
D6.1 Report on Computational Storage Capabilities

1

DAPHNE – 957407 Public

D6.1 REPORT ON COMPUTATIONAL

STORAGE CAPABILITIES

Integrated Data Analysis Pipelines for Large-Scale

Data Management, HPC, and Machine Learning

Version 1.6

PUBLIC

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 957407.

D6.1 Report on Computational Storage Capabilities

2

DAPHNE – 957407 Public

D6.1 Report on Computational Storage Capabilities

3

DAPHNE – 957407 Public

Document Description

Report on state-of-the-art techniques for computational storage, near-data processing, and

potential side effects in the context of the I/O hierarchy, as well as an overview of automatically

determining the capabilities of a storage configuration.

D6.1 REPORT ON COMPUTATIONAL STORAGE CAPABILITIES

WP6 – Computational Storage

Type of document R Version 1.6

Dissemination level PU

Lead partner ITU

Author(s) Philippe Bonnet

Contributors all

Revision History

Version Item Comment Author / Reviewer

V0.1 Structure of the document Philippe Bonnet

V1.0 First draft Oct 14th Philippe Bonnet,

Pinar Tözün

V1.1 Second draft Oct 21st Philippe Bonnet

V1.3 Third draft Nov 1st Marcus Paradies, Philippe

Bonnet,

Piotr Ratuszniak

V1.4 Almost Complete Draft (missing

references, related work and

conclusion)

Nov 4th Philippe Bonnet,

Piotr Ratuszniak,

Pinar Tözün

V1.5 Draft sent to reviewers Nov 9th all

V1.6 Addressed comments from

reviewers

Nov 30th Philippe Bonnet

D6.1 Report on Computational Storage Capabilities

4

DAPHNE – 957407 Public

Executive Summary

This report describes how compute and storage interact within storage devices and across a

cluster. The report focuses on the recent evolutions in storage architectures and programming

abstractions. In particular, the report defines computational storage and focuses on the

motivation for its introduction, the relevant measurables, the architecture of existing devices

and the associated programming techniques.

D6.1 Report on Computational Storage Capabilities

5

DAPHNE – 957407 Public

Table of Contents

1 Introduction ... 9

2 Workloads .. 11

2.1 Generic Workloads .. 11

2.1.1 HPC Simulation .. 11

2.1.2 Machine Learning.. 11

2.1.3 High-Performance Data Analytics .. 11

2.2 DAPHNE Use-Cases ... 11

2.3 Metrics .. 12

2.4 The Promise of Computational Storage .. 12

2.5 Take-Aways ... 13

3 Architecture Viewpoint ... 14

3.1 Storage Devices .. 14

3.1.1 Solid-State Drives .. 14

3.1.2 Hard disk drives ... 15

3.1.3 Tape .. 16

3.1.4 Disk Arrays ... 17

3.2 Computational Storage .. 17

3.2.1 Background ... 17

3.2.2 Architecture ... 17

3.2.3 Computational Storage Services ... 18

3.2.4 Computational Storage Devices .. 19

3.2.4.1 DAISY ... 19

3.2.4.2 Intel Kestral ... 20

3.2.4.3 Bittware IA-840F.. 20

3.2.4.4 Bittware IA-220-U2 .. 21

3.3 Cluster Storage .. 22

3.3.1 Parallel File Systems ... 23

3.3.2 Burst Buffers .. 24

3.3.3 DAOS: Distributed Asynchronous Object Store .. 24

3.4 Cloud Storage .. 25

3.5 Take-Aways ... 25

D6.1 Report on Computational Storage Capabilities

6

DAPHNE – 957407 Public

4 Programmer Viewpoint .. 26

4.1 I/O Frameworks ... 26

4.1.1 POSIX I/O ... 26

4.1.2 AIO, LIBAIO .. 26

4.1.3 IOCTL ... 27

4.1.4 IO_URING ... 27

4.1.5 SPDK ... 27

4.1.6 xNVMe ... 28

4.2 Storage Abstractions ... 28

4.2.1 Blocks ... 28

4.2.2 Key Values .. 28

4.2.3 Zones ... 28

4.2.4 Open-Channel .. 29

4.2.5 Files ... 29

4.3 Programming Computational Storage ... 30

4.3.1 Programming Frameworks .. 31

4.3.2 Leveraging SNIA Code Upload Capabilities .. 31

4.3.3 Code Shipping .. 32

4.3.3.1 eBPF Context .. 32

4.3.3.2 eBPF instructions .. 33

4.3.3.3 uBPF Virtual Machine .. 33

4.3.3.4 Compiler support for eBPF ... 35

4.3.3.5 Data movement... 35

4.3.3.6 Design Space for Computational Storage... 36

4.4 Take-Aways ... 37

5 Storage Configuration .. 38

5.1 Storage Tier Characteristics .. 38

5.2 DAPHNE Storage Configuration ... 39

6 Conclusion .. 41

7 References .. 42

8 Appendix 1: PCIe ... 45

9 Appendix 2: NVMe .. 45

10 Appendix 3: NAND Flash .. 46

D6.1 Report on Computational Storage Capabilities

7

DAPHNE – 957407 Public

D6.1 Report on Computational Storage Capabilities

8

DAPHNE – 957407 Public

Table of Figures

Figure 1: OpenSSD Daisy Architecture19

Figure 2: Intel Kestral Architecture20

Figure 3: Bittware IA-840F Architecture21

Figure 6: Parallel File System (Architecture and Programmer views).23

Figure 7: Example storage systems in a HPC cluster26

Figure 8: Structure of eBPF instructions33

Figure 9: eBPF code offload36

List of Abbreviations

Abbreviation Meaning

SSD Solid-State Drive

HDD Hard-Disk Drive

CSP Computational Storage Processor

HPC High-Performance Computing

AI Artificial Intelligence

HPDA High-Performance Data Analytics

FPGA Field-Programmable Gate Array

MPSoC Multi-Processor System on a Chip

DPU Data Processing Unit

D6.1 Report on Computational Storage Capabilities

9

DAPHNE – 957407 Public

1 Introduction
Integrated data pipelines rely on stored data: shared data sets archived on cold storage, data

sets larger than memory during processing, or data stored on high-performance Solid-State

Drives (SSDs) rather than memory for better cost/performance.

The DAPHNE system must make decisions about (i) when and where to store data and (ii) how

to access and process stored data (assuming appropriate storage resources are provisioned).

These decisions depend on the capabilities of the available storage architecture and storage

systems. They are not trivial due to the complex and rapidly changing nature of the storage

landscape.

First, storage devices have undergone a radical evolution with the advent of NVMe Solid-State

Drives. Such SSDs are orders of magnitude faster than the magnetic hard disk drives that were

the secondary storage of choice for decades.

Second, storage architectures are evolving to keep up with the demands of the varied

workloads that characterize integrated data pipelines, including modeling and simulation

(HPC), machine learning and deep learning (AI) and high-performance data analytics (HPDA).

Third, fundamental trends are challenging the traditional separation between compute and

storage, based on data movement. Advances in silicon technologies no longer lead to

exponential improvements in processor performance. Also, the increase in dataset size leads

to increased data movement. As a result, processors and networks are becoming bottlenecks.

To address these bottlenecks, public clouds and HPC clusters are deploying computational

storage. Computational storage denotes programmable disks, as opposed to traditional disks

that are pre-programmed by vendors to read and write data. Computational storage is a

solution to the processor and network bottlenecks as data can be processed where it is stored,

with minimal data movement. Computational storage can be programmed statically, or run

code offloaded dynamically, to meet the needs of a particular data pipeline.

I/Os1 are issued by a computer to access and store data2. With the advent of computational

storage, I/Os are also issued to process stored data. In this report, we first survey the I/O

workloads associated to the HPC, AI and HPDA components of integrated data pipelines.

We then survey the storage landscape from two viewpoints, relevant for the design,

implementation, evaluation, and operation of the DAPHNE run-time:

• The architecture viewpoint: we survey architectures combining storage and compute

components including storage devices and distributed storage systems, with a special

focus on computational storage.

1 Throughout the document, we denote a transfer between computer and storage device as an I/O.

Traditionally, an I/O is a read or a write operation resulting in the transfer of data to or from the host.

2 Our focus on I/O leaves persistent memory (PMEM), made available on the system bus, out of scope

for this report. In fact, PMEM is a component of storage devices or storage nodes, so we take it into

consideration indirectly. It may be argued that PMEM can constitute a distinct performance layer.

D6.1 Report on Computational Storage Capabilities

10

DAPHNE – 957407 Public

• The programmer viewpoint: we survey the interfaces and abstractions available to

programmers to manipulate stored data.

We conclude with an overview of the capabilities of a storage configuration that are relevant

for the DAPHNE run-time.

D6.1 Report on Computational Storage Capabilities

11

DAPHNE – 957407 Public

2 Workloads
We first consider the I/O characteristics of generic workloads considered in the context of

DAPHNE pipelines: HPC simulation, machine learning and high-performance data analytics. In

Section 2.1, we also discuss the classes of systems designed to handle these workloads. In

Section 2.2, we describe the initial pipelines designed for the DAPHNE use cases. We discuss

metrics relevant for storage in Section 2.3 and the promise of computational storage in Section

2.4.

2.1 Generic Workloads

2.1.1 HPC Simulation

Large files (e.g., containing multiple 2D images, or large matrices) are read sequentially when

starting a simulation and large files are written sequentially when taking checkpoints of the

simulated state or storing the result of the simulation.

This is the regime for which parallel file systems (see Section 3.3.1) were designed. The large

amounts of RAM in the compute nodes running the simulation have increased the pressure on

parallel file systems to support efficiently large bursts of sequential writes. To deal with these

bursts, specific systems based on high-performance SSDs have been introduced as an

intermediate layer between compute nodes and parallel file systems. Such systems are denoted

burst buffers (see Section 3.3.2).

2.1.2 Machine Learning

Machine Learning and especially Deep Learning frameworks perform large amounts of read

I/Os and few write I/Os. These frameworks rely on a large number of iterations over the same

data set with randomized read patterns. If all training data is loaded in memory, then this

workload results in a large sequential read. Otherwise, many relatively small, random read I/Os

are sent to the storage system. A storage system such as DAOS (see Section 3.3.3) was designed

to handle this I/O regime.

2.1.3 High-Performance Data Analytics

HPDA applications are highly parallelized to process large (at rest or streaming) data sets

efficiently. Analytics workloads often require staging of intermediate data sets and interim

results for multi-step/multi-pass algorithms. This has a potential to involve massive levels of

data movement. Cluster file systems, such as HDFS or Ceph, were designed to co-locate

processing and data storage and thus handle such I/O regime (see Section 3.3.1).

2.2 DAPHNE Use-Cases

The initial data pipelines for the DAPHNE use cases, described in deliverable D8.1, mention

stored data as follows:

• The earth-Observation case study: Models are trained with the So2Sat-LCZ42 data

set, stored in HDF5 files. This dataset (51,8GB) is available online3. It must be

downloaded and stored before training proceeds.

