction pressure for a specific

operation condition. This operation condition is provided by the customer and consists at least

of following information:

• Mass flow, temperature, gas composition and supply pressure of the fuel supply

which is the ejector inlet primary side (Nr.1 in Figure 5.1)

• Mass flow, temperature and gas composition of secondary inlet side (Nr.3 in

Figure 5.1)

• Pressure at stack inlet (=ejector outlet – Nr.2 in Figure 5.1)

• Target suction pressure

• Packaging constraints

This data mentioned above is collected and manually brought to a specific format with physical

units which is the input data.

5.2.2 Initial Main Geometry Parameter Estimation

Before starting the first CFD simulation to get a result for the achievable suction pressure at

the operation condition, the main design parameters of the ejector need to be defined. To

receive the missing initial geometry parameters of the ejector, the first step is to look into the

already existing data set, enter the operation conditions and constraints and run the opti-

mizer, which is based on the already existing generic behavior model by maximizing the

suction pressure. The optimizer provides a first geometry proposal consisting of 7 key design

parameters (geometry variant) and a corresponding suction pressure expectation. Together

with the operation condition parameters, the data is forwarded to the data pre-processing.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 20

5.3 Pre-processing

5.3.1 Data Pre-processing

With the operation condition data, and the provided first suggestion of ejector design main

parameters, all necessary parameters such as mole fractions, densities and side design param-

eters of the ejector are calculated with a Python script. The result is a csv file used as input for

in meshing and simulation scripts.

5.3.2 CFD Simulation Pre-processing

Now, since all necessary parameters are defined and collected in one row of a CSV file, the CFD

simulation pre-processing is started with a Python script. While the numerical mesh for the

CFD simulation is created, mainly based on the main and side design parameters, the simula-

tion setup file is fed by the operation condition parameters. The geometric variables of the

nozzle are calculated using physical correlations of isentropic nozzle flow. When the CFD sim-

ulation pre-processing is completed, a folder with the computational mesh in FLM (AVL FIRE™

geometry file) format, simulation setup with all data and parameters to perform the numerical

simulation in SSF (Solver Steering File, an AVL FIRE™ input file) format and a file which couples

both in DAT format is available. The CFD simulation can be started executing a CSH (C Shell)

script (copying several scripts for result post-processing and a run script from a template di-

rectory to the calculation directory).

5.4 CFD Simulation

The CFD simulation is an important part to confirm the suction pressure prediction from the

optimizer using physical relations. Compared to testing the ejector geometry on a test bed, a

CFD simulation is much cheaper. The CFD simulation of the geometry variant is solving non-

linear partial differential equations (Navier Stokes and Euler) for pressure, velocity and enthalpy

in each cell of the ejector mesh. A high flow momentum can be detected in the nozzle cross

section. The transient simulation takes around 14 hours to reach a stationary converged con-

dition. CFD simulation software is an AVL in-house program called AVL FIRE™. The CFD simu-

lation is an important part to confirm the suction pressure prediction.

5.5 Post-processing

After the simulation is finished, a post-processing script gathers the suction pressure (pressure

at the outlet ejector – pressure at the secondary inlet of ejector) out of the simulation raw

result. This information is combined with the geometric and the operation condition input pa-

rameters from data pre-processing (arrow from data preprocessing to data post-processing in

Figure 5.2). After that, the generated data row (input and result) is added to the existing data

set.

5.6 Data Set

The data set (see an extract in Figure 5.3) consists of 1000+ data rows in one text file. Each

data row is characterized by the operating condition (i.e., pressure, temperature, gas composi-

tion, mass flow), 24 design parameters - with 7 key parameters (where we experienced the

biggest influence on suction pressure) and 17 side parameters (where we experienced less

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 21

influence on suction pressure and which are constant or derived from correlation to other pa-

rameters) - and the resulting suction pressure (Δp). Each row is a different geometry variant

with all input variables and the resulting suction pressure.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 22

Figure 5.3: Section of constantly growing database

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 23

5.7 Behavior Model and Optimizer

The machine learning component of the pipeline is the experiment design and data-driven

model. Currently, this is an in-house Software called AVL CAMEO™ which is used for modelling

the component behavior based on the behavior model. The optimizer varies specific parame-

ters in the behavior model in a way to reach the highest suction pressure within defined con-

straints.