3 https://mediatum.ub.tum.de/1483140

D6.1 Report on Computational Storage Capabilities

12

DAPHNE – 957407 Public

• The input to the pipeline are enriched satellite images (one per region of

interest), stored in GeoTIFF files, while the output are LCZ maps (one per region of

interest), also stored in GeoTIFF files. The proposed initial pipeline identifies load

image and store to image steps as python scripts.

• The GDAL library is proposed to write GeoTIFF files. GDAL uses its own virtual

file system abstraction to access files. This abstraction enables GDAL to access in-

memory files, compressed files, encrypted files, files stored on network, or cloud-

based object storage services. It is built on top of the POSIX file interface (unistd.h).

• The semiconductor manufacturing case study: Models are trained from a CSV file

obtained by combining tables from a MySQL database. Inferences are done on

streaming data.

• The material degradation case study: A simulation is done based on sampled

waveforms stored in files. The results of a reduction step are stored in a database

service, which serves as input and output for the simulation.

• The automotive vehicle development case studies: The two types of simulations

described take CSV files as input. They generate CSV or JSON files.

In summary, the initial data pipelines considered for these use cases where (i) data is stored in

files (GeoTiff, HDF5, CSV, JSON, MySQL files), (ii) stored datasets are loaded entirely in memory

before they are processed and (iii) the output of the pipeline is stored in files.

We expect that integrated DAPHNE pipelines will consider (a) asynchronous and parallel access

to stored data, (b) modern I/O frameworks, (c) data stored on SSDs during processing, and (d)

offload of pipeline fragments to computational storage for better cost-performance, better

scalability, and better resource utilization.

2.3 Metrics

We mentioned that DAPHNE might leverage storage to improve cost-performance, scalability

and resource utilization. Let us define these metrics:

- Cost-performance: The idea is that performance measured in terms of latency or

throughput, should be balanced with the associated cost of storing data either in RAM,

while it is processed, or on secondary storage, when it is not. Jim Gray defined the 5 min

rule, a rule of thumb stating that data that is accessed in the next five minute should remain

in RAM, while data accessed less frequently should be stored on secondary storage. Today,

with SSDs and 4K pages, the threshold is closer to 1 min [1].

- Scalability: Scalability can be measured in terms of volume of datasets or complexity of the

data pipelines.

- Resource utilization: Resource utilization can be measured in terms of RAM footprint or

possibly energy spent processing data pipelines.

2.4 The Promise of Computational Storage

We will define the architecture view of computational storage in 3.2 and the programmer view

in 4.3. For now, let us define the promise of computational storage in terms of how it may

impact relevant metrics for DAPHNE workloads.

D6.1 Report on Computational Storage Capabilities

13

DAPHNE – 957407 Public

For this discussion, we simply consider that (i) computational storage makes it possible to

process data where it is stored, with minimal data movement, and that (ii) computational

storage can be programmed statically, or run code offloaded dynamically.

We consider that the main impact of computational storage on DAPHNE pipelines will be

improved cost-performance. Executing tasks or sub-tasks (e.g., linear algebra or relational

operators) involving stored data sets on computational storage will make it possible to avoid

data transfers to memory and thus improve data pipeline cost-performance. For example, a

machine learning pipeline might rely on quantized data. This quantization might be performed

on computational storage, so that only quantized data is transferred to memory.

Computational storage will also impact scalability, as computational storage processing power

can scale gracefully with the amount of stored data, as well as resource utilization, as the

processors embedded on computational storage are less power hungry than the general-

purpose processors of traditional compute nodes.

Existing work explores the promise of computational storage in the context of HPC [2], Machine

Learning [3] or High-Performance Data Analytics [4,5,6] workloads. They illustrate the three

points above: improved cost-performance due to minimized data movement, scalability and

better energy efficiency.

2.5 Take-Aways

We identified generic workloads for:

• HPC simulation: large sequential reads and writes.

• Machine Learning: many small random reads and few writes.

• High-Performance Data Analytics: sequential reads and writes with staging of

intermediate data sets for multi-pass algorithms.

Initial data pipelines for the DAPHNE use cases access data stored in files. These stored datasets

are loaded entirely in memory before they are processed. Resulting data sets are stored in files.

Computational storage should enable better cost-performance, better scalability, and better

resource utilization for DAPHNE pipelines.

D6.1 Report on Computational Storage Capabilities

14

DAPHNE – 957407 Public

3 Architecture Viewpoint
Let us review how compute and storage are combined, first within devices, then across a cluster

and on the cloud.

What we usually call storage, e.g., storage devices such as disk, tape, or disk array, are not just

composed of storage media. They also contain compute elements. We survey their

characteristics in Section 3.1.

So, if all storage devices contain compute components, what is computational storage? We

define this concept more precisely in Section 3.2.

In a HPC cluster, there may be a distinction between compute and storage nodes. We survey

their characteristics in Section 3.3.

Finally, we describe the role of cloud storage in Section 3.4.

3.1 Storage Devices

We classify storage devices in two categories: storage drives that encapsulate storage media

and storage hubs that expose a uniform interface to one or several underlying storage drives.

Storage drives encapsulate storage media. They are composed of three main components:

- Host controller interface, supporting a transport protocol (SATA, NVMe, iSCSI) over a

local interconnect (SATA, PCIe) or fabric (TCP/IP, RDMA). See Appendix 1 for details

on PCIe and Appendix 2 for details on NVMe.

- Storage controller, running firmware responsible for mapping the logical address

space onto storage media. On today’s commercial drives, the storage controller is an

ASIC.

- Storage media, where data is stored persistently (NAND flash, 3D-Xpoint, magnetic

disks or tape). Multiple storage media components may be connected in parallel to

the storage controller. See Appendix 3 for details on NAND flash.

Storage hubs provide a uniform interface over one or several underlying storage drives (or

other hubs). They are composed of three main components:

- Front-end interface supporting a transport protocol (NVMe, iSCSI, REST, NFS, Lustre,

RADOS) over a local interconnect (SATA, PCIe) or fabric (TCP/IP, RDMA).

- Storage processor running software responsible for providing storage services on top of

the underlying storage drives (e.g., RAID, compression, deduplication). The storage

processor is a CPU, a DPU, a FPGA or a MPSOC.

- Back-end interface connecting one or several storage drives or storage hubs. This can

range from a collection of point-to-point connections to a host-based adapter

connected to a backplane bus.

3.1.1 Solid-State Drives

Solid-State Drives (SSDs) are composed of tens of flash chips wired in parallel to a storage

controller [7]. Today, SSDs are orders of magnitude faster than hard disks because of their

intrinsic parallelism and because of the high performance of flash chips.

D6.1 Report on Computational Storage Capabilities

15

DAPHNE – 957407 Public

SSDs have efficient random access and capability to process requests in parallel. On the other

hand, they do not allow in-place updates and their units wear over time. Since there are no in-

place updates, there needs to be garbage collection of the older blocks. The read, write, and

erase granularities of the device are, however, different.

In commodity SSDs, all this complexity is handled by the flash translation layer (FTL), which is

a vendor-specific black box. The goal with this abstraction is to relieve end users from worrying

about such internal characteristics of SSDs. However, being oblivious to them prevents us from

exploiting the full power of SSDs. In addition, even with all this abstraction, one cannot be fully

oblivious to what goes on in an SSD. For example, a write operation may trigger rewrites and

garbage collection leading to write amplification and unpredictable read and write latencies

for the end users.

SSDs are also not a uniform class of devices. Even the commodity SSDs that we call generic

black-box SSDs have changing characteristics within the group. Today, in addition, there is a

variety of options offering alternatives to traditional block interface and POSIX filesystem

abstractions that the generic SSDs target. Some of these varieties give customization and co-

design opportunities with respect to individual applications.

We refer to the SSDs that only provide the traditional HDD-compatible block interface to end-

users and have a flash translation layer that is a black-box controlled only by the vendor as

generic black-box SSDs. Devices under this category are the easiest to use out-of-the-box

because of the compatible legacy interface. However, they are rigid when it comes to

customization and co-design possibilities with the applications.

On the other hand, designing applications that are conscious of the well-known internal

characteristics of SSDs still gives high benefits in terms of application performance and SSD

lifetime [7]. Furthermore, based on the FTL implementation of individual SSDs, one can get

different read and write latencies from request of different sizes as well as the predictability of

the latency behavior would vary (e.g., due to garbage collection logic). In addition, the density

of flash chips in an SSD, the number of bits stored in a flash cell, also impact performance. SLC

(single-level cell), MLC (multi-level cell), TLC (triple-level cell), and QLC (quad-level cell) flash

chips store 1, 2, 3, and 4 bits in a cell, respectively. The higher the density the lower the cost

per gigabyte, but lower overall performance and resilience to wear. Therefore, even if it is

challenging, understanding the characteristics of the different black boxes that the generic

SSDs are and adapting and customizing the applications accordingly would help. Such

knowledge would similarly help choosing the right type of generic SSDs for an application.

3.1.2 Hard disk drives

Hard disk drives (HDDs) have been the predominant choice for secondary storage since the

1950s. Increasingly, HDDs are replaced by SSDs in data center environments, and personal

computing, due to higher data-transfer rates, higher areal storage density, and much lower

latency and access times. Yet, SSDs are still about an order of magnitude more expensive (in

terms of TB/$). It remains unclear whether SSDs will entirely replace HDDs for all relevant

market segments, but the price trend clearly indicates that SSDs will continue to receive wider

adoption compared to HDDs in the next decade.

D6.1 Report on Computational Storage Capabilities

16

DAPHNE – 957407 Public

An HDD consists of multiple platters, where each platter is organized in a set of tracks. Data is

organized in blocks (sectors) of typically 512 or 4096 bytes of data. A typical HDD is equipped

with two electric motors: a spindle motor that spins the disks and an actuator that positions

the read/write head over the spinning disk.

Modern HDDs provide up to 20 TBs of storage capacity with data transfer rates for sequential

reads/write of up to 250 MB/s and an average access latency of 2.5 – 10 ms. The read/write

performance of an HDD is dominated by three aspects: seek time (time to move read/write

head to correct track), rotational delay (time to rotate read/write head over sector to read), and

the data transfer rate. Due to physical limitations of the moving parts of an HDD, the access

latency is in the range of milliseconds. To increase the data transfer bandwidth of HDDs,

recently dual-actuator HDDs were announced, which double the data transfers rates.

Traditionally, data is recorded on HDDs using Conventional magnetic recording (CMR), which

leaves space between individual tracks to account for track misregistration. This impacts the

areal density since portions of the platter surface cannot be fully utilized. To increase areal

density of HDDs, Shingled Magnetic Recording (SMR) were introduced in the 2010s. SMR

removes gaps between adjacent tracks by overlapping them (similar to shingles on a roof).

Overlapping tracks are grouped into bands, denoted zones, of fixed capacity for more effective

data organization and to allow for partial updates.

This shingled format of overlapping tracks has implications on the writing process to SMR

drives. Data has to be written sequentially and in-place writes/updates require a rewrite of the

entire band of tracks (the zone). SMR drives come in three different flavors: drive-managed

(the drive itself is organizing the sequential write restriction), host-managed (the

user/application is responsible for ensuring sequential writes), and hybrid (which provides a

combination of drive- and host-managed). There are two different command sets, one for SCSI

drives (ZBC) and one for SATA drives (ZAC), which describe the set of commands necessary to

manage zones on SMR drives (i.e., REPORT ZONES, RESET ZONE WRITE POINTER, OPEN ZONE,

CLOSE ZONE, and FINISH ZONE).

3.1.3 Tape

Nowadays, tape data storage is primarily used for system backup, data archive and long-term

data preservation, as well as data exchange. Tape data storage fundamentally consists of two

parts: a tape media cartridge and a tape drive. Typically, tape media cartridges are stored in

large robotic tape libraries with ten thousands of cartridges. Through the separation of storage

media and storage drive, tape provides low price in TB/$ and has a low power consumption

since only tape drives consume energy. The ratio of media cartridges to tape drives varies but

is typically in the range of 200:1. Additionally, tape media has a lifetime of up to 20 years

(although in practice tape can wear out significantly depending on the data access frequency)

and offers increased data security (e.g., to avoid ransomware attacks).

Current tape technologies offer up to 45 TB storage capacity (compressed; up to 18 TB

uncompressed). The data access latency is usually in the 10s of seconds since the tape has to

be moved to the correct location to read a block of data. Modern tape media is around 1 km

in length and provides a maximum read/write throughput of up 1 GB/s (LTO-9) on compressed

data and 400 MB/s (LTO-9) on uncompressed data. Projections for the upcoming LTO-10

D6.1 Report on Computational Storage Capabilities

17

DAPHNE – 957407 Public

standard show that the capacity will double (36 TB uncompressed, 90 TB compressed) and the

read/write bandwidth will nearly triple (1.1 GB/s on uncompressed data, 2.75 GB/s on

compressed data). Optional features include built-in compression and encryption that is

performed directly within the tape drive.

3.1.4 Disk Arrays

Disk arrays are storage hubs making a collection of storage drives available to multiple hosts

on a network. There is a traditional distinction between disk arrays providing a file abstraction,

denoted Network-Attached Storage (NAS) and disk arrays providing a block abstraction,

denoted Storage-Area Network (SAN). NAS and SAN used to be based on Hard Disk Drives.

They are now based on SSDs, and denoted All-Flash Arrays. Recently, vendors have

commercialized functional accelerator cards that are basically a disk array front-end without

storage drives.

Disk arrays that expose a block abstraction expose a collection of volumes. Volumes may reflect

the underlying storage drives, as JBOD (just a bunch of drives), or bundle several storage drives

and leverage parallelism and redundancy to provide high performance and availability (RAID).

The storage processor of the disk arrays provides storage services, such as deduplication,

compression, or encryption. They leverage redundancy across network cards (multipath access)

to provide high availability.

3.2 Computational Storage

Computational storage denotes the integration of programmable compute resources within

storage devices. Computational storage makes it possible to run portions of data-intensive

application on storage devices. It promises reduced data movement, better energy efficiency

and reduced costs. Indeed, the compute resources introduced within storage devices are

specialized processing units, denoted data processing units (DPU) equipped with hardware

accelerators that are cheaper and more energy efficient than the general-purpose CPUs.

3.2.1 Background

The idea of offloading processing to storage was first expressed twenty years ago. Pioneering

efforts explored the design of active disks, i.e, hard disks drives equipped with programmable

storage controllers [8]. At the time however, there was no need for offload as advances in

silicon technologies led to exponential improvements in CPU performance. Yet, Jim Gray

expressed confidence that active disks would become relevant in the future. In his presentation

titled “Put Everything in Future Disk Controllers (it’s not if, it’s when”) [9], he argued that running

application code on disk controllers would be (a) possible because disks would be equipped

with powerful processors and connected to networks via high-level protocols, and (b)

necessary to minimize data movement. He concluded that there would be a need for a

programming environment for disk controllers.

3.2.2 Architecture

Both storage drives and storage hubs contain compute components in the form of a storage

controller or processor. If that component is programmable, then we have a computational

storage device:

D6.1 Report on Computational Storage Capabilities

18

DAPHNE – 957407 Public

1. Computational storage drives are storage drives equipped with a programmable controller.

For example, the Cosmos+ and Daisy+ OpenSSD prototypes are equipped with MPSoC

(multiprocessor systems that combine CPU cores and FPGA).

2. Computational storage hubs are storage hubs whose storage processor is programmable.

For example, the Daisy OpenSSD prototype is based on MPSoC connected to 2 x M.2 SSDs

as well PCIe and 100G Ethernet connectivity.

There is a distinction in the literature between (a) near-storage or near-data processing [10],

that corresponds to programmable storage hubs and (b) in-storage processing that

corresponds to programmable storage drives.

A task force at SNIA, a trade group representing storage companies, has defined terminology

and architectures for computational storage [11]. They denote the processing units integrated

with storage as computational storage processors. When combined with traditional storage

drives or hubs, they provide Computational Storage Services (CSS) to hosts.

3.2.3 Computational Storage Services

SNIA distinguishes between fixed computational storage services, based on predefined

functions such as compression or encryption, and programmable computational storage

services. In the remainder of this document, we only consider programmable computational

storage4, that we refer to as computational storage for the sake of simplicity.

Programmable computational storage services are installed via code upload. SNIA lists four

code upload mechanisms:

1. operating system image, installed on a CPU.

2. containerized application, installed on a a container engine.

3. FPGA bitstream, installed on a FPGA.

4. eBPF bytecode (eBPF is a vendor-neutral Instruction Set Architecture already used for

offloading code to Network Interface Cards), installed on an eBPF virtual machine.

For instance, the Daisy platform, with is MPSOC, can accommodate these four types of code

uploads, if it runs a container engine and an eBPF virtual machine.

An extension of the NVMe standard for computational storage is expected in 2022. Such a

standard will define mechanisms for shipping eBPF code to computational storage. SNIA

already defined principles for such an API, based on primitives for administration (inspection,

memory allocation and association to storage space) and code shipping.

In the context of DAPHNE, we focus on the definition of predefined programs (operating

system image or containerized applications), hardware acceleration (FPGA) and code shipping

(eBPF) that improve the performance and scalability of integrated data pipelines.

4 As a result, we do not cover devices that provide fixed computational services, e.g., ScaleFlux which

incorporates a fixed compression service.

D6.1 Report on Computational Storage Capabilities

19

DAPHNE – 957407 Public

3.2.4 Computational Storage Devices

Computational storage is a very active area of research. Surveys have been conducted to review

the state-of-the-art and identify open issues in the domain [10], [12]. The most recent survey

of computational storage [12] identifies two platforms openly available for research: DFC and

OpenSSD. Both are storage hubs, equipped with both ARM processor and FPGA. DFC is now

discontinued. We mentioned above the Cosmos+, Daisy and Daisy+ OpenSSD prototypes.

Existing commercial devices include NGD (storage hub equipped with an ARM processor

targeting the offload of containerized applications) and Samsung SmartSSD (storage hub with

FPGA).

3.2.4.1 DAISY

Daisy is the latest iteration of OpenSSD prototypes, designed by Prof. Song and his group at

Hanyang University5. Daisy is a storage hub equipped with 2x100GE and PCIe Gen3x16

connectors, a Zynq Ultrascale+ MPSoC and a backplane interface for connecting to two M.2

SSDs.

Figure 1: OpenSSD Daisy Architecture

The Zynq Ultrascale+ MPSoC is a heterogeneous multiprocessing platform for embedded

applications. Such a MPSoC combines hardware acceleration on FPGA with the flexibility of

ARM cores running embedded linux (e.g., SSD interface, bytecode execution). This platform

can support the four types of code uploads associated with programmable computational

storage services according to SNIA:

5 http://openssd.io/

D6.1 Report on Computational Storage Capabilities

20

DAPHNE – 957407 Public

• Xilinx IP can be used for generic hardware acceleration components, e.g., NVMe

controller or DMA engines over PCIe in the context of a storage processor, while specific

accelerators can be written with a hardware description language and synthesized into

a bitstream. A bitstream including generic and/or specific IP can be included into the

Daisy boot package.

• The software run on the storage processor is cross compiled for the ARM cores, and

also packaged in the Daisy boot package.

• Since 2019, the docker container engine runs with embedded linux on ARM cores. The

RAM available on the Daisy should be enough to run the container engine, as a

permanent service on the storage processor, and thus make it possible to upload

containers at run-time.

• We are building a software component that will support eBPF upload on the Daisy. See

details in Section 4.3.2.

Daisy+ is a computational storage drive under development, similar to Daisy, where the MPSoC

is also connected to a NAND flash So-DIMM component.

3.2.4.2 Intel Kestral

Kestral is a programmable storage drive, combining a PCIe Gen4 x16 connector, a Stratix 10

DX FPGA, including an integrated quad-core 64-bit Arm* Cortex*-A53 hard processor

subsystem, and 2 TB of Optane persistent memory. A MAX 10-based system controller is used

to sequence and monitor power supplies for the Stratix 10 DX FPGA.

Figure 2: Intel Kestral Architecture

Such a device can be used as an ultra-low latency computational storage drive, standalone

computational memory accelerator, or as an P2P compute device with large memory.

3.2.4.3 Bittware IA-840F

The Bittware IA-840F is a programable storage hub, combining a PCIe Gen4 connector

equipped with a SMBus controller, and an Agilex AGF014 FPGA.

Compute Near Persistent Memory (CNPM) Solution

FPGA

H
o

st

DDRT
Ctrl

DDRT
Ctrl

DDRT
Ctrl

DDRT
Ctrl

Optane PM Module

Optane PM Module

Optane PM Module

Optane PM Module

PCIe

DDRT

DDRT

DDRT

DDRT

PCIe
End

Point

M
E
S
H

Quad-A53
Complex

VFU

VFU

VFU

VFU

D6.1 Report on Computational Storage Capabilities

21

DAPHNE – 957407 Public

Figure 3: Bittware IA-840F Architecture

This storage hub has no direct attached storage (unlike Daisy) and is intended to be deployed

within conventional U.2 NVMe storage array. It acts as a computational storage processor for

data stored on NVMe SSDs connected to the same PCIe root complex (see Figure 4 below).

3.2.4.4 Bittware IA-220-U2

The Bittware IA-220-U2 is a programmable storage hub, combining interconnect (PCIe Gen4

x16) and fabric connectivity (3x200GbE), with an Agilex FPGA and MCIO expansion ports to

connect PCIe SSDs (4 x4 PCIe SSDs, 2 x8 PCIe SSDs, 1 x16 PCIe SSD). A BMC processor is

available for board management and control, as well as debugging. This platform is targeting

bitstream offload, and thus hardware accelerated processing of stored data.

Figure 4: Bittware IA-220-U2 Architecture

Figure 4 illustrates the IA-220-U2 used as a computational storage processor for NVMe SSDs

connected to the same PCIe root complex. Data movement between NVMe SSDs and the

D6.1 Report on Computational Storage Capabilities

22

DAPHNE – 957407 Public

computational storage processor hub is orchestrated through peer-to-peer DMA. Eideticom’s

libnoload library is available on the host to orchestrate exchanges across disks and

computational storage processor. The FPGA runs Eideticom’s NoLoad IP as a storage processor.