Figure 5.4: Training of DOE model [12]

The iteration process starts with an initial design of experiments (DoE), which is used to param-

eterize an initial model. In our case, a generic behavior model, which was trained on the data

of 800+ simulations, is already existing. The target suction pressure can be modelled in differ-

ent ways. The evolving model is trained with the ejector variants in the DOE database according

to a non-linear or weighted least square algorithm (ELMN (evolving local model networks)

training algorithm). The evolving local model network is extending the data-driven model

based on the new incoming simulation results. Both the DoE and the data-driven model are

subsequently extended in a way that relevant domains of the design space are explored. This

process is termed custom output range exploration (CORE – relies on automatic adaptation

technique and evolving scheme for data-driven models).

5.8 Measurables

Computational time: During several studies, the computational domain and mesh size was

already improved in several steps regarding small cell number to reduce the numeric effort of

the CFD simulation and to preserve physical accuracy of the result. Another already imple-

mented step to minimize the computational time is the parallelization of the CFD simulation

on a multiple core cluster.

Runtime: Comparing the runtime of all processes in the pipeline, the CFD simulation has the

longest one with around 14 hours per simulation on 10 cores. Far behind is the behavior model

and the optimizer. Depending on the conditions, building the behavior model(s) can take max.

30 seconds, running the optimizer can take up to a few minutes. All other process runtimes

(pre-, post-processing, data management) are negligible small.

With our current approach, several loops (initial geometry estimation, CFD simulation to verify

estimation, adding new data point to data set, rerun optimizer, CFD simulation…) are required

to get a satisfying ejector geometry from the optimizer that meets the target suction pressure

and packaging constraints. The goal is to reduce these loops to a minimum. In the context of

the Daphne project, a sophisticated optimizer component, trained on the available dataset, is

expected with enhanced prediction quality to wider range of application considering a bigger

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 24

number of design parameters. The desired benefit for our workflow is a smaller number of

numerically expensive CFD Simulations for prediction verification.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 25

6 Automotive Vehicle Development Case Study: Virtual Pro-

totype Development (AVL 2)
AVL List proposes the so-called Integrated and Open Development Platform (IODP) for the con-

tinuous verification and validation of a product (vehicle) under development. A key concept is

to systematically link vehicle simulation and tests to establish so-called Virtual Prototypes,

which are functional representations of the vehicle under development. The systematic linking

and management of involved information entities ensures traceability. Using this IODP ap-

proach (e.g., at an automotive OEM or supplier), highly structured data emerges that accurately

represents the vehicle under development and its evolution along the vehicle development

process (VDP). This approach is described in more detail in [13].

The schematic graph in Figure 6.1 shows the evolution of the exemplary key performance indi-

cator KPI (also referred to as characteristic value CV) “fuel consumption”. The KPI curve consists

of many discrete data points. The KPI eventually must meet the KPI target (also referred to as

target characteristic value TCV), which is defined by requirements. The IODP vision is to provide

system maturity assessment competence at any point in time, i.e., to be able to check whether

the KPI value of the current state of development meets the KPI target. Each data point

(Time/KPI) on the curve is linked to the entities that were involved in its determination, e.g., the

used simulation models and simulation model parameters. Each data point is also associated

with a maturity, i.e., a quantitative measure of confidence of the KPI value. Maturity increases

with time.

Figure 6.1: The exemplary characteristic value (CV) “fuel consumption” and its maturity evolve along the vehicle de-

velopment process (VDP). The graph also shows the target characteristic value (TCV). [13]

AVL works with customers to implement this IODP approach in their organizations. This well-

structured vehicle development process data is not yet available but will become available

during the DAPHNE project with high probability. Once available, organizations will want to

make use of it, apply data analytics and make inferences in order to optimize their vehicle

development process. Of particular interest are the prediction of maturity for a given data point

and of KPI evolution in ongoing development projects based on previous development pro-

jects. From AVL’s perspective, it is sensible to already now start working on such process mining

solutions. Development of these solutions involves both creating realistic artificial data and

appropriate mining approaches. Real vehicle development processes consist of hundreds to

thousands of different KPIs. Each KPI is evaluated many times during the development process.

Each specific KPI evaluation is associated with a multitude of other entities (simulation models,

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 26

parameters, bill of materials etc.). Thus, both creating artificial data as well as mining solutions

need to be able to handle large amounts of data, so that questions of efficiency, computational

performance, scalability etc. arise.

6.1 Overview of the Initial Pipeline

The initial pipeline for developing process mining approaches, specifically to predict KPI evo-

lution and KPI maturity, is a first proof-of-concept. It creates artificial data for 7 exemplary KPIs

(float values) based on 7 different simulation model parameters (float values / arrays), i.e., sig-

nificantly fewer than in real-world processes. At the time of writing, no computational bottle-

necks in terms of runtime, memory etc. have been encountered yet. However, bottlenecks are

expected to appear when the data is scaled up to realistic dimensions in the future.

The initial pipeline can be divided into three sub-pipelines:

6.1.1 Data generation

The first step is to manually define the overall development process structure. A csv file (2D file

containing float and string values) defines the stages of the mimicked process, the simulation

model parameters (e.g., vehicle mass, wheel base, coefficient of aerodynamic drag) to be

changed in each stage, the range of parameter variation and the number of different parameter

values to be used. With this csv the simulation runs are initialized in the simulation environment

Model.CONNECTTM from AVL. Approx. 10,000 to 15,000 different simulation runs (i.e., tests of

the virtual prototype) are created and executed. The simulation tool produces results for each

run, e.g., the transient fuel consumption over time for a standard driving cycle. These interme-

diate results (csv) and the parameter values of each simulation run (xml) are input for the post-

processing step (Python script). For each simulation run, it computes the KPI values (e.g., fuel

consumption in L / 100 km) from the intermediate results. All simulation runs’ KPI values, as-

sociated parameter values and process stage are stored in a JSON format file. The JSON is

hierarchically structured and consists of nested JSON objects: Process stage objects contain

simulation run objects contain KPI objects and parameter objects. Each simulation run may

correspond to a data point in the KPI-over-time curve (see section 6.2.1). The time-series-cre-

ation step (Python script) breaks each process stage in the JSON down into individual param-

eter-KPI-tuples, puts these tuples into a temporal order (equidistant time steps) and stores the

ordered tuples as a JSON file. This sub-pipeline is executed multiple times. Each resulting JSON

file mimics an individual development project. All JSON files have the same hierarchically

nested structure, but different numbers of objects on the process stage and simulation run

levels.

Figure 6.2: Sub-pipeline for generating the data used by subsequent pipeline steps.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 27

6.1.2 Model Training

The created data sets / time series are split into two groups: Group 1 contains finished devel-

opment projects and is used for model training. Group 2 contains test data sets representing

ongoing projects, which are used for prediction (cf. 6.1.3). Gaussian process regression (GPR)

[15] and its implementation in scikit-learn [1] is used to build models. Three separate models

are trained (implemented as a Python script / Jupyter notebook):

• Model A learns the patterns in the time series of each parameter. It is used to predict

parameter values over time.

• Model B learns the patterns among parameter values and KPI values, irrespective of

temporal order.

• Model C is trained to predict the maturity of a given data point. The data points in the

last process stage have the highest maturity, i.e., the highest confidence. Contrary to

model B, model C is not trained with all data points in the training data sets, but only

with the data points in the last process stage.

The target model KPI=f(time) required for predicting KPI evolution is intentionally split up into

the models A and B. Having two separate models is more representative for realistic processes:

Engineers decide what to do next and which parameters to change in order to improve the

vehicle under development. This process is captured by model A. Based on these parameters,

KPIs can be determined (e.g., using simulation), which is captured by model B.

Figure 6.3: Sub-pipeline for the creation and training of models.

6.1.3 Prediction

Model A is used to predict the values of each parameter over time for the remainder of a data

set from the test data sets. Using these predicted parameter values, model B is used to predict

the KPI values for the remainder of data set. Model C is used to predict the standard deviation

(i.e., a measure for the data point’s maturity) of the data points in the data set. As for model

training (cf. 6.1.2), the prediction uses the implementation of GPR in scikit-learn [1].

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 28

Figure 6.4: Sub-pipeline for predicting the development process.

6.2 Description of Elements

6.2.1 Training Data Generation

The Create time series element (cf. Figure 6.2) is implemented as a Python script, without using

any special Python machine learning library. It chooses one (parameters/KPI) tuple randomly

out of the JSON data set as the first data point of the time series. The trend of the time series

shall be oscillatory and converging to a target KPI value (cf. Figure 6.1). The script computes

the target KPI value from the JSON data set (random value close to data set mean). For each

process stage object in the data set, the min and max KPI value are retrieved. The interpolation

between these KPI values (first point, stage 1 min, stage 1 max, …, stage n min, stage n max,

target KPI value) defines the trend curve. The script then builds the time series from start to

end by arranging a user-defined portion of the data points in the JSON data set (e.g., 80%) into

a temporal structure, i.e., picking the best data point from the data set for a given position in

the time series. “Best” is defined here by 2 criteria: (1) proximity of a data point’s KPI value to

the trend curve, and (2) proximity of a data point’s parameters to the parameters of the previ-

ous data point in the time series.