Figure 5: Host/Bittware IA-220-U2/SSD architecture

3.3 Cluster Storage

Ideally, public cloud or HPC cluster resources can be provisioned to match the changing needs

of applications. To support independent scaling, computation and storage are isolated on

different nodes. Storage is thus accessed over a network rather than locally. Compute nodes

are equipped with a central processing unit, possibly accelerators (e.g., GPU, TPU, FPGA). They

run the Machine Learning platforms or HPDA engines that underlie data science pipelines. Data

is obtained from storage nodes, equipped with a processor and a collection of disks.

The role of the compute nodes is to perform computations. They are independent machines

running their own operating system on hardware such as CPU/GPU, RAM, a network interface

controller (NIC), and possibly storage drives, also denoted as on-node storage, for storing

temporary data. The compute nodes are grouped together in a cluster that allows them to

work together on demanding and complex tasks.

The role of storage nodes is to service the needs of compute nodes in terms of access to stored

data. The storage nodes are independent computers with NIC, CPU, and attached to storage

drives or storage hubs. Storage nodes are typically arranged into a distributed storage system.

Storage nodes can be used for performance, capacity or archival. The storage hardware used

for performance are NVMe SSDs, while HDDs or SSDs are used for capacity and tapes are used

for archival.

On HPC clusters, the fabric between compute nodes is low latency and high throughput. RDMA

is typically used for this purpose. It allows for data transfer between nodes, without involving

the processor, cache, or operating system of either node, making data transfer much more

efficient than the traditional TCP/IP stack. RDMA is also the storage fabric of choice for high-

performance storage devices. It supports the fastest implementation of NVMe over fabric

(NVMeOF), which is a network protocol for direct communication with NVMe drives. NVMeOF

D6.1 Report on Computational Storage Capabilities

23

DAPHNE – 957407 Public

can handle the same high queue depths as NVMe drives which allows for a highly parallel

architecture where compute nodes are able to fully saturate the bandwidth of the IO nodes.

For slower storage devices, the requirements on the fabric are less stringent. As a result,

traditional TCP/IP stacks are used.

3.3.1 Parallel File Systems

A parallel file system is a distributed system, where a collection of dedicated server nodes

(attached to storage drives or storage hubs) store portions of files, denoted stripes, and enable

multiple client nodes to access them in parallel [13]. Parallel file systems provide (i) a global

name service, mapping files onto stripes (ii) a locking service to enforce consistency guarantees

in the presence of concurrent accesses. Parallel file systems provide location and concurrency

transparency: clients are not aware of where files are located, and they share the same view of

the state of the file system.

Figure 4: Parallel File System (Architecture and Programmer views).

Parallel file system clients coordinate parallel accesses to a single file, based on one of the

following patterns:

• Single writer: all clients communicate and let one of them perform I/Os.

• Multiple writers: the file is partitioned, and each client performs I/O on a given partition.

• Collective writers: A subset of tasks is dedicated to performing I/Os. They collect I/O

requests from compute tasks and coordinate with each other as multiple writers.

GPFS is a parallel file system emulating closely the behavior of a general-purpose POSIX system

running on a single system. A file consists of blocks of equal size, ranging from 16 KB to 1 MB

striped across several nodes. GPFS consistency and synchronization are ensured by a

distributed locking mechanism. A central lock manager grants lock tokens to local lock

managers running in each server node. GPFS has a POSIX compliant API. It can be mounted on

a compute node using the virtual file system interface in Linux.

A Lustre file system is composed of one or more metadata servers. Unlike GPFS, the meta-data

server is not involved in data transfers, just in permission checks. one or more object storage

D6.1 Report on Computational Storage Capabilities

24

DAPHNE – 957407 Public

servers store file data. Clients have concurrent and coherent read and write access to the files

in the filesystem via a unified namespace for all files, with standard POSIX semantics.

We refer interested readers to Prace’s Best Practice Guide for Parallel I/O for more details on

GPFS and Lustre [13]. As indicated in Figure 6 (stemming from [13]), access to a parallel file

system might be encapsulated within a programming language library (e.g., that expose

persistent data structures).

Cluster-file system such as HDFS or Ceph share many of the characteristics of parallel file

systems: striping, global name service, locking. The big difference between these two classes

of systems is that cluster-file systems break location transparency to enable co-location of

processing and storage. HDFS and Ceph maintain rack-awareness meta-data and can inform a

cluster resource manager (e.g., YARN or Kubernetes) of the file stripes located on a given node.

3.3.2 Burst Buffers

Burst buffers are composed of dedicated storage resources, either on compute nodes, or on

intermediate nodes (denoted IO nodes). Their purpose is to quickly absorb bursts of writes

from the compute nodes, allowing the computation to resume while the IO nodes are

offloading the data to the (slower) storage nodes.

IO nodes can also be used to multiplex IO by shaping many small writes into larger sequential

writes that are more easily digestible by the PFS. Another performance optimization is to use

the IO nodes to stage data that will be needed by the compute nodes, allowing faster access

and random-access performance. All these scenarios reduce the time that compute nodes

spend on I/Os.

3.3.3 DAOS: Distributed Asynchronous Object Store

DAOS is a distributed storage system with a client-server model [14]. The DAOS client is a

library integrated with applications running on the compute nodes. The library exposes stored

data directly through the DAOS API or through bespoke interfaces built on top of the DAOS

API.

The DAOS server, denoted storage engine, is running on the storage nodes and is responsible

for managing access to PMEM and NVMe SSDs. PMEM is used to store internal metadata, file

metadata and I/Os smaller than 4KB. NVMe SSDs are used to store application data. PMEM is

accessed via the Persistent Memory Development Kit (PMDK), while the Storage Performance

Development Kit (SPDK) is used for NVMe SSDs. Note that the DAOS storage engine does not

use SSDs as raw devices. Instead, it relies on the file abstraction (blobstore) available in SPDK.

DAOS clients and servers are connected via RDMA-enabled fabric. They communicate with the

Mercury RPC library running atop libfabric, a library exposing the underlying high-

throughput/low-latency fabric to user-space6.

The DAOS storage model is composed of node, pool, target, container and object. A node is a

physical component that consists of one or two DAOS storage engines.

6 Libfabric is the core component of the Open Fabrics Interface (OFI).

D6.1 Report on Computational Storage Capabilities

25

DAPHNE – 957407 Public

A pool is a reservation of PMEM and NVMe storage on given DAOS storage engine. A target

is a collection of pool shards distributed across multiple nodes. The pool keeps track of its

associated targets in a versioned list called a pool map. Besides keeping track of the active

targets it also stores a storage topology in a tree structure which is layered to identify targets

in the same fault domains i.e. running on the same hardware.

A container represents an object address space inside a pool. It is reachable by its unique

identifier. An application can open the container by connecting to the proper pool and

requesting access.

An object is the representation of a dataset. There are two different types of objects: (a) array

objects which are one-dimensional arrays of fixed size elements, and (b) key/value sets

supporting the traditional put, get, remove and list operations. For example, a single HDF5

object can be represented as a key-value set.

3.4 Cloud Storage

This report focuses on HPC clusters. We should note that cloud services can be used to run

integrated data pipelines and that HPC clusters might rely on cloud storage services (e.g., for

archival).

Here is thus a brief overview of cloud storage [15]–[18]. A compute instance on the cloud can

access various forms of storage:

- Local SSDs in the case of bare metal instance;

- Block storage, exposed through a storage hub, and accessed exclusively via I/Os (e.g.,

AWS EBS);

- Storage services, accessed via a network: e.g., object storage available through a REST

API (e.g., AWS S3 or Glacier), file sharing service (e.g., AWS EFS), or database service

(e.g., AWS RDS, DynamoDB or Redshift).

3.5 Take-Aways

We identified various forms of storage systems available in a HPC system:

- Storage devices that can be directly accessed from compute nodes. We distinguish

storage drives and storage hubs, depending on whether the devices include storage

media or not.

- Parallel file systems, burst buffers and object storage systems supported by dedicated

storage nodes in the HPC cluster (e.g., GPFS, Lustre, Ceph) or installed on compute

nodes (e.g., HDFS).

We detailed the characteristics of programmable computational storage services, installed via

code upload on computational storage devices. We described four types of computational

storage devices.

D6.1 Report on Computational Storage Capabilities

26

DAPHNE – 957407 Public

4 Programmer Viewpoint
From a programmer viewpoint, storage systems are exposed through various interfaces. Figure

7 illustrates a set of solutions that may be available on a Linux cluster. Applications can access

I/O devices, directly via a file system, or a distributed storage system.

Figure 5: Example storage systems in a HPC cluster

In the rest of this section, we review the multiple I/O frameworks in Section 4.1 and abstractions

that applications can use to access stored data in Section 4.2. We discuss how to program

computational storage in Section 4.3.

4.1 I/O Frameworks

4.1.1 POSIX I/O

POSIX I/O is a simple and beautiful abstraction based on files as arrays of bytes. The interface

makes it possible to create/delete, open/close and read/write from a file. The traditional POSIX

I/O relies on synchronous system calls accessing a file system through the C standard library

(unistd.h).

The limitations of the POSIX API in the context of HPC are well documented7: parallel accesses

challenge both the array of bytes abstraction and the strong consistency guarantees associated

to reads and writes. More generally, it has been shown that building crash-consistent systems

atop the POSIX API is very challenging because there is no standard definition of how failures

impact I/Os [19].

4.1.2 AIO, LIBAIO

Since the mid-2000s, there has been two flavours of asynchronous I/Os in Linux: aio and libaio.

The former, aio, is a user-space emulation of POSIX asynchronous I/Os that relies on worker

threads issuing synchronous I/O calls. It provides functions for submitting I/O requests (e.g.,

aio_read, aio_write, aio_fsync). The asynchronous I/O control block (aiocb) is passed as a

parameter to these functions. This control block defines (i) the target file and offset, (ii) a

pointer to the data buffer (from which data is read, or where data is written), and (iii) a

7 http://www.pdl.cmu.edu/posix/docs/POSIX-extensions-goals.pdf

D6.1 Report on Computational Storage Capabilities

27

DAPHNE – 957407 Public

notification method (i.e., a signal or a callback function). As aio relies on synchronous I/Os, it

works on any file system, with buffered or unbuffered I/Os.

The latter, libaio, issues asynchronous I/Os through the io_submit system call. This system call

takes as input a context (initialized through the io_set up system call), and a control block (iocb)

that contains the same attributes as those described above for aiocb, together with a code

describing the I/O being performed (read or write). On completion, the system call io_getevent

is used to reap io_event data structures that may contain a pointer to a callback function. Note

that libaio requires that a file be opened with O_DIRECT. It only works with the following file

systems: ext2, ext3, jfs and xfs. Libaio requires two system calls per I/O.

4.1.3 IOCTL

Once a device file is opened, I/Os can be submitted on the raw device through one of the I/O

interfaces presented above, or directly through ioctl requests. Passthrough device access via

ioctl enables a direct access from user-space to all functionalities exposed by the NVMe driver.

There is a caveat though. The ioctl system call is synchronous.

4.1.4 IO_URING

io_uring was introduced by Jens Axboe in 2019 [20]. It is a flexible and efficient mechanisms to

manage I/Os. It relies on pairs of circular submission/completion queues shared between user-

space and kernel-space to minimize software overhead. The queues are single producer and

single consumer. Submission queue entries are 64B, while completion queue entries are 16B.

The interaction between user-space and kernel-space through queue pairs mirrors the

interaction between host driver and NVMe controller.

System calls are available for (a) setting up queues, (b) registering application memory

referenced in submission queue entries and (c) initiating/completing a number of

asynchronous I/Os. By default, io_uring requires a single system call for multiple I/O

submissions and completions.

It is also possible to setup a queue pair with a flag (IORING_SETUP_SQPOLL) so that io_uring

starts a kernel thread that polls the shared submission queue for entries. This polling mode on

the submission queue trades increased CPU utilization for reduced I/O latency.

io_uring is available through liburing that defines a range of helper functions for setting up

queues, manipulating buffers and generating submission queue entries. io_uring can be used

with any file system with buffered or unbuffered I/Os. According to Jens Axboe, its throughput

is 2x (default) or 3x (with submission polling) compared to libaio on a single core [20]. The

downside is that io_uring introduces subtle dependencies across opcodes used in submission

queue entries, buffer or file registration and polling modes [21].

4.1.5 SPDK

In 2015, Intel introduced the Storage Performance Development Kit (SPDK), that bypasses the

Linux kernel to access SSDs8. It is based on a user-space NVMe driver, packaged as a library

that maps PCIe BARs directly into the application process thus supporting zero-copy. Functions

8 https://spdk.io

D6.1 Report on Computational Storage Capabilities

28

DAPHNE – 957407 Public

are provided to allocate the queue pairs used for I/O submission and completion, as well as

payload buffers in this DMA-transferrable memory. NVMe SSDs can be accessed directly via a

C API (nvme.h for block devices nvme_zns.h for ZNS drives). The application must ensure that

a single thread submits I/O and that this thread polls for completion. SPDK thus trades

increased CPU usage for performance.

In addition, Intel’s Open Storage Toolkit has support for computational storage. Though not

yet open source, the software is available by request. It includes both host and target-mode

code for prototyping complete end-to-end solutions [22].

4.1.6 xNVMe

POSIX I/O used to be the only option for accessing stored data, until the mid-2000s. The

introduction of asynchronous I/Os resulted in a multiplication of POSIX compliant I/O

interfaces. The introduction of NVMe SSDs has compounded the problem. The fact that

multiple storage interfaces are available for data-intensive systems is a problem for system

design. Indeed, choosing a single I/O interface is a "difficult-to-reverse" decision with major

implications on system design, and supporting multiple I/O interfaces is expensive.

xNVMe is a user-space library that provides a uniform API for device management, memory

management and I/O submission over existing I/O interfaces9. It was introduced by Samsung

in 2020. It provides programmers with a simple and extensible framework at negligible

performance penalty [21].

4.2 Storage Abstractions

4.2.1 Blocks

The block device abstraction exposes storage as an array of fixed-sized blocks. Each block is an

array of bytes. It is equipped with a logical block address (LBA). Read and write operations are

defined on the flat LBA address space.

Logical blocks are mapped onto storage media by the storage controller/processor.

4.2.2 Key Values

SNIA standardized a key-value storage interface. In NVMe, the idea is to introduce Key Spaces,

i.e., NVMe namespaces of type Key-Value. The interface defines commands to manipulate Key

Spaces and to store, retrieve or delete key-value pairs (asynchronously). The size of a Key Space

is defined when it is created. It is possible to associate minimum and maximum key/value sizes

for a given Key Space.

4.2.3 Zones

A disk can be exposed as a collection of zones. Each zone is an array of logical blocks, which

are the unit of read and writes. Logical blocks must be written sequentially within a zone. A

zone must be reset before it is written again. This is a form of append-only storage abstraction

that shields the host from the complexities of the physical address space. Zones align with the

concepts of Shingled Magnetic Recording (SMR) disks, which provide track zones.

9 https://xnvme.io

D6.1 Report on Computational Storage Capabilities

29

DAPHNE – 957407 Public

Zones are provided by a specific kind of NVMe drives (ZNS), SATA (ZBC) or SAS/SCSI (ZBC)

drives. ZNS accommodates the disk models defined for ZAC/ZBC: (i) Host managed and (ii)

Host aware. In host managed mode, applications use explicit zone transitions as well as a write

command andare responsible for writing logical blocks sequentially within zones. In host aware

mode, applications use implicit zone transitions, but are still responsible for maintaining a write

pointer within a zone. From the point of view of applications, ZNS drives can be accessed

through a POSIX interface (files or block I/Os) or through a specific interface (ZBD) that exposes

zones to the application.

ZNS departs from ZAC/ZBC in several ways. The main addition is the append command, which

allows applications to submit a collection of writes asynchronously on the same zone at a large

queue depth. It is then the SSD controller’s responsibility to guarantee that appends result in

sequential writes within a zone. Append is thus a form of nameless write [10]. The other features

incorporated into ZNS focus on the need for a high performant hardware interface, which

departs from the design objectives of ZAC / ZBC. Examples of these features include a copy

command to offload the host-managed garbage collection or a random write area that

provides the host with a window to perform updates, which reflects the typical operation of a

filesystem updating its metadata. Since the host model is similar to ZAC/ZBC, ZNS drives are

able to leverage existing zoned ecosystems present in current operating systems. In Linux,

drives can be accessed through a POSIX interface (files or block I/Os) that hides zones or

through a specific interface (ZBD) that exposes zones to the application.

4.2.4 Open-Channel

The Open-Channel Interface, defined in the context of LightNVM [23], exposes SSD internals

and requires a host-based FTL to manage data placement and I/O scheduling. Generic FTLs are

defined in the Linux kernel, and now also in SPDK, to provide a block device abstraction on top

of Open-Channel. Application-specific FTLs can also be developed on top of Open-Channel,

e.g., using the OX framework [24]. The address space is organized hierarchically in

groups/parallel units/chunks that reflect SSD internals. SSD characteristics impact the nature

of the address space. In particular, the unit of write is a logical block, composed of one or

several sectors, depending on the SSD (e.g., 24 sectors on a dual-plane TLC drive,

corresponding to 4 (sectors per page) * 3 (paired pages) * 2 (planes)). The Open-Channel

interface is directly accessible from user-space through xNVMe. It defines administration

commands (to access the device geometry) and scatter-gather reads and writes. A chunk reset

command guarantees that a chunk is erased before it is written again. Finally, the chunk copy

command supports the copy of logical blocks within the Open-Channel SSD.

4.2.5 Files

In Linux, file systems implement the Virtual File System (VFS) abstraction. VFS defines data

structures (superblock, inode, dentry, file) and system calls that are common to all file systems

(mount/unmount, open/close, read/write).

Local file systems such as ext4, xfs, btrfs or f2fs implement different layout and allocation

policies. File systems such as f2fs and zonefs provide native support for ZNS SSDs [8, 16].

Network file systems, such as NFS or CephFS also implement the VFS abstraction. As a result,

D6.1 Report on Computational Storage Capabilities

30

DAPHNE – 957407 Public

the file abstraction makes it possible for applications to seamlessly access locally or remotely

stored data.

With file systems, reads and writes are buffered by default. The O_DIRECT flag makes it possible

to bypass the file system cache and transfer data directly between application and SSD. If

buffered I/Os are used, the fsync system call flushes all data and meta-data associated to a file

onto disk. When opening a device file, the SSD is accessible as a raw device. Read and write

operations at a given file offset are then passed on from VFS to the block layer without

interference from a file system.

The block layer receives bio requests. It may reorganize them, independently on each core, in

software queues. Bio requests are then dispatched to the NVMe driver via hardware queues

(submission/completion). This multi-queue design was introduced in 2013 to avoid lock

thrashing on multicore CPUs and to accomodate NVMe SSDs [25]. The multiqueue block layer

now incorporates write ordering control for ZNS SSDs via the mq-deadline block I/O scheduler.

The block layer provides various mechanisms to deal with completion: signal-based,

continuous polling or hybrid polling. These mechanisms offer different trade-offs between

latency and CPU utilization.

Logical filesystems require data and metadata to be stored on the data storage medium. This

is an issue for tapes, which favour sequential accesses. As a result, storing metadata in one

place and data in another requires many slow repositioning actions on most tape systems.

Oftentimes only a trivial filesystem is supported in which files are addressed by number. In

contrast, the Linear Tape File System (LTFS) is a method of storing file metadata on a separate

part of the tape (using so-called tape partitions). This makes it possible to copy and paste files

or directories to a tape as if it were just like another disk but does not change the fundamental

sequential access nature of tape.

4.3 Programming Computational Storage

With computational storage, it is possible to program the storage infrastructure so that it meets

the needs of data-intensive systems and applications. What does “programming the storage

infrastructure” actually mean? According to Do. et al [12], this entails:

1. Defining new storage interfaces: Programmable computational storage can expose storage

with a variety of interfaces, well suited for a given purpose, e.g., ML preprocessing pipeline,

data analysis pipeline, transactional object store, database storage system or key-value

store. Possibly, the same stored data can be exposed with different interfaces, depending

on the software deployed on computational storage.

2. Shipping code from host to storage: DAPHNE, as other modern database systems and

declarative machine learning platforms, compiles queries into executable code. Portions of

data pipelines (i.e., fused operators) could be compiled into executable bytecode that is

shipped to computational storage to improve performance and reduce costs.

Programming the storage infrastructure is challenging because performance and security

requirements are strict, debugging is difficult, and errors can result in corrupted data or

unusable devices. In this section, we review existing work related to programming

D6.1 Report on Computational Storage Capabilities

31

DAPHNE – 957407 Public

computational storage and we discuss how the code upload capabilities identified by SNIA can

be leveraged for programming computational storage.

4.3.1 Programming Frameworks

Computational storage solutions have been deployed for a given data-intensive system on a

specific hardware platform, both on public clouds (Alibaba [5] and AWS [26]) and HPC clusters

(Los Alamos National Lab [27]). Likewise, most research prototypes focus on a single data-

intensive application: a database system [28], a dataflow processing engine [4], a machine

learning platform [3], similarity search [29] or scientific computing [2].

A few projects have proposed software frameworks for computational storage, most notably

OX [1], Willow [30], Biscuit [31] and INSIDER [32]. OX proposes an abstract execution model for

defining new SSD interfaces. The OX model focuses on mapping commands defined on an

application-specific address space (e.g., updating a batch of variable-sized objects) onto

standard storage commands on a physical address space (e.g., writing data blocks at given

addresses). The OX model defines a set of components sandwiched between an NVMe

controller exposed to the host, and an NVMe driver connected to one or several Open-Channel

SSDs. Using the OX model, a new storage interface was tailored to fit the needs of the BW-

Tree, a database storage manager developed at Microsoft Research.

Willow considers that SSD apps are deployed on computational storage processors running a

custom operating system. RPC is used to communicate between host and SSD app. SSD apps

cannot be composed. Stored data is accessed via a local file system.