6.2.2 Model Training

For training the GPR models, the algorithm for automatic kernel search proposed by D. Du-

venaud [16] is used: Starting with an initial set of kernel functions (constant, linear, periodic,

Matérn, squared exponential, rational quadratic, noise kernel), combinations (sums and prod-

ucts) of different kernel functions are iteratively created. (Combinations of) Kernels are evalu-

ated using the Bayesian information criterion (BIC) score. The search for an optimal kernel stops

after a predefined number of iterations, or if the BIC score no longer improves.

6.2.3 Prediction

A Python script (embedded into Jupyter notebook) using scikit-learn [1] (particularly its predict

method) is used to evaluate the models A, B and C.

6.3 Measurables

The most important measurables for the data creation are (1) how realistically the KPI and

parameter evolution are mimicked (assessed qualitatively by AVL experts) and (2) scalability,

i.e., how runtime scales as more KPIs and parameters are added to the data generation process.

For the models, the most important measurables are (1) accuracy, i.e., how precisely KPIs, pa-

rameters and maturity can be predicted, and (2) scalability, i.e., how model training and pre-

diction runtime scale as more KPIs and parameters are added to the data sets.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 29

7 References

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot and E. Duchesnay, "Scikit-learn: Machine Learning in Python," Journal of

Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[2] I. D. Stewart and T. R. Oke, "Local Climate Zones for Urban Temperature Studies," Bulletin

of the American Meteorological Society, vol. 93, pp. 1879-1900, 12 2012.

[3] X. X. Zhu, J. Hu, C. Qiu, Y. Shi, J. Kang, L. Mou, H. Bagheri, M. Haberle, Y. Hua, R. Huang, L.

Hughes, H. Li, Y. Sun, G. Zhang, S. Han, M. Schmitt and Y. Wang, "So2Sat LCZ42: A

Benchmark Data Set for the Classification of Global Local Climate Zones [Software and

Data Sets]," IEEE Geoscience and Remote Sensing Magazine, vol. 8, pp. 76-89, 9 2020.

[4] M. Schmitt, L. H. Hughes, C. Qiu and X. X. Zhu, "Aggregating cloud-free Sentinel-2 images

with google earth engine," ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, Vols. IV-2/W7, pp. 145-152, 9 2019.

[5] B. Ko, "ResNet v2," 2018. [Online]. Available: https://github.com/kobiso/CBAM-

keras/blob/master/models/resnet_v2.py. [Accessed 4 August 2021].

[6] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.

[7] B. W. Matthews, "Comparison of the predicted and observed secondary structure of T4

phage lysozyme," Biochimica et Biophysica Acta (BBA)-Protein Structure, vol. 405, pp. 442-

451, 1975.

[8] National Instruments, "The NI TDMS File format," 3 June 2021. [Online]. Available:

https://www.ni.com/en-us/support/documentation/supplemental/06/the-ni-tdms-file-

format.html. [Accessed 6 August 2021].

[9] D. H. Douglas and T. K. Peucker, "Algorithms for the Reduction of the Number of Points

Required to Represent a Digitised Line or its Caricature," The Canadian Cartographer, vol.

10, pp. 112-122, 12 1973.

[10] M. Visvalingam and J. D. Whyatt, "Line generalisation by repeated elimination of the

smallest area," 1992.

[11] A. Reeve, "npTDMS," 2012. [Online]. Available: https://pypi.org/project/npTDMS.

[Accessed 6 August 2021].

[12] M. Deregnaucourt, M. Stadlbauer, C. Hametner, S. Jakubek and H.-M. Koegeler, "Evolving

model architecture for custom output range exploration," Mathematical and Computer

Modelling of Dynamical Systems, vol. 21, pp. 1-22, 2 2014.

D8.1 Initial Pipeline Definition of all Use Cases

DAPHNE – 957407 30

[13] W. Puntigam, J. Zehetner, E. Lappano and D. Krems, "Integrated and Open Development

Platform for the Automotive Industry," in Systems Engineering for Automotive Powertrain

Development, Springer International Publishing, 2020.

[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT

Press, 2006.

[15] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum and G. Zoubin, "Structure Discovery in

Nonparametric Regression through Compositional Kernel Search," in Proceedings of the

30ᵗʰ International Conference on Machine Learning, Atlanta, 2013.