Biscuit is a run-time system embedded on computational storage that supports pipelines of

tasks. Tasks are programmed in C++, compiled on the host and shipped to computational

storage. Tasks rely on a local file system to access stored data. Biscuit is implemented directly

atop a storage controller, within a proprietary Samsung SSD prototype. The potential benefits

of Biscuit are illustrated with pointer chasing, string search and a database filter.

INSIDER relies on a FPGA-based reconfigurable controller as computational storage processor.

INSIDER provides a file system abstraction on the host. Operations on computational storage

are organized as a pipeline of sub-programs. They rely on a customized I/O stack to access

stored data.

4.3.2 Leveraging SNIA Code Upload Capabilities

As described in Section 3.2.2, SNIA identifies 4 types of code upload mechanisms: OS image,

container, FPGA bitstream and eBPF bytecode shipping. We discussed how various cards

support these mechanisms.

Before we discuss how these mechanisms can be used for various purposes, let us remind

ourselves that computational storage devices are (networked) embedded systems. They are

deployed for a purpose with no interactive user interactions. As a result, we can model

computational storages as running an event loop that dispatches incoming messages (from

fabric or interconnect) and processes them based on pre-installed software components. In

this context, we can see the various purposes associated to the four types of code upload:

D6.1 Report on Computational Storage Capabilities

32

DAPHNE – 957407 Public

1. OS image and container upload correspond to a static and a dynamic definition of the pre-

installed software components (typically in the context of embedded linux).

2. FPGA bitstream corresponds to the definition of hardware-accelerated functions.

3. eBPF bytecode corresponds to the definition of functions that can define new event loop

workflows, based on pre-installed software (OS, container) and hardware-accelerated

(FPGA bitstream) components. The goal with eBPF byteload is not to replace

OS/container/FPGA images, but to leverage their capabilities in various ways based on run-

time decisions on the host.

In the rest of this section, we discuss code shipping in more details.

4.3.3 Code Shipping

Let us first focus on the mechanisms of code shipping. We consider that bytecode is generated

on the host and loaded onto computational storage where it is interpreted or JIT-compiled.

We base our discussion on eBPF bytecode, as it is mentioned by SNIA. Alternatives should be

considered for code shipping on computational storage, including web assembly (see [33] for

a comparison of eBPF and web assembly). Note also that recent work is considering eBPF for

reducing storage latency within the Linux kernel [34]. While related, this previous work does

not address how eBPF is relevant for computational storage.

4.3.3.1 eBPF Context

The Berkeley Packet Filter (BPF) introduced, in 1992, the possibility to run functions from user

space within the Linux kernel. BPF defined a bytecode structure together with a virtual machine

running within the Linux kernel. Alexei Starovoitov introduced eBPF in 2014, as an adaptation

of BPF for modern processors. There is no standardization body for eBPF. Until one is

established, the latest version of the eBPF bytecode is the one which can be interpreted with

the virtual machine and JIT compilers of the latest Linux kernel.

In-kernel eBPF JIT compilers are defined for x86_64, arm64, ppc64, s390x, mips64, sparc64 and

arm architectures. Most eBPF instructions can be mapped directly onto native instructions of

the underlying architecture.

A user-space virtual machine, uBPF, was defined in the context of the IOVisor project. uBPF is

available on github10. It is an Apache-licensed library for executing eBPF programs, as opposed

to the Linux kernel implementation which is under GPL license.

Both gcc and clang/LLVM have eBPF backend, i.e., they can generate eBPF code from C

programs. Interestingly, LLVM introduces an eBPF assembly language, which makes eBPF byte

code human-readable and an obvious target for code generation.

In the context of computational storage, eBPF bytecode is shipped from the host to the

computational storage device that should load the bytecode onto the virtual machine (or JIT-

compile the bytecode) and execute it. The goal is to run bytecode, not to run functions from

10 https://github.com/iovisor/ubpf

D6.1 Report on Computational Storage Capabilities

33

DAPHNE – 957407 Public

user space within the kernel. As a result, we focus the rest of our discussion on the uBPF virtual

machine, running in user-space.

4.3.3.2 eBPF instructions

An eBPF program is a sequence of 64-bit encoded instructions (see Figure 8).

Figure 6: Structure of eBPF instructions

Every instruction is encoded onto 64 bits. It is composed of:

• 8 bit opcode. Opcodes are grouped into "instruction class” based on the low 3 bits of

the opcode. These classes include load, store, ALU, byteswap and branch instructions11.

The operation can be based on registers (source and destination) or immediate

operands. The load and store operations can manipulate data on the stack at 32/16/8

bits granularity.

• 4 bit destination register (dst)

• 4 bit source register (src)

• 16 bit offset

• 32 bit immediate (imm)

The call instruction uses imm as the index in the function pointer table. The first five registers

hold the parameters of the external function.

In summary, eBPF can be seen as a platform-independent Instruction Set Architecture.

4.3.3.3 uBPF Virtual Machine

The uBPF virtual machine12 is a RISC register machine based on:

• Eleven 64-bit registers

o 9 general purpouse read-write

▪ r0 : return values (function calls and exit code)

▪ r1-r5: scratch registers used for function call arguments. Upon entering

execution of a BPF program, register r1 initially contains the context for the

program.

▪ r6-r9: not modified through function calls

o 1 read-only stack pointer.

o 1 implicit program counter. It cannot be manipulated explicitely by eBPF

instructions. It is managed by the virtual machine (or the JIT compiler) based on the

flow of execution.

11 See the unofficial eBPF spec for details on the structure of each group of instructions and the Cillium

documentation for reference.

12 For an introduction, see the series of blog posts by A.Ratiu at Collabora.

https://github.com/iovisor/bpf-docs/blob/master/eBPF.md
https://docs.cilium.io/en/latest/bpf/
https://docs.cilium.io/en/latest/bpf/
https://www.collabora.com/news-and-blog/blog/2019/04/05/an-ebpf-overview-part-1-introduction/

D6.1 Report on Computational Storage Capabilities

34

DAPHNE – 957407 Public

• A fixed-size stack. The stack is basically a portion of memory allocated by the virtual

machine. This is the only memory that is directly accessible from eBPF programs.

The size of the stack is a parameter of the virtual machine, together with the maximum number

of instructions in a program. They are set by default to 512B and 64K respectively.

To each virtual machine is associated a number of external functions. These are functions,

whose code is linked with the process that runs the virtual machine. External functions can be

registered with the virtual machine. The virtual machine maintains a function pointer table for

the external functions. They can then be called from eBPF programs, by their index in the

function pointer table (see call instruction above, and example below).

The virtual machine provides a simple interface for:

- Creating/destroying a VM: allocates or deallocates the space needed to hold the VM

state (a pointer to the bytecode instructions, the registered functions table, and flags

indicating whether checks are enforced and whether the JIT compiler is used).

- Registering/looking up external functions. A lookup based on an external function

name returns its index in the VM registered function table.

- Loading/unloading bytecode in a virtual machine. This consists of defining arrays for

the registers and the stack, as well as allocating a buffer for the bytecode (based on the

length of the eBPF program). The bytecode of the eBPF program is copied there and

the number of instructions associated to the program is intialized (based on the

program size). A single eBPF program can be loaded in a virtual machine. Unloading a

program consists in deallocating the bytecode buffer and resetting the number of

instructions associated to the current program to 0.

- Executing bytecode. After allocating the stack and registers, the virtual machine enters

the loop that fetches the next instruction (thanks to the fixed sized instructions, an eBPF

program is manipulated as an array of instructions), tests the opcode and executes the

associated C instructions (usually one or two C instructions per eBPF opcode).

- Checking that predefined constraints in terms of number of instructions or stack size

are respected.

The uBPF virtual machine is called from a loader program, that extracts the eBPF program from

a given ELF13 file. The loader relies on the ELF segment header table to identify the different

sections of the ELF file, checks its validity, extracts the text sections and replaces references to

the name of external functions by their index in the VM external function pointer table and

finally loads the concatenated text sections as bytecode in the VM. On a computational storage

device, we should aim to reuse the standard uBPF VM and design a loader that is well suited

for our purpose.

13 ELF stands for Executable and Linkable Format. This is the format of object code, executables and

shared libaries.

D6.1 Report on Computational Storage Capabilities

35

DAPHNE – 957407 Public

The load/unload/execute interface could be the basis for a transport protocol that exposes the

VM interface to a host. This is the topic of the Eid-Hermes project14. This could also be the basis

for a NVMe command set for computational storage.

4.3.3.4 Compiler support for eBPF

Both clang and gcc can compile C programs into eBPF bytecode (as well as eBPF assembly).

Here is a very simple example of a C file (square.c) containing a single function referencing an

external function (regfunc)

int square(int num) {
 regfunc(num);
 return num * num;
}

And the eBPF assembly obtained from clang (clang -S -target bpf square.c)

 .text
 .file "square.c"
 .globl square # -- Begin function square
 .p2align 3
 .type square,@function
square: # @square
%bb.0:
 r2 = r1
 *(u32 *)(r10 - 4) = r1
 r1 = *(u32 *)(r10 - 4)
 *(u64 *)(r10 - 16) = r2
 call regfunc
 r1 = *(u32 *)(r10 - 4)
 r1 *= r1
 *(u64 *)(r10 - 24) = r0
 r0 = r1
 exit
.Lfunc_end0:
 .size square, .Lfunc_end0-square
 # -- End function
 .addrsig
 .addrsig_sym regfunc

Any function that is referenced from the eBPF program is considered an external function. For

example, any call to function from the standard C library is represented as a call to an external

function, that should be registered with the virtual machine executing the eBPF program.

There is no support for passing arguments per value, for variadic functions or polymorphic

types. As a result, there is no support for compiling C++ programs into eBPF.

4.3.3.5 Data movement

A characteristics of computational storage programs is that they are used to process stored

data. Their input is the result of data movement from storage media or storage drives to the

computational storage device. Their output should be moved from the computational storage

device to the host or possibly to storage drives. Such data movements require (a) the allocation

14 https://github.com/Eideticom/eid-hermes

D6.1 Report on Computational Storage Capabilities

36

DAPHNE – 957407 Public

of buffer space for storing the moved data (or the data to be moved) and (b) access to

peripherals and DMA engines to perform the transfers. As we have seen in the previous section,

these functions, usually managed by the C standard library or external libraires, are not part of

eBPF programs.

We identify the following cases for data movement:

1. Data movement between computational storage and associated storage drives.

a. Data movement is encapsulated within registered functions, which are responsible for

allocating memory and handling I/Os.

b. Data movement is handled through P2P DMAs15 set up from the host.

2. Data movement between computational storage and host.

a. The computational storage device exposes an NVMe I/O command set that enables the

host to read and write data to computational storage. The namespace is organized and

made available to eBPF program through registered functions.

4.3.3.6 Design Space for Computational Storage

Figure 8 below illustrates a scenario involving eBPF bytecode upload. eBPF code is generated

from C functions on the host and offloaded to the computational storage processor that runs

a uBPF VM. Two registered functions F1 and F2, accessible from eBPF programs, embed access

to directly attached SSDs. The CSP defines a NVM I/O command set exposing the result of eBPF

programs as LBA ranges in the context of a block device interface.

Figure 7: eBPF code offload

15 https://www.kernel.org/doc/html/latest/driver-api/pci/p2pdma.html

D6.1 Report on Computational Storage Capabilities

37

DAPHNE – 957407 Public

As we wrote earlier, eBPF bytecode can define new ways to access pre-installed software (OS,

container) and hardware-accelerated (FPGA bitstream) components – made available as

registered functions. We make two additional remarks:

1. A generic mechanism to load/unload/execute eBPF programs makes it possible to expose

any new SSD interface to a host without modifying the NVMe protocol. In this case, the

offloaded eBPF program can be limited to the call of an external function.

2. Access to resources associated to the Computational Storage Processor, such as memory,

direct-attached SSDs or other peripherals, must be mediated through registered functions. If

those resources are shared across several virtual machines, then the registered functions

should provide concurrency guarantees.

4.4 Take-Aways

We identified the various abstractions made available by storage devices (block, zones, files,

key-value) and we described the diversity of I/O frameworks that can be used to submit I/Os

(posix, aio, libaio, io_uring, spdk, ioctls). We presented xNVMe as a uniform abstraction for

accessing NVMe devices regardless of the underlying abstraction or I/O framework.

We presented existing work for programming computational storage devices with a special

emphasis on code shipping with eBPF.

D6.1 Report on Computational Storage Capabilities

38

DAPHNE – 957407 Public

5 Storage Configuration
This section goes over the characteristics of different storage tiers focusing on the implications

on DAPHNE’s integrated data analysis pipelines.

5.1 Storage Tier Characteristics

The storage infrastructure in both HPC clusters and the cloud offer a tiered architecture each

serving different purposes and being supported by different storage devices and software

frameworks. Mechanisms to move data across storage tiers of different characteristics are

similar to data moving across processor caches, DRAM, and persistent storage.

While the names of the tiers and at which granularity they are grouped may change, it is

common to consider at least three distinct tiers.

1. Performance tier. As the name hints, this tier is for keeping and processing the data that

is needed frequently by the application (i.e., hot data), but stored for better cost-

performance. Access to such data is latency critical. Therefore, the storage devices for this

tier are typically NVMe SSDs with SLC/MLC NAND or 3D-Xpoint (see Section 3.1.1).

2. Capacity tier: The capacity tier offers storage space with a lower price/capacity, as well as

lower access latency, for keeping data that is not as latency critical to the application. This

tier is composed of HDDs, SATA SSDs, and NVMe SSDs with TLC/QLC/PLC (see Sections

3.1.1 and 3.1.2).

3. Archival tier: The archival tier targets data that is either too big to even fit in the capacity

tier within a reasonable price budget or data that has mainly archival value and is very rarely

needed (if needed at all). The storage medium of choice for the archival tier is tape (see

Section 3.1.3).

The interactions with data stored in any tier can rely on any of the abstractions presented in

Section 4.2. Direct access through I/Os is preferable for the performance tier since latency is of

the essence. In addition, raw access to storage devices allows further performance optimization

through customizing accesses to storage device based on the application workload. On the

other hand, distributed storage systems are preferable for the capacity and archival tiers, as

they reduce the headache of reliably managing data on the storage resources at these tiers.

When the application relies on the interfaces and abstractions provided by the storage software

frameworks (e.g., Lustre, Ceph, S3) rather than directly using raw access to blocks or zones,

there is no room for low-level customization based on device and application characteristics,

unless one day the parallel file systems or object stores add hooks to have raw access to storage

devices (e.g., customizing number of zones and managing their write-pointers on a ZNS device

over Ceph).

Each of these tiers can also have computational storage capabilities that are exposed behind

an abstraction. For example, AWS AQUA offers filter functionality for applications that use

Amazon Redshift as part of the performance tier. In the future, one can envision that cloud

providers offer such services across tiers with a set of pre-defined registered functions to a

wider variety of systems behind a well-defined abstraction. Some services may even go a step

further and allow applications to offload code as discussed in Section 4.3.2.

D6.1 Report on Computational Storage Capabilities

39

DAPHNE – 957407 Public

5.2 DAPHNE Storage Configuration

A given HPC system has native support for a range of storage systems that are arranged in

tiers as described above. For instance, the Vega HPC system at U.Maribor provides (i) local

NVMe SSDs on compute instances, (ii) Lustre as performance storage tier and (iii) Ceph as

capacity storage tier.

Given the available storage space, programmers should proceed to capacity sizing. They should

determine the amount of storage space they need (or can afford) from the native storage

systems. The capacity quotas to allocate at each tier depends on the budget of the end-user

vs the price/capacity costs of the storage infrastructure being used in addition to the expected

data size, data access patterns, and the latency requirements of the application.

When applying for resources on a HPC system, a fixed amount of storage space is requested

together with compute resources (on CPU, GPU and possibly FPGA). Local storage on compute

nodes can be used directly or in the context of a distributed file system added as modules

available to some users or they can be installed on compute instance by users through

containers (e.g., HDFS).

This available storage space can be represented as a table storing for each system:

- A type (e.g., Lustre, Ceph, GPFS, NVMe SD)

- An abtraction (e.g., file, block, zones)

- A name (e.g., file system path, device name)

- An amount of available space

To support a particular data access abstraction, IO framework, or storage software framework,

the storage back-end matching the interface offered by that abstraction and framework needs

to be implemented by DAPHNE. However, since extensibility is one of the core design goals,

DAPHNE can add support for these frameworks on a need basis.

The choice of where each data item resides can be determined by a data caching and/or

placement policy that is part of the DAPHNE storage configuration tool. For example, the data

that should be re-accessed within minutes, hours, days can be kept in the performance,

capacity, or archival tiers, respectively. For an application where newer data is accessed more

frequently, as a data item becomes older, the access to it will become rarer. Then, it can be

gradually moved from performance tier to capacity to eventually archival. Regardless of the

data placement policy adopted by DAPHNE, the storage configuration tool must keep

metadata to keep track of which data resides where and accessed using what type of

abstraction. In the case of more dynamic data management policies, this metadata should also

include the access characteristics of the data.

Finally, if a computational storage device or service is available, it is associated to SSDs and it

is characterized by a code shipping mechanism (OS image, container, bitstream, eBPF).

Computational storage devices supporting eBPF code shipping should also expose the

registered functions that they can be accessed from eBPF programs. Then, such capabilities

can be utilized based on a cost-model and optimization step that is part of the DAPHNE

compiler or runtime or both.

D6.1 Report on Computational Storage Capabilities

40

DAPHNE – 957407 Public

D6.1 Report on Computational Storage Capabilities

41

DAPHNE – 957407 Public

6 Conclusion
All storage devices incorporate compute and storage capabilities. Computational storage

denotes devices that can be programmed to fit the needs of a given application workload.

This report first surveyed how various workloads access stored data and identified the promise

of computational storage with respect to improved cost-performance, scalability, and resource

utilization. It then presents the storage landscape from an architecture and programmer

viewpoints, with a focus on computational storage.

While the storage landscape is quite complex, each HPC sytem supports a few native solution

organized in local storage on compute nodes, performance tier, capacity tier and possibly an

archival tier. When accessing resources on a HPC system, a fixed amount of storage space is

requested depending on The capacity quotas to allocate at each tier depends on the budget

of the end-user vs the price/capacity costs of the storage infrastructure being used in addition

to the expected data size, data access patterns, and the latency requirements of the application.

While multiple frameworks have been defined for submitting I/Os to local SSDs or a file system,

we presented xNVMe as a uniform interface that is simple and efficient.

We identified four computational storage devices that are specially relevant in the context of

DAPHNE and we presented existing work for programming computational storage devices with

a special emphasis on code shipping with eBPF.

D6.1 Report on Computational Storage Capabilities

42

DAPHNE – 957407 Public

7 References
[1] J. Do, I. L. Picoli, D. Lomet, and P. Bonnet, ‘Better database cost/performance via batched

I/O on programmable SSD’, The VLDB Journal, vol. 30, no. 3, pp. 403–424, May 2021, doi:

10.1007/s00778-020-00648-z.

[2] M. Torabzadehkashi, A. Heydarigorji, S. Rezaei, H. Bobarshad, V. Alves, and N. Bagherzadeh,

‘Accelerating HPC Applications Using Computational Storage Devices’, in 2019 IEEE 21st

International Conference on High Performance Computing and Communications; IEEE 17th

International Conference on Smart City; IEEE 5th International Conference on Data Science

and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, Aug. 2019, pp. 1878–1885. doi:

10.1109/HPCC/SmartCity/DSS.2019.00259.

[3] H. Choe et al., ‘Near-Data Processing for Differentiable Machine Learning Models’,

arXiv:1610.02273 [cs], Apr. 2017, Accessed: Feb. 23, 2021. [Online]. Available:

http://arxiv.org/abs/1610.02273

[4] B. Samynathan, ‘Computational Storage For Big Data Analytics’, 2019. Accessed: Dec. 11,

2020. [Online]. Available: http://www.adms-conf.org/2019-camera-ready/bala_adms19.pdf

[5] W. Cao et al., ‘{POLARDB} Meets Computational Storage: Efficiently Support Analytical

Workloads in Cloud-Native Relational Database’, 2020, pp. 29–41. Accessed: Mar. 04, 2021.

[Online]. Available: https://www.usenix.org/conference/fast20/presentation/cao-wei

[6] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad, V. Alves, and N. Bagherzadeh,

‘Catalina: In-Storage Processing Acceleration for Scalable Big Data Analytics’, in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based Processing

(PDP), Feb. 2019, pp. 430–437. doi: 10.1109/EMPDP.2019.8671589.

[7] A. Lerner and P. Bonnet, ‘Not your Grandpa’s SSD: The Era of Co-Designed Storage Devices’,

in Proceedings of the 2021 International Conference on Management of Data, New York, NY,

USA, Jun. 2021, pp. 2852–2858. doi: 10.1145/3448016.3457540.

[8] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, ‘Active Disks for Large-Scale Data

Processing’, Computer, vol. 34, no. 6, pp. 68–74, Jun. 2001, doi: 10.1109/2.928624.

[9] Gray, Jim, ‘Put Everything in the Disk Controller’. NASD Talk, Jun. 08, 1998. [Online].

Available: https://jimgray.azurewebsites.net/talks/Gray_NASD_Talk.ppt

[10] R. Balasubramonian et al., ‘Near-Data Processing: Insights from a MICRO-46 Workshop’,

IEEE Micro, vol. 34, no. 4, pp. 36–42, Jul. 2014, doi: 10.1109/MM.2014.55.

[11] ‘SNIA Draft Technical Work available for Public Review | SNIA’.

https://www.snia.org/tech_activities/publicreview (accessed Feb. 24, 2021).

[12] A. Barbalace and J. Do, ‘Computational Storage: Where Are We Today?’, presented at the

Conference on Innovative Data Systems Research 2020, Jan. 2021. Accessed: Nov. 09, 2021.

[Online]. Available: https://www.research.ed.ac.uk/en/publications/computational-

storage-where-are-we-today

[13] ‘Best Practice Guide - Parallel I/O, February 2019’, PRACE. https://prace-ri.eu/training-

support/best-practice-guides/best-practice-guide-parallel-io/ (accessed Nov. 09, 2021).

[14] Z. Liang, J. Lombardi, M. Chaarawi, and M. Hennecke, ‘DAOS: A Scale-Out High Performance

Storage Stack for Storage Class Memory’, in Supercomputing Frontiers, Cham, 2020, pp. 40–

54. doi: 10.1007/978-3-030-48842-0_3.

[15] ‘What is Cloud Storage? | AWS’, Amazon Web Services, Inc. https://aws.amazon.com/what-

is-cloud-storage/ (accessed Nov. 09, 2021).

[16] ‘Azure Cloud Storage Solutions and Services | Microsoft Azure’.

https://azure.microsoft.com/en-us/product-categories/storage/ (accessed Nov. 09, 2021).

[17] ‘Cloud Storage’, Google Cloud. https://cloud.google.com/storage (accessed Nov. 09, 2021).

D6.1 Report on Computational Storage Capabilities

43

DAPHNE – 957407 Public

[18] ‘Alibaba Cloud Storage: Intelligent Storage Service’, AlibabaCloud.

https://www.alibabacloud.com/product/storage (accessed Nov. 09, 2021).

[19] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, ‘All File Systems Are Not Created Equal: On the Complexity of Crafting

Crash-Consistent Applications’, 2014, pp. 433–448. Accessed: Nov. 09, 2021. [Online].

Available: https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/pillai

[20] J. Axboe, ‘Efficient IO with io_uring’, Linux Kernel Report, 2019. Accessed: Dec. 11, 2020.

[Online]. Available: https://kernel.dk/io_uring.pdf

[21] Lund, Simon, P. Bonnet, and J. Gonzalez, ‘xNVMe: The Narrow Waist of the modern I/O

Stack’.

[22] I. F. Adams, J. Keys, and M. P. Mesnier, ‘Respecting the block interface – computational

storage using virtual objects’, presented at the 11th {USENIX} Workshop on Hot Topics in

Storage and File Systems (HotStorage 19), 2019. Accessed: Nov. 09, 2021. [Online].

Available: https://www.usenix.org/conference/hotstorage19/presentation/adams

[23] M. Bjørling, J. Gonzalez, and P. Bonnet, ‘LightNVM: The Linux Open-Channel SSD

Subsystem’, in 15th USENIX Conference on File and Storage Technologies, FAST 2017, Santa

Clara, CA, USA, February 27 - March 2, 2017, 2017, pp. 359–374. Accessed: May 26, 2020.

[Online]. Available: https://www.usenix.org/conference/fast17/technical-

sessions/presentation/bjorling

[24] I. L. Picoli, N. Hedam, P. Bonnet, and P. Tözün, ‘Open-Channel SSD (What is it Good For)’,

2020. Accessed: May 26, 2020. [Online]. Available: http://cidrdb.org/cidr2020/papers/p17-

picoli-cidr20.pdf

[25] M. Bjørling, J. Axboe, D. W. Nellans, and P. Bonnet, ‘Linux block IO: introducing multi-queue

SSD access on multi-core systems’, in 6th Annual International Systems and Storage

Conference, SYSTOR ’13, Haifa, Israel - June 30 - July 02, 2013, 2013, p. 22:1-22:10. doi:

10.1145/2485732.2485740.

[26] N. Borić, H. Gildhoff, M. Karavelas, I. Pandis, and I. Tsalouchidou, ‘Unified Spatial Analytics

from Heterogeneous Sources with Amazon Redshift’, in Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, New York, NY, USA, Jun. 2020,

pp. 2781–2784. doi: 10.1145/3318464.3384704.

[27] L. A. N. L. Energy Operated by Los Alamos National Security, LLC, for the U. S. Department

of, ‘Los Alamos announces details of new computational storage deployment’.

https://www.lanl.gov/discover/news-release-archive/2020/November/1116-

computational-storage.php (accessed Mar. 04, 2021).

[28] Z. István, D. Sidler, and G. Alonso, ‘Caribou: intelligent distributed storage’, Proc. VLDB

Endow., vol. 10, no. 11, pp. 1202–1213, Aug. 2017, doi: 10.14778/3137628.3137632.

[29] J. Do et al., ‘Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-

scale AI Applications’, ACM Trans. Storage, vol. 16, no. 4, p. 21:1-21:37, Oct. 2020, doi:

10.1145/3415580.

[30] ‘Willow | Proceedings of the 11th USENIX conference on Operating Systems Design and

Implementation’. https://dl.acm.org/doi/10.5555/2685048.2685055 (accessed Feb. 24,

2021).

[31] B. Gu et al., ‘Biscuit: A Framework for Near-Data Processing of Big Data Workloads’, in 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul,

South Korea, Jun. 2016, pp. 153–165. doi: 10.1109/ISCA.2016.23.

[32] Z. Ruan, T. He, and J. Cong, ‘INSIDER: Designing In-Storage Computing System for

Emerging High-Performance Drive’, p. 17.

D6.1 Report on Computational Storage Capabilities

44

DAPHNE – 957407 Public

[33] W. Huang and M. Paradies, ‘An Evaluation of WebAssembly and eBPF as Offloading

Mechanisms in the Context of Computational Storage’. [Online]. Available:

https://arxiv.org/abs/2111.01947

[34] Y. J. Wu et al., ‘BPF for storage: an exokernel-inspired approach’, arXiv:2102.12922 [cs], Feb.

2021, Accessed: Nov. 26, 2021. [Online]. Available: http://arxiv.org/abs/2102.12922

[35] M. Jung, ‘OpenExpress: Fully Hardware Automated Open Research Framework for Future

Fast NVMe Devices’, 2020, pp. 649–656. Accessed: Dec. 02, 2020. [Online]. Available:

https://www.usenix.org/conference/atc20/presentation/jung

D6.1 Report on Computational Storage Capabilities

45

DAPHNE – 957407 Public

8 Appendix 1: PCIe
PCIe is a layered network protocol, based on requests/responses (denoted transactions),

layered atop a packet-based data link protocol and physical connections organized as a

collection of lanes. Each lane is a pair of unidirectional, serial, point-to-point connections.

The PCIe fabric is organized as a tree, with a root complex and mutiple endpoints connected

directly or via switches. Each PCIe device has an identifier (PCI ID) composed of a vendor ID

and a device ID.

Each device is associated to a memory-mapped region of the host address space, defined

through the Base Address Registers (BAR). This region of memory includes a collection of

registers used for configuration and operation. For instance, at boot time, PCI devices do not

have addresses assigned to them. The host bios must thus enumerate all devices on the PCI

fabric and initialize the BAR configuration register for each device found.

PCIe supports message-signaled interrupts (MSI-X), so individual interrupts can be addressed

to specific host cores.

9 Appendix 2: NVMe
Hosts and devices communicate through pairs of submission/completion queues. The queues

are located in the memory-mapped address space either on the host or on the device (queues

created in different cores can be used without coordination). The driver puts commands on the

submission queue and writes a doorbell register when commands are ready to be executed.

The controller accesses the commands from the queue. Data is transferred between a host’s

memory and an SSD via Direct Memory Transfer (DMA). After commands are executed, the

controller puts the status for the completed command on the associated completion queue.

Multiple submission queues can be associated to the same completion queue. The controller

then notifies the host that completion notifications are available through a doorbell register.

This streamlined I/O path reduces software overhead and is faster than previous storage

interconnects. For more details, we refer readers to the excellent overview of NVMe provided

by Myoungsoo Jung in his paper on Open-Express [35].

An NVMe controller may support administration commands, multiple namespaces, and zero

or more I/O Command Sets defining the operations that can be performed with the

namespace. Administrative commands include the creation and deletion of

submission/completion queues, as well as primitives for device identification, or getting log-

pages, device capabilities, and features. A namespace is the encapsulation of a resource that is

made available to hosts via a I/O

Command Set. Directives enable host and device to exchange command meta-data, e.g.,

streams.

The NVM I/O Command Set is associated to a logical representation of non-volatile memory

as a collection of blocks. It defines familiar commands such as read and write, with additions

such as Write-Zeroes, providing the means to set LBAs to zero without transferring a payload

of all zeroes from host to device. The Zoned Command Set, relies on a logical representation

D6.1 Report on Computational Storage Capabilities

46

DAPHNE – 957407 Public

where logical blocks are partitioned into zones. It establishes constraints that logical blocks

must be written sequentially within a zone and that zones must be reset before they are written.

It defines the zone state that must be communicated from device to host. It also defines the

append command. The Key Value Command Set abstracts the underlying resource as a pool

of bytes which can be allocated in key-value pairs. Access to key-value pairs is done through

store and retrieve commands, with additional commands to check for the existence, delete,

and list keys in the namespace. The standardisation of computational storage in NVMe is under

way. We envision that (a) the underlying resource, for which a namespace provides

encapsulation, is a computational unit rather than non-volatile memory, (b) the abstraction

provided by the Command Set will be close to that of a JIT compiler over a virtual instruction

set architecture.

NVMe is now defined over PCIe, Ethernet and Infiniband fabrics. It has been recently suggested

to extend NVMe to hard disk drives [1, 18] to unify all storage under NVMe in data centers. In

summary, NVMe makes it possible to execute traditional read/writes faster, it makes it possible

for the host software to shape streams of reads and writes, and it makes it possible for host

software to issue new commands on new storage abstractions. To leverage NVMe SSDs, system

designers need an efficient and flexible I/O interface.

Lerner et al. propose the following parameters to characterize I/O workloads on NVMe drives

[7]:

• I/O pattern (sequential/random, read/write/mixed)

• I/O size

• Number of cores submitting I/Os

• Number of in-flight I/Os per core

• Other parameters (circularity, latency sensitiveness, burstiness)

10 Appendix 3: NAND Flash
NAND flash relies on arrays of floating-gate transistors, so-called cells, to store bits. Shrinking

transistor size has enabled increased flash capacity. SLC flash stores one bit per cell. MLC and

TLC flash store 2 or 3 bits per cell, respectively, and there are four bits per cell in QLC flash. For

3D NAND, increased capacity is no longer tied to shrinking cell size but to flash arrays layering.

There are three fundamental programming constraints that apply to NAND: (i) a write

command must always contain enough data to program one (or several) full flash page(s), (ii)

writes must be sequential within a block, and (iii) an erase must be performed before a page

within a block can be (re)written. The number of program/erase (PE) cycles is limited. The limit

depends on the type of flash: 10^2 for TLC/QLC flash, 10^3 for MLC, or 10^5 for SLC.

Additional constraints must be considered for different types of NAND flash. For example, in

multi-level cell memories, the bits stored in the same cell belong to different write pages,

referred to as lower/upper pages. The upper page must be written before the lower page can

be read successfully. The lower and upper page are often not sequential, and any pages in

between must be written to prevent write neighbor disturbance.

D6.1 Report on Computational Storage Capabilities

47

DAPHNE – 957407 Public

As a result, we consider two key parameters for characterizing SSD capabilities: NAND type and

unit of read/write/erase.

